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Walking animals such as invertebrates can effectively perform self-organized and robust

locomotion. They can also quickly adapt their gait to deal with injury or damage.

Such a complex achievement is mainly performed via coordination between the legs,

commonly known as interlimb coordination. Several components underlying the interlimb

coordination process (like distributed neural control circuits, local sensory feedback,

and body-environment interactions during movement) have been recently identified and

applied to the control systems of walking robots. However, while the sensory pathways

of biological systems are plastic and can be continuously readjusted (referred to as

sensory adaptation), those implemented on robots are typically static. They first need

to be manually adjusted or optimized offline to obtain stable locomotion. In this study, we

introduce a fast learning mechanism for online sensory adaptation. It can continuously

adjust the strength of sensory pathways, thereby introducing flexible plasticity into the

connections between sensory feedback and neural control circuits. We combine the

sensory adaptation mechanism with distributed neural control circuits to acquire the

adaptive and robust interlimb coordination of walking robots. This novel approach is also

general and flexible. It can automatically adapt to different walking robots and allow them

to perform stable self-organized locomotion as well as quickly deal with damage within a

few walking steps. The adaptation of plasticity after damage or injury is considered here

as lesion-induced plasticity. We validated our adaptive interlimb coordination approach

with continuous online sensory adaptation on simulated 4-, 6-, 8-, and 20-legged robots.

This study not only proposes an adaptive neural control system for artificial walking

systems but also offers a possibility of invertebrate nervous systems with flexible plasticity

for locomotion and adaptation to injury.

Keywords: synaptic plasticity, legged robot control, neural circuits, walking machines, lesion-induced plasticity,
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1. INTRODUCTION

Walking animals show robust and adaptive locomotion. They
can form their gaits in a self-organized manner as well as
quickly adapt to environmental and body changes, including
damage (Wolf and Büschges, 1997; Büschges and Manira,
1998; Grabowska et al., 2012). This complex ability is achieved
through adaptive interlimb coordination mechanisms. Biological
investigation reveals that the adaptive coordination in walking
animals is largely attained by distributed neural control
mechanisms with central pattern generators (CPGs), local or
proprioceptive feedback, and body dynamics (Pearson and Iles,
1970, 1973; Bässler andWegner, 1983; Dean, 1989; Berkowitz and
Laurent, 1996).

While these components have been identified, their details
have not been fully applied to artificial walking systems.
For example, while animal experiments show that synaptic
connections in sensory motor pathways are plastic (i.e.,
sensory adaptation) (Whelan and Pearson, 1997; Wolf and
Büschges, 1997; Wark et al., 2007) to allow for stable locomotion
and adaptation, this plasticity with continuous synaptic
changes has been largely ignored in robotic implementation.
Typically, the connections between sensory feedback and
neural circuits for locomotion control of walking robots are
static. To obtain stable locomotion, these connections are
usually adjusted manually, or empirically chosen, for specific
walking robots (Owaki et al., 2012; Barikhan et al., 2014).
In some cases, machine learning techniques are employed
first to optimize the connections through simulation before
implementing them on real robots (Hwangbo et al., 2019).
Accordingly, unexpected situations such as leg damage
might lead to unstable locomotion if the sensory connection
strength cannot be automatically or continuously adjusted
to deliver proper information for adaptation. Furthermore,
transferring the control system with the tuned or optimized
connections from one walking robot to another might not
work effectively.

From this perspective, in this study, we introduce a fast
learning mechanism for continuous online adaptation or flexible
plasticity in sensory pathways (i.e., synaptic connection strength
plasticity of sensory feedback) in order to (i) generate stable
self-organized locomotion, (ii) deal with damage (known as
lesion-induced plasticity), and (iii) be able to automatically
adapt to different walking robots. Specifically, the learning
mechanism will continuously adjust the connection strength
between proprioceptive feedback (i.e., foot contact feedback)
and distributed neural CPG-based control circuits (Figure 1).
This approach combines bio-inspired key ingredients including:
(1) distributed neural CPG-based control circuits without inter-
circuit connections for flexible and independent individual
leg control, (2) a learning mechanism for proprioceptive
sensory adaptation, and (3) body-environment interaction, to
acquire adaptive and flexible interlimb coordination for walking
robots. This novel approach has more advantages compared to
others (Ijspeert et al., 2007; Manoonpong et al., 2008, 2013;
Inagaki et al., 2010; Asif, 2012; Ambe et al., 2013) in the
following aspects:

• It does not require predefined interlimb coordination (i.e.,
hardwired neural connections between the CPG circuits),
predefined or preoptimized connection strength in sensory
pathways, or even the robot’s kinematic model.

• It can be directly applied to different walking robots (i.e.,
generalization and transferability) allowing them to quickly
perform stable, self-organized locomotion.

• It can quickly deal with damage within a few walking steps.

We validated our proposed adaptive interlimb coordination
approach on simulated 4-, 6-, 8-, and 20-legged robots. We
believe that the study pursued here will also sharpen our
understanding of how continuous online sensory adaptation with
flexible plasticity can be realized and combined with control
mechanisms for self-organized locomotion and fast adaptation to
damage in walking systems which could not be realized solely by
conventional bio-inspired control methods (Espenschied et al.,
1996; Ijspeert et al., 2007; Manoonpong et al., 2008, 2013; Inagaki
et al., 2010; Asif, 2012; Ambe et al., 2013; Bjelonic et al., 2016) or
machine learning techniques (Bongard et al., 2006; Cully et al.,
2015; Hwangbo et al., 2019), or their combination (like CPG-
based control with reinforcement learning, Ishige et al., 2019) (see
section 5 for more details).

2. MATERIALS AND METHODS

In this section, we describe the development of our neural
control system for self-organized locomotion and fast adaptation
to damage of walking robots. The system exploits neural
dynamics and plasticity, proprioceptive feedback (i.e., load
sensing feedback), and robot body dynamics to adaptively
coordinate robot limbs, called adaptive interlimb coordination.
The proposed control system involves three main components:
(1) neural CPG-based control with load sensing feedback
for rhythmic movement generation, (2) a forward model for
sensory prediction, and (3) a dual rate learning mechanism for
continuous online sensory adaptation or synaptic connection
strength plasticity of sensory feedback (Figure 1). Each of which
is described in detail below.

In this setup, each leg is driven by one control system (i.e., one
neural CPG-based control circuit, one forward model, and one
dual rate learning mechanism). As a consequence, controlling
4-, 6-, 8-, and 20-legged robots will require 4, 6, 8, and 20
neural control systems. For flexibility, we do not define any
connection or coupling between the neural control systems.
Instead, the coordination among them is mainly achieved by
the interaction between the robot and environment, resulting in
self-organized locomotion.

Similar configurations have been used before, showing that it
is possible to use sensory feedback to adjust the phase between
the legs of a walking robot (Owaki et al., 2012; Barikhan
et al., 2014). The feedback-based phase adjustment eventually
forms a walking pattern, allowing the robot to walk, while the
neural CPGs continue to produce the oscillatory signals driving
the leg movements during each step. However, this does not
guarantee that the robot will always keep a stable gait during
walking, since a change in the sensory feedback can appear as a
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FIGURE 1 | (Left) The robot structure for our experiments, consisting of multiple invertebrate-inspired body segments where each has either one or two pairs of

identical legs. Legs are inspired by insect limbs and have three joints: Thoraco-coxal (TC-), coxa-trochanteral (CTr-), and femur-tibia (FTi-) joints. The TC-joint enables

forward (+) and backward (−) movement. The CTr- joint enables elevation (+) and depression (−) of the leg. The FTi-joint enables extension (+) and flexion (−) of one

leg. The connection between body segments is performed by a universal passive connector with two joints(U-joint1 and U-joint2) and limited rotation. (Right) A

complete adaptive neural control system for each leg, consisting of (i) CPG-based control, (ii) forward model, and (iii) dual rate learning. This is a distributed and

decoupled control structure where each leg is driven by one control system and there is no coupling between the control systems. This system uses foot contact or

load sensing feedback to alter the CPG phase of each leg; thereby forming interlimb coordination. The CPG post-processing unit (PCPG) converts the CPG outputs

into proper motor commands, which are at the same time copied (efference copy) to the forward model for foot contact sensory prediction. The dual rate learning

mechanism affects the CPG inputs (i.e., sensory feedback) by adjusting the synaptic plasticity (i.e., sensory feedback connection, see dashed line) based on an error

signal between the prediction and actual foot contact feedback (see also Figure 5). (Bottom) Self-organized locomotion and adaptation of a walking robot under the

adaptive neural control system with sensory synaptic plasticity.

consequence of structural changes in the robot (e.g., leg damage
and different configurations). Thus, sufficient sensory feedback

information should be maintained to adapt to a new stable
pattern. The mechanism for automatic adjustment of sensory

feedback strength (or synaptic connection strength plasticity) on
the control loop adds a degree of flexibility to the feedback-
based phase adjustment method, allowing for adaptation to the
changes. It is also important to note that this control does not
cover the trajectory of a step. In this case, the individual leg
trajectories (i.e., intralimb coordination) have been predefined
to fit the normal movement of these limbs based on that of

insect legs. However, to adapt the proposed mechanism to other
configurations, it is necessary to create an appropriate translation
from CPG outputs to motor commands. For example, the robot
legs here include three joints, allowing the movement of their
tips with respect to the defined trajectory for self-organized
locomotion (see section 3).

2.1. Neural CPG-Based Control With Load
Sensing Feedback
The neural CPG-based control is based on two coupled recurrent
neurons which generate two periodic signals (Figure 2). The
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FIGURE 2 | (Left) The CPG model of the neural CPG-based control, consisting of two recurrent neurons (N1, N2) with mutual connections. The sensory feedback

(S1,2) is projected to the CPG as its neural inputs. (Right) The CPG output signals. The signals differ in phase by π/2 and are further shaped by a CPG

postprocessing unit to obtain smooth signals for motor control. In this study, the weights of all CPGs are set to w11 = 1.4, w22 = 1.4, w21 = −0.78, and w12 = 0.78.

With these parameters, the CPG generates periodic signals with a frequency of 1.4 Hz.

signals are converted into motor commands for driving the
leg joints (TC-, CTr-, and FTi-joints) through the CPG
postprocessing unit. To automatically adjust the phase of the
CPG for interlimb coordination, we use load sensing feedback,
projecting to the CPG as its inputs. This technique was proposed
by Owaki et al. (2012) and Barikhan et al. (2014). This feedback
produces the appropriate phase shifts between the legs to
generate a robot walking gait while keeping an understandable
and simple control mechanism.

The neurons of the CPG control network are modeled as
discrete-time non-spiking neurons. They are updated using a
frequency of approximately 27 Hz. The activity of each neuron
develops according to:

a1(t + 1) =

2
∑

j=1

w1joj(t)+ αS1(t) (1)

a2(t + 1) =

2
∑

j=1

w2joj(t)+ αS2(t) (2)

oi(t + 1) = tanh(ai(t + 1)) i = 1, 2 (3)

where w1j,2j are the synaptic connection weights between the
neurons, S1,2 are the CPG inputs (i.e., load sensing feedback),
and oi are the CPG outputs. α is a sensory feedback connection
(synaptic plasticity), automatically adjusted by dual rate learning
(described in detail in the following section. See Equation 11).
The CPG inputs are defined as:

S1(t) = −F(t)cos(a1(t)) (4)

S2(t) = −F(t)sin(a2(t)) (5)

where F is the negative continuous load sensing feedback at the
leg. The sine and cosine functions of the neural activities a1,2 are
used to derive a proper correlation between the neural activity
and feedback. The functions are related to the phases of the CPG
outputs1 o1,2 which differ by π/2 (see Figure 2). The strength of
the sensory feedback connection can be adapted to regulate the
amount of sensory feedback to the CPG-based control. Through
this connection, the foot contact sensory feedback can reduce the
leg speed when highly loaded at the end of the stance phase, while
increasing the speed of the leg trajectory when it is unloaded at
the end of the swing phase. This will allow the robot to adaptively
adjust its leg movement to form a stable gait with good body
weight distribution.

When implementing the neural control system on different
robots, the proper value of α needs to be used for stable
locomotion and this value might have to be changed in the
face of unexpected situations, such as leg damage. The difficulty
in determining an optimal value for all cases motivated us to
develop an automatic process for continuously and dynamically
adjusting the value without previous knowledge of the robot’s
morphology. The effect of the load sensing feedback on the
CPG outputs is not the same for all CPGs or legs, but rather
corresponds to the correlation of the feedback and the neural
activities (Equations 4, 5). The variation of the influence on the
CPGs will automatically yield phase differences among them,
which will be translated into proper interlimb coordination (i.e.,
leg coordination). As a result, the robot will perform an adaptive
gait. In this case, we do not have a fixed and predefined interlimb
coordination, but rather a flexible one, since the gait obtained
is derived from load sensing feedback, synaptic plasticity, neural
activities, and body-environment interaction.

For intralimb coordination (i.e., joint coordination) in each
leg of all tested robots, we project the CPG outputs to the TC-,
CTr-, and FTi-joints indirectly through a CPG post processing

1The CPG outputs represent the oscillator phases in the Tegotae-based approach

(Owaki et al., 2017).
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unit. This post processing unit shapes the CPG outputs into
the desired motor commands. In this case, a simple algorithm
defining the swing and stance periods of the robots is applied
(see Manoonpong et al., 2013). It translates the CPG outputs
into ascending and descending slopes, finally controlling the
joint movements in basic swing and stance phases. In our robot
system here, we use position control. Thus, the motor commands
correspond to the target TC-, CTr-, and FTi-joint positions.

2.2. Forward Model for Sensory Prediction
The learning algorithm implemented is inspired by Xiong et al.
(2016), and takes advantage of an efference copy of the step
movement, allowing comparison between expected or predicted
sensor feedback for each leg position and actual sensory feedback.
This difference can be used to tune the α value dynamically
(Equations 1, 2) to adapt to changes in the sensory feedback.

The forward model implemented (Figure 3) predicts that
sensory feedback should be zero while the leg is lifted (swing
phase) and a high value when the leg is on the ground (stand
phase). In other words, a positive sensor value is expected when
the leg touches the ground during the stance phase (downward
position of the CTr-joint) and a zero value while the leg is in
the air during the swing phase (upward position of the CTr-
joint). This simple strategy tries to make the robot follow a stable
stroke potentially giving the robot body good propulsion along
the whole stance phase of the step. The forward model is given as:

F′l (t + 1) = γ · Gl(t)+ (1− γ ) · F′l (t) (6)

Gl(t) =

{

0, ml
0(t + 1) > ml

0(t)

1, ml
0(t + 1) <= ml

0(t)
(7)

where F′
l
is the expected or predicted sensory value and γ is a

factor in a range of [0, 1] defining the shape of the output signal
of the forward model. In this study, we empirically adjust and set
γ to 0.5. The signal ml

0 is the motor command of the CTr-joint.
When this motor value increases (moving the leg upward during
swing phase) or decreases (moving the leg downward during
stance phase), signal Gl is set to 0 or 1, respectively.

A forward model is used for each leg l. The difference
between the forward model and its respective sensory input is
calculated as:

el(t) = |F′l (t)− Fl(t)| (8)

Figure 4 shows the signals involved in the forward model. One
can observe how the actual sensor value changes providing
a better match with the predicted signal generated by the
forward model. The change is due to the robot-environment
interaction and sensory adaptation, described by the shadowed
areas representing the stance phases of the foot contact
sensory feedback.

FIGURE 3 | The forward model implemented as a linear recurrent neuron. Its

output F ′ is compared with the actual sensory feedback F. The difference of

the comparison leads to an error e which is then used in the dual learning

mechanism for sensory adaptation.

2.3. Dual Rate Learning for Sensory
Adaptation
In order to reduce the error produced by the mismatch between
predicted and actual sensory feedback signals, the strength of
the sensory feedback on the CPG (i.e., α of Equations 1, 2)
is continuously adjusted online at each leg using the dual rate
learning process (Smith et al., 2006). The implemented controller
combines fast and slow adaptation processes (i.e., fast and slow
learners) arranged in parallel. The fast adaptation performs
rapid initial learning. However, it forgets quickly while the slow
adaptation contributes to long-term retention, but it adapts
slowly. The use of the two parallel adaptations at different
time scales leads to the fast and stable convergence of sensory
feedback strength.

In this way, a proper feedback strength can be obtained after
a few walking steps. Here, each adaptation process receives the
same error and adapts the sensory feedback strength accordingly,
as shown in the following equations:

Df (t + 1) = AfDf (t)+ Bf e(t) (9)

Ds(t + 1) = AsDs(t)+ Bse(t) (10)

α(t + 1) = Df (t + 1)+ Ds(t + 1) (11)

where Df is the output of the fast adaptation. Ds is the output of
the slow adaptation. α is the combination of the two outputs (i.e.,
sensory feedback strength adaptation). e is the error calculated
from the difference between the predicted and actual sensory
feedback (see Equation 8). Bs and Bf are the learning rates of the
slow and fast adaptation mechanisms, respectively. As and Af are
retention factors of the slow and fast adaptations, respectively.
The parameters are determined as As > Af and Bs < Bf . The fast
adaptation mechanism thus adapts more rapidly as indicated by
a higher learning rate but also forgets more rapidly as indicated
by a lower retention factor. In this study, we set As = 0.992,
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FIGURE 4 | Changes in different signals of the control system during robot-environment interaction and sensory adaptation to form a gait. (A) The outputs of the CPG

for driving a leg (o1, o2). (B) The original efference copy (motor command of the CTr-joint) and the transformed one G (i.e., input of the forward model, Figure 3). (C)

The predicted foot contact sensor signal F ′ as the output of the forward model (Figure 3). (D) The actual foot contact sensory signal F. (E) The error signal e and

sensory feedback connection α. All these signals were recorded from the simulation of the four-legged robot. Areas colored blue show the stance phases while the

white areas refer to the swing phases. The red line indicates the point at which the robot starts showing a stable gait. In this case, a stable gait is quickly formed within

about 6 s.

Af = 0.57, Bs = 0.0004, Bf = 0.005. These values were used in
Xiong et al. (2016). Figure 5 shows the implementation of the
dual rate learning process. In this learning process, using only
slow adaptation will lead to slow converge while using only fast
adaptation will lead to instability (see Figure 6).

3. EXPERIMENTAL SETUP

To validate the performance of our proposed neural control
system with sensory adaptation, we simulated different robots
with 4, 6, 8, and 20 legs. We used the robot simulation framework
LpzRobots (Martius et al., 2010) based on the Open Dynamics
Engine (Smith, 2006). Each robot has the same body and leg
structures (see Figure 1). Each body segment consists of one or
two pairs of legs. Each leg has three joints (see Figure 1) inspired
by those of invertebrates. We used a universal passive joint with
limited rotation to connect between body segments. This allows
for small passive body movements and dynamics for stability.

All simulated 4-, 6-, 8-, and 20-legged robots have similar leg
movements with the same amplitude, allowing the observation
of different walking patterns or gaits with respect to different
numbers of legs. In this study, we focus only on an adaptive
process for the interlimb coordination or the coordination
between legs while the intralimb coordination or the
coordination between joints within the leg are predefined.
The leg trajectory resulting from the predefined intralimb
coordination is shown in Figure 7A.

The tests for different robots were performed on a flat terrain
(Figures 7B–E). The leg trajectory, all environment variables
(e.g., gravity, friction), and sensory noise had the same settings
for all robot experiments. We added a Gaussian-distributed

noise with a standard deviation of 10%. In all experiments,
we initiated the robots with an irregular gait on a flat terrain,
where all legs moved in phases with a frequency of 1.4 Hz.
The sensory feedback strength α was also initialized to zero,
i.e., no connection between the sensory feedback and CPG-
based control. As previously mentioned, in this distributed
neural control approach, no CPG-based control module has any
connection or direct communication with another. The gaits
will emerge from the body-environment interaction, i.e., physical
communication (Owaki et al., 2012) through foot contact sensory
feedback and the proposed sensory adaptation in this study.

4. RESULTS

In this section, we present the results of the experiments with
simulated robots (Figure 7). The performance of the proposed
neural control system was evaluated in two scenarios. The
first of which accessed the self-organized locomotion of the
robots using different morphologies. The second was conducted
to show the adaptability of the control approach in dealing
with the amputation of different legs. The leg amputation was
simply performed by lifting it above the ground or keeping it
fixed in a certain position. In order to statistically evaluate the
control performance, each robot was tested 200 times in the first
scenario and 500 times in the second. During the experiments,
we measured the average walking speed once the robots had
moved forward.

Figures 8, 9 show that the control approach was able to
quickly adapt the sensory feedback strength and generate self-
organized locomotion within 5–10 s. The gaits emerging from the
4, 6, 8, and 20-legs were similar to those observed in animals; i.e.,
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FIGURE 5 | Dual rate learning for the sensory feedback strength adaptation of CPG-based control. The sensory information from the foot contact sensor at each leg

is transmitted to its corresponding CPG-based control. It shapes the CPG outputs to obtain a proper phase between legs. The learning process continuously adapts

the strength of the sensory feedback to ensure that proper sensory information is transmitted to its corresponding CPG-based control. The forward model receives an

efference copy (i.e., CTr motor command) and translates it into predicted foot contact sensory feedback which is then compared to the actual foot contact sensory

feedback. The difference between them is sent to the learning process for sensory feedback strength adaptation.

a trot gait in the four-legged robot, a bipod gait in the six-legged
robot2 (Ramdya et al., 2017), and metachronal wave gaits in the
8- and 20-legged robots3 (Bowerman, 1975; Spagna and Peattie,
2012; Kano et al., 2017a; Yasui et al., 2017). The average walking
speed of all robots was≈ 0.2 m/s.

Figures 10, 11 demonstrate that the control approach was able
to quickly adapt the sensory feedback strength to new values
within a few seconds of amputation and new gaits emerged to
allow the robots to locomote. The average walking speed of all
robots was≈0.125–0.175 m/s. In this case, the statistical study on
controller adaptability was conducted using multiple tests with
a randomized number of amputations of arbitrary legs on the
robots. Since some morphologies did not show any gait when
amputating toomany legs, themaximumnumber of amputations
was set to half of the total legs for each robotmorphology; i.e., two
for the four-legged robot, three for the six-legged robot, four for
the eight-legged robot, and 10 for the 20-legged robot.

After running multiple simulations with different amputation
configurations for each robot, the results show that in most cases
the control approach was able to find gaits, allowing the robots
to move forward. The variance of the results is higher than in
the first experiment due to the large number of configurations
formed by the amputations. For some configurations, the robots
could manage to move effectively while others made it more
difficult for the robots to move forward.

2This gait is found in Drosophila. It is similar to the vertebrate running trot and

faster than a typical tripod gait. In this gait, each front leg moves almost at the same

time as the opposite hind leg, while the middle legs move together.
3In scorpions, the gait shows metachronal alternating tetrapods with a 10%

lag between legs within a tetrapod. In millipedes/centipedes, the gait exhibits

propagating density waves running from the hind legs to the front legs.

By determining the adaptation of the robots to the
amputations, in Figures 10, 11, one can see how the dual rate
learning mechanism adapts the feedback strength of the different
legs (e.g., left and right front legs) to deal with unexpected new
body conditions. It is also possible to observe how the robot gaits
change to compensate for the lack of proper support resulting
from the leg amputation.

The ability of the robots to find a stable gait depends on the
convergence of sensory feedback strength (i.e., synaptic weight).
The convergent weights during the experiments are shown in
Figure 12. One can observe a range of convergence for each leg
of every robot with and without amputations. In simulations
where no limbs were amputated, this range is quite narrow, and
the robot tends to keep a relatively constant weight. However,
the amputation experiments show how the changes in the robot
morphology can affect the weights needed to obtain a stable
gait. By analyzing the results shown in Figure 12, Figures S5–
S8, one can observe that the weights of remaining legs increase
after amputation. This is due to the new weight distribution
across the remaining legs. Increasing the weights leads to stronger
inhibition to the CPGs (see Equations 1, 2, 4, 5), resulting in a
longer stance phase. This way, the robot can readjust its gait to
obtain a new stable one.

5. DISCUSSION AND CONCLUSION

The previous sections present a self-organized locomotion
control system with the ability to quickly adapt to changes in the
robot morphology. In this section, we discuss the advantages of
this mechanism, comparing the proposed neural control system
with other solutions and describing some of the remaining issues
for improving this approach.
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FIGURE 6 | The effect of the learning process when only slow learner, only fast learner, or their combination (dual learner) is used. Using the dual learner leads to fast

convergence where a stable gait (showing clear swing and stance phases) is formed at around 7 s. Using only slow learner leads to slow convergence where a

walking gait is formed at around 12 s, although this gait is more irregular and unstable. Using only fast learner leads to instability where a stable gait cannot be formed.

A video showing robot locomotion with different learners can be seen at: www.manoonpong.com/Frontiers2020/DifferentLearning.mp4 (or see Video S9).

Previous research (Owaki et al., 2012, 2017; Barikhan et al.,
2014; Aoi et al., 2017; Kano et al., 2017b, 2019; Ambe et al.,
2018) has shown the possibility of offloading the task of
interlimb coordination toward body-environment interactions
and adaptation to physical damage. By using sensory feedback
to trigger reactions in local (decentralized) CPGs and drive
individual leg movements, this approach is able to form
walking patterns in robots without direct control over the
interlimb coordination process. The approach is supported
by experimental results showing that invertebrate locomotion
(e.g., insects, millipedes, centipedes) is controlled in a similar
way, using decentralized CPGs for individual limbs (Bässler
and Büschges, 1998; Kano et al., 2017a; Yasui et al., 2017,
2019). The biological study suggests that walking behavior in
invertebrates relies highly on decentralized mechanisms and load
sensing feedback.

The use of decentralized CPGs is extremely advantageous for
walking robots, as it does not require the costly computation
of inverse kinematics or a precise kinematic model. While it is
possible to generate locomotion under fixed control parameters
(e.g., sensory feedback strength), the parameters need to be
empirically adjusted. The addition of learning mechanisms for

adjusting control parameters online leads to flexibility and
adaptability, and ultimately to more robust and general control.
Compared to advanced machine learning techniques [like, the
Intelligent Trial and Error algorithm (IT&E, Cully et al., 2015)
and a greedy random-mutation hill climber algorithm with
self-modeling (GRSM, Bongard et al., 2006)] for locomotion
generation and adaptation to damage, our proposed mechanism
shows advantages over the techniques in the following aspects:

• It can quickly and continuously adapt to structural changes in
the robot (e.g., leg damage and different configurations) online
within a few walking steps (i.e., 5–10 s) and without the need
of pretrained behavior-performance map (as shown in IT&E4)
or internal morphological models (as shown in GRSM5).

4IT&E starts with random controllers and then performs stochastic, population-

based, optimization. This process requires 20 million iterations for creating one

behavior map (containing over 13,000 high-performing behaviors or gaits), which

lasted roughly 2 weeks on one multi-core computer.
5The algorithm is based on an evolutionary process where new morphological

models are produced by copying the originals, introducing small random

modifications, and reevaluating them. This process uses the mean Euclidean

distance between the centroid of each model body part, and where the centroid
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FIGURE 7 | The simulated robots and leg trajectory of a robot in one step. (A) The trajectory consists of stance and swing phases. The stance phase follows an

almost straight trajectory where the TC-joint moves backward and CTr- and FTi-joints are set to certain positions. The swing phase forms an arch with a movement

combination of the three joints (i.e., TC-joint moves forward, CTr-joint moves up, and FTi-joint extends). The simple leg movement is implemented for walking on a flat

surface only. Walking on rough terrain (which is not the focus of this study), requires additional control mechanisms, such as reflexes (Manoonpong et al., 2013). (B–E)

The four-, six-, eight-, and 20-legged robots used in this study.

• It does not need a complex trial-and-error or optimization
process for locomotion generation and adaptation (as needed
in IT&E and GRSM); instead, it simply exploits body-
environment interaction with sensory adaptation based on
online dual rate learning and synaptic plasticity.

• It is computationally less expensive than IT&E and GRSM.
• It does not need additional exteroceptive feedback (like RGB-

D camera as used in IT&E) or global position feedback (as used
in GRSM) to measure or evaluate robot performance; instead,
it only relies on foot contact or load sensing feedback.

Furthermore, due to the complex processes of the machine
learning techniques, they will become much more problematic
when applying to a robot with a large number of degrees of
freedom, such as the 20-legged robot, which includes 65 moving
parts and 60 active joints, tested in this study.

The method proposed here is based on the existing body-
environment interaction approach for interlimb coordination to
which we have now contributed by introducing online learning.
The learning, which incorporates forward models, automatically
adapts sensory synaptic plasticity (i.e., the sensory feedback
strength parameter) on the CPG network. This new mechanism
adds a second timescale adaptation to the system. To fully
understand the dynamics of the system, it is necessary to
differentiate between the two timescale adaptations: the gait
formation process (fast time scale adaptation, 0–5 s in Figures 8,

should be for performance evaluation. The process requires 200 iterations to obtain

the best models.

9) and the tuning of synaptic strength in sensory feedback (slow
time scale adaptation, after 5 s in Figures 8, 9). By considering
the amputation experiments, one can see two types of sensory
plasticity (Pyza, 2013): One is so-called experience-induced
plasticity and the other lesion-induced plasticity. The experience-
induced plasticity is driven by stimulation (Bozorgmehr et al.,
2013). In our case here, it is used to form a gait as can be observed
in the first period; 0–15 s in Figures 10, 11. The lesion-induced
plasticity occurs after injury (Pfister et al., 2013) and, in our case
here, when the robots were amputated during the second period
after 15 s, as shown in Figures 10, 11. Such plasticity has been
observed in invertebrate sensory systems during development
and in the adult stage (Bozorgmehr et al., 2013; Lakes-Harlan,
2013; Pfister et al., 2013; Pflüger and Wolf, 2013).

In our control approach, walking patterns emerge from the

reaction of each leg to sensory information. Consequently, the

gait formation and sensory plasticity mechanisms need to work
simultaneously. On the one hand, the robot cannot form a gait
unless the sensory feedback synaptic strength is strong enough.
On the other, the adjustment of sensory feedback synaptic

strength depends on the formation of a gait to converge. As
a result, the learning process of each leg is affected by the

movement and dynamics of the robot. The process exploits
the actual sensory feedback and the prediction provided by the

forward model to adjust the sensory feedback synaptic strength,
which is increased when the actual feedback and its expectation

do not match. If the robot is not able to form a stable gait, the

mismatch or error will keep increasing the synaptic strength.
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FIGURE 8 | Results for the four- and six-legged robots. For each configuration: (A) Scheme of the tested robot. (B,C) Sensory feedback strengths during simulation

on the left front leg (l1) and right front leg (l2 ), respectively. A black line indicates the average value to which each strength converges. (D) The change in the robot

walking speed during the simulation. (E) The swing and stance phases of each leg of the robot, defined by motor commands. Green areas represent stance phases,

while white areas correspond to swing phases. Colored marks are used to visualize the formed gaits, namely a trot gait for four legs and a bipod gait for six legs. (F)

Average walking speed from 200 tests. Videos showing examples of self-organized locomotion of the four- and six-legged robots can be viewed at: www.

manoonpong.com/Frontiers2020/4legs.mp4 (or see Video S1) and www.manoonpong.com/Frontiers2020/6legs.mp4 (or see Video S2), respectively. Note that all

sensory feedback strengths of the four- and six-legged robots are shown in Figures S1, S2.

By increasing the strength, the sensory feedback will influence
the CPG network and thereby shape the CPG outputs (see
Equations 1, 2 and Figure 4). Since the process occurs in parallel
in each CPG network of every leg, proper phases between the
CPG networks will be finally obtained. In analogy to biological
systems, the dual rate learning system can be considered as
a serotonergic system or an extrinsic modulator that releases
serotonin to modulate or influence sensory synaptic plasticity
(i.e., sensory gain) in invertebrate nerve cord (Klein et al., 1982;
van Haeften et al., 1993; Majeed et al., 2016; Le Gal et al.,
2017; Upreti et al., 2019) or vertebrate spinal cord (Stutzmann
et al., 1998; Deemyad et al., 2013; Lottem et al., 2016; Avery
and Krichmar, 2017) while the sensory feedback projecting to
the CPG network can be determined as an extrinsic modulatory

input which alters the network dynamics (Katz, 1998; Morgan
et al., 2000; Marder, 2012).

The sensory plasticity or adaptation provides multiple
advantages compared to the previous model which has no
sensory plasticity (Aoi et al., 2007; Owaki et al., 2012; Ambe et al.,
2013; Barikhan et al., 2014). It provides an automatic process
to tune or find proper sensory feedback contribution to obtain
self-organized locomotion. It also introduces the dynamics
of sensory feedback gain which leads to fast adaptation (see
Figure S9); implicitly indicating an ability to adapt to changes
in robot morphology and weight distribution. Furthermore,
simulation results show that our approach allows robots with
different morphologies to form walking gaits similar to insects.
Recent work on sensory adaptation has been also proposed by
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FIGURE 9 | Results for the 8- and 20-legged robots. For each configuration: (A) Scheme of the tested robot. (B,C) Sensory feedback strengths during simulation on

the left front leg (l1) and right front leg (l2), respectively. A black line indicates the average value to which each strength converges. (D) The change in the robot walking

speed during the simulation. (E) The swing and stance phases for each leg of the robot, defined by motor commands. Green areas represent stance phases, while

white areas correspond to swing phases. Colored marks are used to visualize the formed gaits of the 8- and 20-legged robots. In this case, both robots show

metachronal-like gaits. (F) Average walking speed from 200 tests. Videos showing examples of self-organized locomotion in the 8- and 20-legged robots can be

viewed at: www.manoonpong.com/Frontiers2020/8legs.mp4 (or see Video S3) and www.manoonpong.com/Frontiers2020/20legs.mp4 (or see Video S4),

respectively. Note that all sensory feedback strengths of the 8- and 20-legged robots are shown in Figures S3, S4.

Ishige et al. (2019). There, they used a combination of CPG-
based control and an episode-based reinforcement learning (RL)
method (i.e., policy gradients with parameter-based exploration)

which was applied to caterpillar-like soft robots. The RL
method was used to optimize mechanosensory feedback (sensory
adaptation) to the CPG-based control, which controls actuators
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FIGURE 10 | Results for the four- and six-legged robots when disabling certain limbs after 15 s of simulation. For each configuration: (A) Scheme of the tested robot,

including the limbs amputated (red cross) in this experiment. (B,C) Sensory feedback strengths during simulation on the left front leg (l1) and right front leg (l2),

respectively. A line indicates the average value to which each strength converges. The convergence values before and after the amputation are drawn in black and red,

respectively. (D) The change in the robot walking speed during the simulation. (E) The swing and stance phases of each leg of the robot, defined by motor commands.

Green areas represent stance phases, while white areas correspond to swing phases. After amputation occurs, the state of the disabled limbs is represented in gray.

Colored marks are used to visualize the formed gaits. (F) Average walking speed from 500 tests. For each simulation, a random number of arbitrary limbs was

disabled, investigating the ability of the system to adapt to different morphologies. Videos showing examples of adaptation to leg damage of the four- and six-legged

robots can be viewed at: www.manoonpong.com/Frontiers2020/4legsDamage.mp4 (or see Video S5) and www.manoonpong.com/Frontiers2020/6legsDamage.

mp4 (or see Video S6), respectively. Note that all sensory feedback strengths of the four- and six-legged robots with leg damage are shown in Figures S5, S6.

in the robot. This method, while impressive in their own
right, still requires high computational effort (approx. 100–400
epochs6) to optimize the feedback to the CPG-based control for
generating effective robot crawling behavior.

Taken together, this study proposes general locomotion
control for multiple robot configurations and injury
compensation. This control system is based on decentralized
CPGs with load sensing feedback, a forward model for
sensory prediction, and online learning for continuous sensory
adaptation. These three components, interacting with body
dynamics, can autonomously form robot gaits and compensate

6One epoch consists of 20 independent episodes and one episode lasts 50 s. Thus,

the process takes several hours up to a day.

for leg damage without the manual tuning of sensory feedback

strength required by the previous studies (mentioned above).

When applied to various legged robots, different animal-like

gaits can be observed, including a typical trot gait for four legs, a

fly-like bipod gait for six legs (Ramdya et al., 2017), a scorpion-

like metachronal wave gait for eight legs (Bowerman, 1975;

Spagna and Peattie, 2012), and a millipede or centipede-like

metachronal wave gait for 20 legs (Kano et al., 2017a; Yasui
et al., 2017). While this approach shows effective results, it still

has a limitation. So far, posture control has not been integrated
into the control system. Therefore, robots with four and six legs
can become unstable if their legs are amputated since parts of
the body may drop on the ground. Furthermore, the robot can
only deal with walking on a flat terrain. Walking on uneven or
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FIGURE 11 | Results for the 8- and 20-legged robots when disabling certain limbs after 15 s of simulation. For each configuration: (A) Scheme of the tested robot,

including the limbs amputated (red cross) in this experiment. (B,C) Sensory feedback strengths during simulation on the left front leg (l1 in both 8- and 20-legged

robots) and a right leg (l2 in the eight-legged robot and l4 in the 20-legged robot), respectively. A line indicates the average value to which each strength converges.

The convergence values before and after the amputation are drawn in black and red, respectively. (D) The change in the robot walking speed during the simulation.

(E) The swing and stance phases of each leg of the robot, defined by motor commands. Green areas represent stance phases, while white areas correspond to swing

phases. After amputation occurs, the state of the disabled limbs is represented in gray. Colored marks are used to visualize the formed gaits. (F) Average walking

speed from 500 tests. For each simulation, a random number of arbitrary limbs was disabled, investigating the ability of the system to adapt to different morphologies.

Videos showing examples of adaptation to leg damage of the 8- and 20-legged robots can be viewed at: www.manoonpong.com/Frontiers2020/8legsDamage.mp4

(or see Video S7) and www.manoonpong.com/Frontiers2020/20legsDamage.mp4 (or see Video S8), respectively. Note that all sensory feedback strengths of the 8-

and 20-legged robots with leg damage are shown in Figures S7, S8.

complex terrains will require additional control mechanisms,
like local leg extension, elevation control (Manoonpong et al.,
2013), and impedance control with online adaptation (Xiong and

Manoonpong, 2018; Sun et al., 2020). Thus, in the future, we will
further investigate the integration of posture control, local leg
control, and muscle models into the control system to achieve
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FIGURE 12 | Average weights of the foot contact sensory feedback (i.e., sensory synaptic strength). Each li box represents the results for each i leg of the robots.

Blue boxes represent the results for 200 runs on robots without any amputations. Gray boxes represent the results for 500 runs where randomized amputations were

performed to obtain different configurations. In this case, the robots were amputated from the beginning of the simulation where the robots were still able to form

gaits. (A) Results for the four-legged robot. (B) Results for the six-legged robot. (C) Results for the eight-legged robot. (D) Results for the 20-legged robot.

self-organized locomotion with high adaptability for traversing
on complex terrains.
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Figure S1 | Adaptation of the sensory feedback connection of each limb (αi ) of

the four-legged robot during 30 s of simulation. A video showing an example of

self-organized locomotion of the four-legged robot can be viewed at: www.

manoonpong.com/Frontiers2020/4legs.mp4.

Figure S2 | Adaptation of the sensory feedback connection of each limb (αi ) of

the six-legged robot during 30 s of simulation. A video showing an example of

self-organized locomotion of the six-legged robot can be viewed at: www.

manoonpong.com/Frontiers2020/6legs.mp4.

Figure S3 | Adaptation of the sensory feedback connection of each limb (αi ) of

the eight-legged robot during 30 s of the simulation. A video showing an example

of self-organized locomotion of the eight-legged robot can be viewed at: www.

manoonpong.com/Frontiers2020/8legs.mp4.
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Figure S4 | Adaptation of the sensory feedback connection of each limb (αi ) of

the twenty-legged robot during 30 s of simulation. A video showing an example of

self-organized locomotion of the twenty-legged robot can be viewed at: www.

manoonpong.com/Frontiers2020/20legs.mp4.

Figure S5 | Adaptation of the sensory feedback connection of each limb (αi ) of

the four-legged robot during 30 s of simulation, where one limb was disabled after

15 s. A video showing an example of self-organized locomotion of the four-legged

robot can be viewed at: www.manoonpong.com/Frontiers2020/4legsDamage.

mp4. Note that the sensory feedback connections of the disabled legs were not

updated after being disabled (i.e., after 15 s). They remained the last values before

being disabled.

Figure S6 | Adaptation of the sensory feedback connection of each limb (αi ) of

the six-legged robot during 30 s of simulation, where two limbs were disabled

after 15 s. A video showing an example of self-organized locomotion of the

six-legged robot can be viewed at: www.manoonpong.com/Frontiers2020/

6legsDamage.mp4. Note that the sensory feedback connections of the disabled

legs were not updated after being disabled (i.e., after 15 s). They remained the last

values before being disabled.

Figure S7 | Adaptation of the sensory feedback connection of each limb (αi ) of

the eight-legged robot during 30 s of simulation, where three limbs were disabled

after 15 s. A video showing an example of self-organized locomotion of the

eight-legged robot can be viewed at: www.manoonpong.com/Frontiers2020/

8legsDamage.mp4. Note that the sensory feedback connections of the disabled

legs were not updated after being disabled (i.e., after 15 s). They remained the last

values before being disabled.

Figure S8 | Adaptation of the sensory feedback connection of each limb (αi ) of

the 20-legged robot during 30 s of the simulation, where six limbs were disabled

after 15 s. A video showing an example of self-organized locomotion of the

20-legged robot can be viewed at: www.manoonpong.com/Frontiers2020/

20legsDamage.mp4. Note that the sensory feedback connections of the disabled

legs were not updated after being disabled (i.e., after 15 s). They remained the last

values before being disabled.

Figure S9 | A comparison of gait formation between adaptive and fixed sensory

feedback strength in the six-legged robot. (A,B) Using adaptive sensory feedback

strength proposed in this study. (C,D) Using fixed sensory feedback strength. The

value of the fixed sensory feedback strength was set to 0.02 in all limbs, which is

the average value to which the adaptive sensory feedback strength converges

under the intact condition. The red lines in (B,D) indicate the periods that the gaits

were formed. The gaits were formed within around 5 s for the adaptive sensory

feedback strength (B) and around 7 s for the fixed sensory feedback strength (D).

Green areas represent stance phases, while white areas correspond to swing

phases. After amputation occurs, the state of the disabled limbs is represented in

gray. It can be seen that the robot with the adaptive sensory feedback strength

could adapt its remaining legs to stay in the stance phase longer for stable

locomotion compared to the one with the fixed sensory feedback strength.

Video S1 | The video shows an example of self-organized locomotion of the

four-legged robot.

Video S2 | The video shows an example of self-organized locomotion of the

six-legged robot.

Video S3 | The video shows an example of self-organized locomotion of the

eight-legged robot.

Video S4 | The video shows an example of self-organized locomotion of the

20-legged robot.

Video S5 | The video shows an example of adaptation to leg damage of the

four-legged robot.

Video S6 | The video shows an example of adaptation to leg damage of the

six-legged robot.

Video S7 | The video shows an example of adaptation to leg damage of the

eight-legged robot.

Video S8 | The video shows an example of adaptation to leg damage of the

20-legged robot.

Video S9 | The video shows robot locomotion with different learners.
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