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Abstract

Angiogenesis has been shown to be associated with prostate cancer development. The majority of prostate cancer studies
focused on individual single nucleotide polymorphisms (SNPs) while SNP-SNP interactions are suggested having a great
impact on unveiling the underlying mechanism of complex disease. Using 1,151 prostate cancer patients in the Cancer
Genetic Markers of Susceptibility (CGEMS) dataset, 2,651 SNPs in the angiogenesis genes associated with prostate cancer
aggressiveness were evaluated. SNP-SNP interactions were primarily assessed using the two-stage Random Forests plus
Multivariate Adaptive Regression Splines (TRM) approach in the CGEMS group, and were then re-evaluated in the Moffitt
group with 1,040 patients. For the identified gene pairs, cross-evaluation was applied to evaluate SNP interactions in both
study groups. Five SNP-SNP interactions in three gene pairs (MMP16+ ROBO1, MMP16+ CSF1, and MMP16+ EGFR) were
identified to be associated with aggressive prostate cancer in both groups. Three pairs of SNPs (rs1477908+ rs1387665,
rs1467251+ rs7625555, and rs1824717+ rs7625555) were in MMP16 and ROBO1, one pair (rs2176771+ rs333970) in MMP16
and CSF1, and one pair (rs1401862+ rs6964705) in MMP16 and EGFR. The results suggest that MMP16 may play an important
role in prostate cancer aggressiveness. By integrating our novel findings and available biomedical literature, a hypothetical
gene interaction network was proposed. This network demonstrates that our identified SNP-SNP interactions are
biologically relevant and shows that EGFR may be the hub for the interactions. The findings provide valuable information to
identify genotype combinations at risk of developing aggressive prostate cancer and improve understanding on the genetic
etiology of angiogenesis associated with prostate cancer aggressiveness.
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Introduction

Prostate cancer accounts for 29% of cancer incidence and 9% of

cancer deaths and it is the most common cancer and the second

leading cause of cancer death in American men in 2012 [1].

Prostate cancer has a substantial clinical heterogeneity. Physicians

therefore often have difficulty distinguishing between patients who

will develop indolent and aggressive tumors at the time of

a prostate cancer diagnosis [2]. For prostate cancer patients with

a low risk, conservative management and treatment are recom-

mended because an indolent course over a long period of time

may be observed. Several features (such as prostate specific

antigen, clinical stage and tumor grade) have been used to classify

high-risk patients who need immediate therapy and the low risk

patients who need conservative treatment. When using the existing

features, approximately 20% of these low-risk prostate cancer

patients died due to conservative treatment [3]. Thus, there is an

urgent need for identifying biomarkers in order to improve

prediction accuracy of prostate cancer aggressiveness.

Angiogenesis is a biological process that involves the division

and migration of endothelial cells, resulting in microvasculature

formation [4,5]. The formation of blood vessels is important for

organ development during embryogenesis and continues to

contribute to organ growth after birth. During adulthood, most

blood vessels remain quiescent and angiogenesis is limited to the

cycling ovary and in the placenta during pregnancy [4,5,6].

Nonetheless, endothelial cells maintain their ability to divide

rapidly into blood vessels in response to physiological stimuli, such

as hypoxia, and angiogenesis is reactivated during wound healing

and repair [4,5,7]. The process of postnatal angiogenesis is

regulated by a continuous interplay (that establishes a balance) of

stimulators such as vascular endothelial growth factor (VEGF),

basic fibroblast growth factor (bFGF), epidermal growth factor

(EGF), interleukins (ILs), transforming growth factor beta (TGF-b),
tumor necrosis factor alpha (TNF-a), platelet derived growth

factor (PDGF), and matrix metalloproteinases (MMPs) and

inhibitors such as endostatin, platelet factor-4, tumastin, throm-

bospondin-1, plasminogen activator inhibitor-1 and angiostatin

[4,5,6,7,8]. However, in many disorders including prostate cancer,

the balance between stimulators and inhibitors is tilted to favor

stimulators, resulting in an ‘‘angiogenic switch’’ [9,10]. The so-
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called ‘‘angiogenic switch’’ may result from changes in the

expression levels of genes in the angiogenesis pathway.

Single nucleotide polymorphisms (SNP) in angiogenesis genes

may alter gene expression and influence the process of angiogen-

esis in prostate cancer and inhibited tumor growth in animal

models [11,12]. Indeed, several SNPs in angiogenesis genes that

affect gene expression have been identified. These variants may

potentially contribute to inter-individual variation in the risk and

progression of prostate tumors [13]. Furthermore, angiogenesis is

shown to be associated with the Gleason score, tumor stage,

progression, metastasis and survival among prostate cancer

patients [14,15].

Although the number of studies for evaluating the role of SNPs

in angiogenesis genes is limited, several of the studies support the

association between angiogenesis and prostate cancer aggressive-

ness. So far, results from several candidate gene and genome-wide

association (GWA) studies suggest that SNPs in the angiogenesis

pathway may be important in prostate cancer progression and

aggressiveness. In the candidate gene studies, VEGF -1154A and -

634C alleles were associated with an increased risk of higher tumor

grade [16]. Jacobs et al. (2008) evaluated 58 SNPs in nine

angiogenesis genes and found that three correlated SNPs

(rs1477017, rs17301608, and rs11639960) in the MMP2 were

associated with overall and advanced prostate cancer [17].

Additionally, men with the IL-10 819 TT genotype tended to

have a higher risk of developing a high-grade prostate cancer [18].

In a GWA study, Thomas et al. observed that a nonsynonymous

SNP (rs4072111) that changes a serine to proline in IL-16 was

significantly associated with an increased risk of aggressive cancer

[19]. Another GWA study observed significant associations

between aggressive prostate cancer and three intergenic SNPs

(rs11199874, rs10749408 and rs10788165) that span a 590 kb

region on chromosome 10q26 that encompasses FGFR2, an

angiogenesis gene [20]. Penney observed associations with

mortality for SNPs in IL-18 (rs360729, and rs243908) and IL-11

(rs12709950) in their stage one scan, but none were replicated in

the stage two scan [21].

In order to comprehensively evaluate genetic variations in

angiogenesis genes associated with prostate cancer aggressiveness,

effects of both individual SNPs and SNP-SNP interactions were

examined. The majority of current studies are focused on

evaluating individual SNP effects; however, one-to-one associa-

tions may not be sufficient to explain the complexity of disease

causality. It has recently been established that gene-gene/SNP-

SNP interactions may have a higher impact on unveiling causality

of complex diseases [22,23,24,25]. Pure SNP-SNP interactions,

i.e., those with minor or no significant individual SNP effects, were

reported in several diseases, such as breast cancer [26,27], prostate

cancer [28], and rheumatoid arthritis [29].

To overcome the challenges in high-dimensional data, we

searched SNP-SNP interactions using the TRM approach, a two-

stage Random Forests plus Multivariate Adaptive Regression

Splines (MARS). Conventional studies use an additive model for

SNPs, and search for pair-wise SNP interactions using logistic

regression. This approach is not sufficient because an additive

model assumption may not be valid. It has been shown that the

genetic model selection has a great impact on the detection power

of associations [28]. In some studies, pure SNP interactions are

overlooked because only SNPs with a significant or marginal main

effect are taken into consideration. For improving the prediction

ability of complex disease, identifying appropriate genetic models

(such as dominant and recessive) and considering gene-gene

interactions in the association studies are suggested [30]. This

TRM approach, which takes different inheritance models and

interactions into account in both screening and interaction pattern

searching steps, has been shown to be powerful in detecting SNP

interactions in a large-scale genetic variation study [31].

Materials and Methods

Two groups were used in this study. The CGEMS group was

used as the primary data set to identify SNP-SNP interactions

associated with prostate cancer aggressiveness. The significant

results identified in the CGEMS data were then re-evaluated using

the Moffitt data. All individuals in our analysis were men with

European descent because data were available on men with

European descent in the CGEMS dataset. Only one common

demographic variable, age at enrollment, was available in the two

study groups. However, due to the study design difference, the

variables of age at enrollment in the two study groups are not

comparable. For the prostate cancer patients, the date of

enrollment was prior to prostate cancer diagnosis in the CGEMS

study (a nested case-control study within a prospective cohort

study), but it was after cancer diagnosis in the Moffitt cohort (a

case only study). Thus, our analyses were based on unadjusted

results.

CGEMS Population
There were 1,151 prostate cancer patients (659 aggressive and

492 non-aggressive patients) in the CGEMS prostate cancer

genome-wide data set. The participants were selected from the

Prostate, Lung, Colon and Ovarian (PLCO) Cancer Screening

Trial enrollment between 1993 and 2003 [32]. There were 12%,

55% and 33% patients in the age group of ,60, 60–69 and

.=70 years-old, respectively, at enrollment of the PLCO cohort

study. The whole data contained approximately 550,000 SNPs

genotyped with Illumina HumanHap300 and Illumina Human-

Hap250. Patients with Gleason scores $7 or $stage III were

considered to have aggressive prostate cancer. We identified genes

encoding proteins involved in or related to angiogenesis through

searching published literature (PubMed) and public pathway

database (Cancer Genome Anatomy Project, Kyoto Encyclopedia

of Gene and Genomes and Gene Ontology). A total of 2,653 SNPs

in the 161 angiogenesis genes were examined. The Hardy-

Weinberg equilibrium was examined in the control group

(n= 1,101), which were not included in this study. After excluding

two SNPs without following the Hardy-Weinberg equilibrium (p-

value,1024), a total of 2,651 SNPs were applied for further

analyses. Linkage disequilibrium among all testing SNPs was

examined based on r2 using the Haploview Tagger [33]. After

selecting one SNP in each pair with strong linkage disequilibrium

of r2.0.8, a total of 2,177 SNPs were included for interaction

analyses.

Moffitt Population
The Moffitt group was used in the cross-evaluation of SNPs in

angiogenesis genes associated with prostate cancer aggressiveness.

The Moffitt population consisted of a historical cohort of 1,040

prostatectomy cases treated at the Moffitt Cancer Center from

1986 to 2003. We identified 437 aggressive cases and 603 non-

aggressive cases based upon the same prostate cancer aggressive-

ness criteria used in the CGEMS group. There were 49%, 42%

and 8% patients in the age group of ,60, 60–69 and .=70

years-old, respectively, at enrollment of the Moffitt study. There

were 681 angiogenesis SNPs genotyping using the Illumina

GoldenGateTM assay (Illumina, San Diego, CA). The study

protocol was approved by the Institutional Review Board of the

University of South Florida (Tampa, FL).

Angiogenesis SNPs for PCa Aggressiveness
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Analysis of Individual SNP Effects
In the CGEMS group, three inheritance models (dominant,

recessive and additive model) were assessed using logistic re-

gression models, and the best model was selected based on the

minimum p-value for each SNP. False discovery rate (FDR) q-

value [34] was calculated for adjusting for multiple comparisons.

The significant SNPs with a p-value less than 0.05 in the CGEMS

were then re-assessed in the Moffitt group. For consistency, the

same genetic model with the minimal p-value in the CGEMS

group was applied in the Moffitt group for each SNP. The main

effects of SNPs involved in the significant interactions were also

evaluated.

Cross-evaluation of SNP-SNP Interactions
For exploring SNP-SNP interactions, the TRM, two-stage

Random Forests plus MARS, was applied [31]. In the first stage of

the TRM approach, the top candidate SNPs were selected based

on minimizing the out-of-bag (OOB) classification error rate using

the unscaled permutation accuracy importance index in Random

Forests. The candidate SNPs selected in the first stage were

explored up to two-way interactions associated with prostate

cancer aggressiveness using MARS. In the first stage, we used the

default of 5,000 trees to build the first forest and 2,000 trees for all

additional forests using the varSelRF R package. The number of

randomly selected predictors was set at 47, the square root of the

number of predictors. Among all fitted forests, the final set of

variables was selected based on the smallest number of variables

whose error rate is less than one standard error of the minimum

OOB error rate. In MARS, the maximum basis functions of 30

was applied to explore SNP-SNP interaction patterns among the

top candidate SNPs. Ten-fold cross-validation was used to select

the degree of freedom charged per basis function.

Because Random Forests does not allow for missing values, the

sporadically missing genotyped data were imputed using IMPUTE

version 2.0 with the HapMap3 CEU+TSI data as the reference

population. Among 2,177 SNPs for interaction search, the missing

data rate was low: the median missing rate was 2.6% and

maximum was 5.6%. In order to preserve all SNPs in the analyses,

our interaction analyses were based on the combined dataset

composed of the original genotyped data and the imputed data.

The individual SNP effects were evaluated using the original data.

The TRM approach does not provide variable significance

using p-values, so the bootstrap method was applied for selecting

factors in the final model and reducing false positive findings. The

bootstrap frequencies of a null model, no association between the

simulated outcome and the testing SNPs, were applied for setting

the cut-point of variable selection in TRM. In this null model, we

independently generated a binary outcome variable with 659

subjects in one group and 492 subjects in the other group, which

was consistent with the aggressiveness status in the CGEMS data

set. We obtained 500 bootstrap samples by sampling with

replacement from the null model. For each identified factor

(individual effects or interactions), the false positive frequencies

based on 500 bootstrap samples were calculated. The 95%

percentile of the bootstrap frequencies in the false positive factors

was 4.2%. For conservative purposes, we kept only those with

a bootstrap frequency greater than 5%. For easy interpretation,

the identified factors were included in the multivariable logistic

regression for obtaining odds ratio and their 95% confidence

intervals.

The flow chart of the cross-evaluation for detecting SNP-SNP

interactions is shown in Figure 1. In Step 1, the SNP-SNP

interactions identified in the CGEMS group, treated as a training

set, were re-assessed in the Moffitt group. Among the CGEMS

identified gene pairs (gene-gene interactions), we were also

interested in exploring whether other SNP-SNP interactions could

be detected in the independent Moffitt group. In Step 2, we

further searched all possible two-way SNP-SNP interactions of the

identified gene pairs (such as MMP16+ ROBO1) in the Moffitt

group. In Step 3, the identified SNP interactions from the Step 2

were re-evaluated in the CGEMS group. The best ‘‘interaction

patterns’’ (such as dominant-dominant model) were detected

separately in both groups using MARS. Additionally, we checked

whether the identified interaction models were better than the

models with their main effects only by using the stepwise logistic

regressions. Data analyses were performed using SAS 9.3. TRM

was performed using MARS 2.0 (Salford Systems, San Diego,

USA), and R package of randomForest and varSelRF.

Results

In the Cancer Genetic Markers of Susceptibility (CGEMS)

group, we evaluated the main effect of 2,651 angiogenesis SNPs

associated with prostate cancer aggressiveness status (yes/no) using

logistic regression models. There were 279 SNPs in 75 genes with

a raw p-value less than 0.05. Among these SNPs, the largest FDR

q-value was 0.053. This indicates that less than 15 false positive

findings were expected among the top selected SNPs. These

significant SNPs were then assessed in the Moffitt group. Among

these 279 SNPs, 160 SNPs were available in the Moffitt data. Four

SNPs in three genes (COL4A3, PDGFD and ELK3) were associated

with prostate cancer aggressiveness in both the CGEMS and

Moffitt groups with a p-value less than 0.05. Two SNPs

(rs10498214 and rs6436661) in the COL4A3 were significantly

associated with prostate cancer aggressiveness. Those with the CC

genotype compared with CT and TT genotype in rs10498214

tended to have a higher risk of aggressive prostate cancer (odds

ratio (OR) = 1.63 and p-value = 0.028 for CGEMS; OR=1.53

and p-value = 0.047 for Moffitt). The CC and CT genotype of

rs6436661 in the COL4A3 was negatively associated with prostate

cancer aggressiveness (OR=0.74, p-value = 0.040 for CGEMS;

OR=0.71, p-value = 0.034 for Moffitt). Men with the CC

genotype in rs488753 (PDGFD) were more likely to develop

aggressive prostate cancer than those with the CT and TT

genotype (OR=1.47, p-value = 0.035 for CGEMS; OR=1.45, p-

value = 0.031 for Moffitt). The CC and CT genotype of rs2268509

in the ELK3 was positively associated with prostate cancer

aggressiveness (OR=1.29, p-value = 0.047 for CGEMS;

OR=1.57, p-value = 0.002 for Moffitt).

The SNP interactions in angiogenesis genes were evaluated

using the TRM approach in the CGEMS group. A total of 14

factors were selected using the TRM approach (Figure 2). Two

main effects of rs3093040 (in CSF1) and rs1477908 (in MMP16)

were selected, and 12 two-way SNP-SNP interactions were

identified. For selecting factors in the final model and internal

validation, the bootstrap method was applied. Using a bootstrap

frequency of 5% as a cut-point, the top seven factors were selected:

two main effects and five interacting SNP pairs. The two main

effects were the core factors in these SNP pairs. Among the five

interacting SNP pairs, rs1477908 was involved in two SNP pairs

and rs3093040 was included in the other three SNP pairs. The five

gene pairs of the identified SNP-SNP interactions were MMP16+
ROBO1, MMP16+ CSF1, CSF1+ FBLN5, CSF1+ HSPG2, and

MMP16+ EGFR, which in a rank order based on the bootstrap

frequencies. As shown in Table 1, we included these important

factors in a multivariable logistic model, and all factors were highly

significant (p-value range: 0.015–0.0001). These results remained

similar after adjusting age (results not shown).

Angiogenesis SNPs for PCa Aggressiveness
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Although these five SNP-SNP interactions were significant in

the multivariable model, we further evaluated whether these

SNP pairs were independent predictors for prostate cancer

aggressiveness. The five interacting SNP pairs were fitted

individually in a logistic regression model. In each 2-way

interaction in Table 2, the reference group was labeled as

OR=1. We defined those with OR.1 as the risk group and

those with OR,1 as the protective group. For easy comparison

of SNP interaction patterns between the two study groups, the

patterns were presented using 363 tables in the supplement

(Tables S1, S2, S3). These five SNP pairs were significantly

associated with prostate cancer aggressiveness in the CGEMS

group. In particular, the top two SNP-SNP interactions were

rs1477908 (MMP16)+rs1387665 (ROBO1) and rs6994019

(MMP16)+rs3093040 (CSF1). Prostate cancer patients with the

AA+AG/GG genotype combination of the SNP pair of

rs1477908 and rs1387665 were more likely to develop

aggressive prostate cancer (OR=1.83, p-value = 0.0002) than

those with the genotype combination of AA+ AA. Patients with

the GG/GA genotype in rs3093040 were more likely to have

an aggressive prostate cancer than those with the AA genotype,

but this effect was significantly modified by rs6994019. Among

those with the GG/GA genotype in rs3093040, men with the

GG genotype of rs6994019 were more likely to develop

aggressive prostate cancer (OR=2.22, p-value = 1.7*1025) than

those with the AA genotype of rs3093040; nevertheless, this

Figure 1. Flow chart of SNP-SNP interaction cross-evaluation. In Step 1, SNP-SNP interactions identified in the CGEMS group were re-assessed
in the Moffitt group. In Step 2, all possible two-way SNP-SNP interactions of the identified gene pairs were evaluated in the Moffitt group. In Step 3,
the identified SNP interactions from the Step 2 were re-evaluated in the CGEMS group.
doi:10.1371/journal.pone.0059688.g001

Figure 2. Frequencies based on 500 bootstrap samples of
factors selected by the two-stage Random Forests plus MARS
(TRM). For reducing false positive findings, the bootstrap method was
applied for selecting factors in the final model. We obtained 500
bootstrap samples by sampling with replacement from the null model.
For each identified factor, the false positive frequencies based on the
500 bootstrap samples were calculated. The factors with a bootstrap
frequency greater than 5% were included in the multivariable model
(Table 1).
doi:10.1371/journal.pone.0059688.g002

Table 1. Model of prostate cancer aggressiveness using the
CGEMS group.

Variables
Coefficient
(SE) a p-value

rs1477908 (AG/GG vs. AA) 20.55 (0.14) 0.0001

rs3093040 (GG/GA vs. AA) 0.58 (0.20) 0.0037

rs1477908+ rs1387665 (AA+AA vs. others) 20.59 (0.17) 0.0005

rs6994019+ rs3093040 (GG+GG/GA vs. others) 0.47 (0.13) 0.0005

rs3093040+ rs2498852 (GG/GA+GG vs. others) 20.55 (0.15) 0.0003

rs3093040+ rs4654991 (GG/GA+TC/CC vs. others) 20.34 (0.14) 0.0145

rs1477908+ rs7334 (AG/GG+ AA vs. others) 21.76 (0.64) 0.0064

astandard error, based on multivariable logistic model.
doi:10.1371/journal.pone.0059688.t001

Angiogenesis SNPs for PCa Aggressiveness
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positive association was not significant for those with the GT/

TT genotype of rs6994019 (OR=1.36, p-value = 0.096).

These 5 important SNP-SNP interactions were further evalu-

ated using the Moffitt group (Step 1 in Figure 1). Only one SNP-

SNP interaction of rs1477908 (MMP16) and rs1387665 (ROBO1)

was available in the Moffitt group. As shown in Table 2, we

observed that the high risk group of developing aggressive prostate

cancer was those with the AA and GG genotype in the pair of

rs1477908 and rs1387665 (OR=1.39 and p-value = 0.065) in the

Moffitt group. The high risk groups selected in both group are

similar: AA+ GG and AA+ AG/GG of rs1477908 and rs1387665

in the Moffitt and CGEMS groups, respectively.

Besides the CGEMS identified SNP-SNP interactions, we

explored whether other SNP interactions in the identified gene

pairs in the Moffitt group were significantly associated with

prostate cancer aggressiveness. Two-way SNP-SNP interactions of

the five identified gene pairs (MMP16+ ROBO1, MMP16+ EGFR,

MMP16+ CSF1, CSF1+ FBLN5, and CSF1+ HSPG2) were searched

(Step 2, Figure 1). As shown in Table 2, an additional eight SNP-

SNP interactions were detected in the Moffitt group. Two

interactions were in the gene pair of MMP16+ ROBO1, three

were in the MMP16+ EGFR, one was in MMP16+ CSF1 and two

were in the CSF1+HSPG2. Among these eight identified SNP-

SNP interactions, six were available in the CGEMS; consequently,

they were then re-evaluated (Figure 1, Step 3).

Table 2. SNP-SNP interactions in angiogenesis genes associated with prostate cancer aggressiveness in the CGEMS and Moffitt
group.

Gene-gene SNP-SNP interactiona CGEMSb Moffittb

interaction
Genotype
combination OR (95% CI) p-value

Genotype
combination OR (95% CI) p-value

MMP16+ ROBO1 rs1477908(A/G)+rs1387665(A/G)c1,d AA+AA 1 AA+AA/AG 1

AG/GG+ all 0.96 (0.6821.37) 0.8337 AG/GG+ all 1.07 (0.8121.43) 0.6263

AA+AG/GG 1.83 (1.3322.53) 0.0002 AA+GG 1.39 (0.9821.97) 0.0651

rs1467251(G/A)+ rs7625555(G/A)d all+AA 1 AA+GG/GA vs. others 0.29 (0.1020.85) 0.0239

GG+GG/GA 0.82 (0.6121.09) 0.1674

GA/AA+ GG/GA 0.59 (0.4220.82) 0.0017

rs1824717(A/G)+ rs7625555(G/A)d AA+ AA vs. others 1.91 (1.1823.08) 0.0086 AA/AG+ GG 1

GG+all 1.43 (0.9622.13) 0.0762

AA/AG+ GA/AA 1.59 (1.1322.24) 0.0080

MMP16+ CSF1 rs6994019(G/T)+ rs3093040(G/A)c2 All+AA 1 N/A

GT/TT+ GG/GA 1.36 (0.9521.97) 0.0955

GG+GG/GA 2.22 (1.5423.19) 1.7*1025

rs2176771(A/C)+ rs333970(A/C)d AA+ AC/CC vs. others 1.52 (1.1921.94) 0.0007 AC/CC+ CC vs. others 0.50 (0.2620.95) 0.0339

CSF1+ FBLN5 rs3093040(A/G)+ rs2498852(A/G)c3 AA+all 1 N/A

AG/GG+ GG 1.19 (0.7921.77) 0.4086

AG/GG+ AA/AG 2.01 (1.4222.85) 8.8*1025

CSF1+ HSPG2 rs3093040(A/G)+ rs4654991(T/C)c4 AA+all 1 N/A

AG/GG+ TT 1.99 (1.4022.84) 1.3*1024

AG/GG+ TC/CC 1.38 (0.9422.02) 0.1007

rs3093037(G/A)+ rs7556412(A/G) N/A All+AG/GG 1

AA+AA 2.48 (0.8427.34) 0.1012

GG/GA+ AA 0.76 (0.5920.99) 0.0376

rs3093037(G/A)+ rs2290501(A/C) N/A GG+CC vs. others 0.58 (0.3520.96) 0.0356

MMP16+ EGFR rs1477908(A/G)+ rs7334(C/A)c5 AA+all 1 N/A

AG/GG+ AA 0.11 (0.0320.39) 0.0006

AG/GG+ CC/CA 0.67 (0.5220.87) 0.0027

rs1401862(G/A)+ rs6964705(C/A)d GA/AA+ AA vs. others 0.58 (0.3820.88) 0.0107 GG/GA+ all 1

AA+CC 1.55 (0.5224.66) 0.4316

AA+CA/AA 0.23 (0.0820.68) 0.0074

rs10504853(A/G)+ rs17172446(G/A) AA+ GA/AA vs. others 1.06 (0.8021.41) 0.6677 AA+ GA/AA vs. others 1.50 (1.1322.00) 0.0051

rs1477908(A/G)+ rs17172446(G/A) AA+ all vs. others 1.62 (1.2622.10) 0.0002 AA/AG+ GG vs. others 0.69 (0.5420.89) 0.0037

aSNP(major/minor allele).
ball: all three genotypes in the SNP; others: genotype combinations of the two SNPs other than the specified genotype.
c1–c5top 1 to top 5 identified SNP-SNP interactions using the TRM approach in CGEMS.
dsimilar interaction pattern in the CGEMS and Moffitt group.
doi:10.1371/journal.pone.0059688.t002
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Three gene pairs were observed to have at least one SNP-SNP

interaction with a similar interaction pattern in the two study

groups. The similar interaction pattern was defined as the

identified genotype combinations in the two study groups, which

are overlapped and with the same direction in terms of a prostate

cancer aggressiveness risk. Three (rs1477908+ rs1387665,

rs1467251+ rs7625555, and rs1824717+ rs7625555) were in the

gene pair of MMP16 and ROBO1. The interaction of rs1401862

and rs6964705 was in the MMP16 and EGFR, and another SNP

pair of rs2176771 and rs333970 was in the MMP16 and CSF1.

With the exception of the SNP pair of rs1477908 and rs1387665,

additional two SNP pairs (rs1467251+ rs7625555 and rs1824717+
rs7625555) in the gene pair of MMP16 and ROBO1 were

associated with prostate cancer aggressiveness. In the Moffitt

group, prostate cancer patients with the AA+GG/GA genotype in

the SNP pair of rs1467251 and rs7625555 had a lower chance of

developing aggressive prostate cancer than other genotype

combinations in the same SNP pair (OR=0.29, p-value = 0.024).

In the CGEMS group, the low risk group was those with the GA/

AA+GG/GA genotype in the same SNP pair (OR=0.59, p-

value = 0.002). As for the interaction of rs1824717 and rs7625555,

the high risk group of aggressive prostate cancer in the CGEMS

group was the combination of AA and AA genotype of this SNP

pair (OR=1.91, p-value = 0.009),and the high risk group in the

Moffitt set was the combination of AA/AG and GA/AA genotype

(OR=1.59, p-value = 0.008). With the MMP16 and EGFR, men

with the genotype combination of GA/AA and AA in a SNP pair

of rs1401862 and rs6964705 tended to be less likely (OR=0.58, p-

value = 0.011) have aggressive prostate cancer than other genotype

combinations of the SNP pairs in the CGEMS group. We also

observed the significant interaction pattern of this SNP pair in the

Moffitt group.

The main effects of SNPs involved in the significant interactions

are shown in Table 3. These main effects could not be replicated

within the two study groups. Among the 16 SNPs involved in the

SNP-SNP interactions associated with prostate cancer aggressive-

ness in the CGEMS group, 13 SNPs had a p-value less than 0.05

in the univariate analyses. Among the 16 SNPs in the Moffitt

group, only rs17172446 had a p-value less than 0.05. We also

confirmed that the interaction models listed in Table 2 were better

than the main-effect only models (results not shown).

Discussion

Our findings identified five SNP-SNP interactions in the

angiogenesis genes associated with prostate cancer aggressiveness

in the CGEMS group using the novel TRM approach. Five highly

significant SNP-SNP interactions (p-value = 261025 to 661024)

with a medium to large effect size were successfully detected even

with a relatively small sample size of approximately 1,000. The

odds ratios of these SNP interactions were categorized from

a medium (OR$1.5) to large effect size (OR$2) [35]. The clinical

impact of the SNP-SNP interactions may be larger than that for

individual SNPs identified in GWA studies. The prediction power

of cancer risk for the SNPs identified in GWA studies is limited

with the median per-allele OR of 1.22 based on a recent review

[30].

Our identified gene-gene interactions may be biologically

relevant based on the network analysis. The interactions of the

five gene pairs (MMP16+ ROBO1, MMP16+ CSF1, MMP16+
EGFR, CSF1+ FBLN5, and CSF1+ HSPG2) were demonstrated

using cross-evaluation in the CGEMS and Moffitt groups.

Particularly, the former three gene pairs had at least one SNP-

SNP interaction with a similar interaction pattern in the two study

groups. Among the identified gene pairs, MMP16 and CSF1 were

involved in several interacting gene pairs, thus a network

association was implied. In order to check for biological relevance

of the associations and explore the underlying functional

mechanism of our identified gene-gene interactions, a hypothetical

genetic regulatory network (Figure 3) was proposed. This genetic

interaction network was generated based on published protein-

protein interactions in Homo Sapience using the MetaCore database

from GeneGo Inc. The interconnectedness of biochemical process

networks of the identified genes showed that the six proteins were

involved directly or indirectly in the EGFR signaling pathway. It

suggested that these genes might be co-regulated by several

transcription factors together, such as E2F1, STAT1, ESR1, SP1,

and AP-1, and a receptor (integrin). The most prominent protein

in the network was EGFR, which interacted with the remaining

five proteins that were involved in angiogenesis.

The epidermal growth factor receptor (EGFR) is a critical

protein in proliferation of epithelial cells and is involved in

oncogenesis. The EGFR binds the epidermal growth factor (EGF)

and has been shown to play an important role in regulating

prostate cellular growth and function [36,37,38]. Our results were

also supported by a recent integrative microarray study. Wang

et al. performed a meta-analysis of 10 prostate cancer microarray

expression datasets to identify the common signatures at both the

gene and pathway levels associated with prostate cancer risk, and

the EGFR pathway was found in nine datasets [39].

The interaction between MMP16 and ROBO1, our top one

selection, is promising. ROBO1 is cleaved by MMPs and

translocates into the nucleus of cancer cells, which suggests that

ROBO1 may act beyond a receptor as a signaling molecule [40].

Though no specific MMP has been identified yet in the cleavage of

ROBO1, our finding may suggest a potential role for MMP16 in

the cleavage of ROBO1. These two proteins have also been

implicated in prostate cancer and other cancers. MMPs are

a multifarious family of proteolytic enzymes involved in tumor

growth, invasion and metastasis through the breakdown of

extracellular matrix and release of pro-angiogenic factors [41].

The family of mammalian MMPs includes 24 members, but unlike

MMP-1, -2 and -9, the role of MMP16 in prostate cancer has not

been well investigated. Jung et al. reported a down-regulation of

MMP16 in malignant prostate tissues [42]. MMP16 has been

shown to be associated with pancreatic cancer cell migration and

invasion [43] and lung development [44]. ROBO1 belongs to

a large, single-pass transmembrane cell surface receptors involved

in multiple cell processes, including cell migration, myogenesis,

leukocyte chemotaxis and tumor angiogenesis [45]. ROBO1

expression was significantly increased in prostate tumors and

hepatocellular carcinoma as compared to normal tissue [46] [47].

It is also frequently methylated and associated with shorter survival

in mantle cell lymphoma [48].

Other proteins in the genetic interaction network were reported

to be associated with prostate cancer. Colony stimulating factor-1

(CSF1) is a protein that increase tumor angiogenesis [49] and

promotes metastatic potential in beast cancer [50]. Although there

is no report on a role of CSF1 in prostate cancer, previous studies

reported overexpression of serum CSF1 in tumors of several

cancer sites, including breast, ovary, and endometrial tissues

[49,51]. Furthermore, the expression of CSF1 in ovarian cancer

was shown to be associated with poor outcome [52] Recently,

Pyonteck et al. observed a potential role in pancreatic cancer. The

mouse model of pancreatic cancer without Csf1 gene had

a significant decrease in angiogenesis and reduction in tumor

number [53]. Previous studies reported that fibulin-5 (FBLN5)

suppresses tumorigenesis by inhibiting cell proliferation and
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angiogenesis by antagonizing VEGF signaling pathway

[54,55,56,57]. Wlazlinski et al. compared expression of FBLN5

between prostate tumors, benign prostatic tissues and different

prostate cancer cell lines. All analyses, microarray, immunohisto-

chemistry (IHC), and RT-PCR consistently suggested down-

regulation of FBLN5 in prostate tumors [58]. Further, FBLN5 was

predominantly located in the stroma with a gradient from the

periurethral to the peripheral zone, and silenced in tumor tissues

[58]. FBLN5 is known as a target gene for TGF-b [59] and

enhance epithelial–mesenchymal transition (EMT) via a MMP-

dependent mechanism [60]. Perlecan gene heparan sulfate

proteoglycan 2 (HSPG2) regulates the angiogenesis in animal

model. HSPG2 deficient mice showed impaired angiogenesis,

delayed wound healing and tumor growth [61]. Later this protein

was suggested as one of cancer biomarkers in a few studies

[62,63,64]. Datta et al. demonstrate a positive correlation between

expression of HSPG2 and high Gleason tumors [64]. HSPG2 is

also required for metastasis and leads to efficient tumor growth

and enhancing angiogenesis [65].

Our study demonstrated that frequent inconsistent results of

individual SNPs may be partially due to SNP-SNP interactions.

Similar SNP-SNP interaction patterns were observed in the

majority of our results, but the individual SNP effects for the SNPs

involved in the interactions could not be replicated in the two

study groups. For the genetic association validation studies, it is

well known the individual SNP results are difficult to reproduce.

Hirschhorn et al. evaluated more than 600 reported associations

and found less than 4% of the results were replicable among 166

associations that had been studied more than three times [66].

Furthermore, the gene set identified in the main SNP effect and

interaction approaches were totally different in our study. The four

SNPs in the three genes (COL4A3, PDGFD and ELK3) with

significant main effects in our two study groups did not overlap

with the SNPs with significant interactions. Thus, it is highly

recommended to consider both main effects and interactions for

comprehensively evaluating gene variations in genetic association

studies.

Our study findings (Table 1), generated from the TRM

approach by considering multiple SNPs simultaneously, may

provide more useful information in building a multivariable

prediction model than the pair-wise search approaches, which

consider two SNPs at a time. However, it should be noted that our

study may not find all SNP-SNP interactions due to a limited

sample size of each testing data set and characteristics of the TRM

method. Although Random Forests have been shown to perform

reasonably well in detecting pure SNP-SNP interactions [67], it

still favors SNPs with strong main effects. Larger studies and

a combination of multiple analytical approaches are warranted to

further test SNP-SNP interactions in angiogenesis genes associated

with prostate cancer aggressiveness.

In summary, this study successfully detected the genotype

combinations at risk of aggressive prostate cancer and explored the

underlying complicated biological associations among angiogene-

sis genes associated aggressiveness of prostate cancer. The gene

network associations based on SNP interactions were also

observed in several studies for various diseases [25,68,69]. The

network constructed based upon our SNP-SNP interaction results

indicates novel relationships among critical genes involved in the

angiogenesis pathway. More importantly, as Figure 3 illustrates,

the interactions between two genes identified in our study can be

Table 3. SNPs involved in significant interactions associated with prostate cancer aggressiveness.

CGEMS Moffitt

SNP Chromosome Gene Major/minor Modela p-valueb OR (95% CI)c p-valueb OR (95% CI)c

rs3093040 1 CSF1 G/A Rec 0.0012 0.57 (0.4020.80) –

rs333970 1 CSF1 A/C Dom 0.0480 1.28 (1.00–1.63) 0.5580 1.08 (0.84–1.39)

rs3093037 1 CSF1 G/A Rec – 0.3449 1.38 (0.71–2.68)

rs7334 7 EGFR C/A Add 0.0462 0.82 (0.68–1.00) –

rs6964705 7 EGFR C/A Dom 0.2813 1.16 (0.89–1.52) 0.2257 0.84 (0.64–1.11)

rs17172446 7 EGFR G/A Add 0.9106 1.01 (0.83–1.24) 0.0395 1.24 (1.01–1.51)

rs2498852 14 FBLN5 A/G Rec 0.0013 0.64 (0.49–0.84) –

rs4654991 1 HSPG2 T/C Dom 0.0262 0.76 (0.59–0.97) 0.8159 0.97 (0.75–1.26)

rs7556412 1 HSPG2 A/G Dom – 0.0811 1.25 (0.97–1.60)

rs2290501 1 HSPG2 A/C Rec – 0.1235 0.73 (0.49–1.09)

rs1477908 8 MMP16 A/G Add 0.0002 0.65 (0.52–0.81) 0.6761 1.05 (0.83–1.32)

rs6994019 8 MMP16 G/T Dom 0.0037 0.71 (0.56–0.89) 0.6054 1.07 (0.83–1.37)

rs1824717 8 MMP16 A/G Add 0.0038 0.79 (0.68–0.93) 0.7236 1.03 (0.86–1.24)

rs2176771 8 MMP16 A/C Add 0.0058 0.76 (0.62–0.92) 0.1273 0.85 (0.68–1.05)

rs1467251 8 MMP16 G/A Dom 0.0346 0.77 (0.60–0.98) 0.7465 1.04 (0.8–1.36)

rs1401862 8 MMP16 G/A Add 0.0476 0.81 (0.65–1.00) 0.0773 0.82 (0.66–1.02)

rs10504853 8 MMP16 A/G Rec 0.6939 1.10 (0.68–1.78) 0.3608 0.73 (0.38–1.42)

rs1387665 3 ROBO1 A/G Dom 0.0040 1.48 (1.13–1.93) 0.5949 0.93 (0.69–1.23)

rs7625555 3 ROBO1 G/A Rec 0.0258 1.36 (1.04–1.79) 0.3401 0.87 (0.65–1.16)

amodel with minimum p-value in the CGEMS (Dom: dominant, Rec: recessive, Add: additive model).
bbald: p-value,0.05.
codds ratio (95% confidence interval).
doi:10.1371/journal.pone.0059688.t003
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interpreted as the result of two genes that are co-regulated by

a common transcription factor. These findings can be beneficial

for providing valuable information to guide follow-up functional

analysis as well as potential targets for drug discovery.
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