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Abstract: The aim of this study was to segment the maxillary sinus into the maxillary bone, air, and
lesion, and to evaluate its accuracy by comparing and analyzing the results performed by the experts.
We randomly selected 83 cases of deep active learning. Our active learning framework consists of
three steps. This framework adds new volumes per step to improve the performance of the model
with limited training datasets, while inferring automatically using the model trained in the previous
step. We determined the effect of active learning on cone-beam computed tomography (CBCT)
volumes of dental with our customized 3D nnU-Net in all three steps. The dice similarity coefficients
(DSCs) at each stage of air were 0.920 ± 0.17, 0.925 ± 0.16, and 0.930 ± 0.16, respectively. The DSCs
at each stage of the lesion were 0.770 ± 0.18, 0.750 ± 0.19, and 0.760 ± 0.18, respectively. The time
consumed by the convolutional neural network (CNN) assisted and manually modified segmentation
decreased by approximately 493.2 s for 30 scans in the second step, and by approximately 362.7 s for
76 scans in the last step. In conclusion, this study demonstrates that a deep active learning framework
can alleviate annotation efforts and costs by efficiently training on limited CBCT datasets.

Keywords: active learning; maxillary sinusitis; convolutional neural network; deep learning; seg-
mentation

1. Introduction

Deep learning technology is advancing daily. Previously, it was only used in some
areas such as image processing; however, artificial intelligence (AI) technology using deep
learning has been used in various fields. In particular, deep learning technology using
convolutional neural networks (CNNs) has excellent performance in analyzing image
information [1,2]. This is going beyond object detection to find a specific object in an image,
object classifications to classify which object it is, and this continues to develop into object
segmentation, a technology that finds and separates the area of a specific object. Among
them, object segmentation is the most difficult technique [3].

AI technology that analyzes and evaluates images is creating a lot of synergy in the
medical field. In particular, this makes a significant contribution to the field of diagnosis [4].
Owing to the characteristics of medical fields, determining whether or not there is a specific
disease using X-ray radiographs, computed tomography (CT), and magnetic resonance
imaging (MRI) data is the most active field in which artificial intelligence technology is
used. Analysis of whether there is a lesion, such as cancer, or what kind of disease the
lesion is being performed [5,6]. Similar studies have been conducted in the dental field in
recent years [7,8]. Likewise, the dental field is a field where many X-rays and CTs are taken,
and the evaluation and diagnosis of the image is essential [9]. It would be nice to be able to
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obtain the help of highly skilled experts every time, but there is a lot of possibilities that a
general practitioner may miss when it comes to difficult diseases. For this, if AI can screen
for and inform a specific disease, the general practitioner can be alert to the diagnosis, and
if necessary, it can be referred to a higher-level hospital or specialist. Accordingly, many
previous studies have analyzed panoramic images to analyze tooth decay and periodontal
disease and to detect changes in alveolar bone [10,11]. In addition, lesions for malignant
diseases, such as ameloblastoma, are easily detected and not missed so that the patient’s
disease can be detected early [12].

In the dental field, not only diseases related to the teeth, but also the maxillary sinus is
the subject of much interest [13,14]. The maxillary sinus is also an important part of the
dental field, such as maxillary molar tooth disease, which causes maxillary sinusitis; if
the maxillary molar implant has insufficient bone, maxillary sinus elevation is performed
and bone grafts are performed. Accordingly, it is very helpful to accurately diagnose,
analyze, and evaluate maxillary sinus diseases. In a two-dimensional panoramic picture,
the maxillary sinus area is distorted and overlapped by the vertebrae, which is difficult
to evaluate [14]. CT data, which are 3D images, are necessary for the accurate evaluation
of the maxillary sinus. Deep learning analysis of 3D images is a much more difficult area
than the analysis of 2D images. It is a complex area that needs to be reconstructed and
evaluated again after analysis of the 2D slice image. The maxillary sinus is connected to
various sinuses, such as the nasal cavity, ethmoid sinus, and frontal sinus, and is adjacent
to the orbit and skull in the upper direction; therefore, it is very difficult to separate. Thus,
it is even more difficult to segment the disease in the maxillary sinus.

Therefore, we studied a technique for segmenting maxillary sinus diseases using
deep learning technology using 3D cone-beam computed tomography (CBCT) data. Seg-
mentation has developed significantly with the development of CNN technology, but it
is difficult to obtain sufficient labeled data for training in medical data. In this study, a
customized 3D U-Net capable of active learning was used to increase training efficiency
with limited data and reduce labeling efforts. This technology improves performance in an
organic and dynamic way in which a person evaluates and corrects the result determined
by artificial intelligence, and the artificial intelligence reflects and learns it again. The aim
of this study was to segment the maxillary sinus into the maxillary bone, air, and lesion,
and to evaluate its accuracy by comparing and analyzing the results performed by experts.
We also determined whether active learning could improve segmentation accuracy and
labeling efficiency.

2. Materials and Methods
2.1. Datasets and Pre-Processing

We used CBCT datasets (103 patients-internal and 20 patients-external) of consecu-
tively patients with various sinuses that were confirmed between January 2018 and May
2020. All CBCT were acquired on the KAVO 3D Exam, Model 17–19 (Imaging Sciences
International, Hatfield, PA, USA) for internal data and CS 9300 (Carestream Dental, GA,
USA) for external data. In each scan, both bilateral maxillary sinuses were entirely visible.
The exclusion criteria were when the radiograph quality was poor due to artifacts, there
was an abnormality in the maxillary sinus or a history of surgery in the maxillary sinus.

Maxillary sinus segmentation was performed using CBCT. We randomly selected
83 patients for deep active learning (Table 1). For training, tuning, and testing, all datasets
were split into 70:10:20 ratios. The ground truth of 40 cases for the first step with 20-
internal Korea University Anam Hospital (KUAH) and 20 external Korea University Ansan
Hospital (KUANH) scans for testing were verified by an expert reviewer using the AVIEW
software, version 1.0.3 (Coreline Software, Seoul, Korea). In the second and last steps,
64 cases were used for active learning with limited data.
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Table 1. Characteristics and acquisition parameters of the study population by group.

Characteristic
Training and Tuning

(KUAH)
(n = 83)

Internal-Validation
(KUAH)
(n = 20)

External-Validation
KUANH
(n = 20)

Age 59.9 ± 17.2 63.1 ± 16.9 40 ± 19.7
Male 44 10 10

Female 39 10 10
Tube voltage (kV) 120 120 90
Tube current (mA) 5 5 4

Scan time (s) 16.8 16.8 14.3
Voxel size (mm) 0.3 0.3 0.3

FOV (mm) 230 × 170 230 × 170 170 × 135
Focal spot (mm) 0.58 0.58 0.70

Note: Internal dataset: Korea University Anam Hospital (KUAH); external dataset—Korea University Ansan
Hospital (KUANH); Field-of-view (FOV).

All input volumes were resized to 320 × 320 pixels with intensity normalization using
the mean and standard deviation of the pixel on volumes. Third-order spline interpolation
was performed by resampling each label separately. Aggressive data augmentation was
used with the batch generator framework, involving gamma correction augmentation,
random scaling, random rotations, random elastic deformations, and mirroring [15].

2.2. Training Architecture

The 3D U-Net of nnU-Net was used for maxillary sinus segmentation, including
air and lesions in CBCT [16,17]. This architecture (customized 3D U-Net) is shown in
Figure 1. The architecture comprises an encoder and a decoder network with transposed
convolutional layers for backward operations. The left side reduces the dimensionality
of the input, and the right side recovers the original dimensionality. The architecture
involves 30 convolutional filters in the first layer and max pooling (2 × 2 × 2). The encoder
network is similar to a conventional convolution neural network (CNN), which results
in the reduction of spatial information and a loss of localization accuracy. In pixel-wise
segmentation, both spatial and semantic information are important for training and testing
medical images or volumes. The decoder of U-Net exploits deconvolution with a skip
connection to maintain spatial information using semantic information from the low vertex.
In this study, we replaced the leaky rectified linear unit (ReLU) activation functions with
random ReLU of the original 3D nnU-Net and used cross-entropy, dice coefficient, and
boundary loss functions. In the low vertex, adaptive layer-instance normalization (AdaLin)
was added to help the attention-guided model correspond to the shape transformation [18].
For learning maxillary sinus segmentation on CBCT, the Adam optimization algorithm
with an initial learning rate (3 × 10−4) and l2-weight decay (3 × 10−5) was used. If the
exponential moving average of the training loss did not improve over the previous 30
epochs, the learning rate was reduced by 0.2 times. Training was stopped after exceeding
1000 epochs, or if the learning rate fell below 10−6. The analysis of segmentation was
calculated using the dice similarity coefficient (DSC), as defined in Equation (1). The loss
functions include dice loss (DLS), boundary loss (BLS), and binary cross-entropy (BCE),
which are defined in Equations (2)–(4), respectively [19]. Vgs is the volume parameter of
the ground truth, and Vseg is the CNN segmentation.

DSC
(
Vseg , Vgs , ) =

2
∣∣Vseg ∩ Vgs

∣∣∣∣Vseg
∣∣ + ∣∣Vgs

∣∣ , (1)

DLS = 1 −
2
∣∣Vseg ∩ Vgs

∣∣∣∣Vseg
∣∣ + ∣∣Vgs

∣∣ , (2)

BLS(∂G, ∂S) = 2
∫

∆S
‖q− Z∂G(q)‖dq (3)
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Here, ∆S defines the region between the two contours and ‖q − Z∂G(q)‖. Ω→ R+ is
a distance map with respect to boundary ∂G, that is, ‖q − Z∂G(q)‖ evaluates the distance
between point q ∈ Ω and the nearest point Z∂G(q) on contour ∂G: ‖q − Z∂G(q)‖.

L (y, f ) = −y log f − (1− y) log (1− f ) (4)

where y is the inferred probability and f is the corresponding desired output.

Figure 1. Deep learning architecture of the customized 3D U-Net in the nnU-Net.

2.3. Active Learning

Our active learning framework consists of three steps. This framework adds new
volumes per step to improve the performance of the model with limited training datasets,
while inferring automatically using the model trained in the previous step.

In the first step, 19 CBCT scans of KUAH were manually labeled by a dentist and an
hygienist with more than 7 years of experiences to establish the ground truth. After the
labeling process, an oral and maxillofacial surgeon with more than 15 years of experience
checked and confirmed all of them. The limited labeled dataset was then initially trained to
segment the maxillary sinus on the CBCT of KUAH. After the initial training (first step), the
ground truth of the new unlabeled dataset for the next step was acquired for CNN-assisted
and post-modified segmentation. In the second step, 19 CBCT scans of KUAH from the
first step were reused to train with 30 new datasets, as shown in Figure 2.

After the second step, the CNN-assisted segmentation for the new unlabeled dataset
was manually modified for training in the next stage, as performed in the first step. In
the final step, 83 scans (49 reused from the second step and 34 new ones) were used to
train and improve the model, while the 20 remaining scans (manually labeled in the first
step) were used to test each model. The results were evaluated after each step for accurate
maxillary sinus segmentation with 20-internal and 20-external scans. The CNN-assisted
and post-modified segmentation was conducted using AVIEW Modeler® software, version
1.0.3 (Coreline Software, Seoul, Korea).
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Figure 2. Overall process for the active learning for maxillary sinus segmentation on CBCT.

In 100 slices (KUAH) and 100 slices (KUANH) selected from internal [air-2633 and
lesion-3256 slices] and external [air-3266 and lesion-3988 slices], all manual and the infer-
ence of deep learning based on active learning for visual scoring were assessed as very
accurate (4 grade) to inaccurate (1 grade).

2.4. Experimental Setup

To infer the maxillary sinus on the 3D CBCT volumes of the dental, each axial phase
in the volume was inputted sequentially to the model, and multiple 2D segmentation maps
were constructed along the z-axis. Only soft tissue lesions such as mucosal thickening
or mucosal retention cysts were considered as lesions. The normal soft tissue wall of the
maxillary sinus was not considered to be a lesion. The experiment for training and test
was conducted on Ubuntu 18.04 with Python 3.6, and used with the TensorFlow 1.15.0
backend with PyTorch 1.4.0 as the deep learning framework. The model was trained on an
NVIDIA Titan RTX graphics card (24 GB). To maximize the training speed and optimize
the GPU memory, we attempted to use larger input tiles and set the batch size to 6. In the
first step, the training saturated approximately after 100 epochs, owing to the small size
of the dataset (n = 19). The second and last steps required 70 to 100 epochs, owing to the
larger datasets (n = 49 and n = 83). The difference in the overall DSCs between the tuning
and test datasets in the final model (step 3) was 2.1. Our model for deep active learning
did not overfit for learning with 3D CBCT volumes.

3. Results

We determined the effect of active learning on CBCT volumes of dental with our
customized 3D nnU-Net in all three steps. The DSCs between the ground truth and the
prediction were analyzed using 20-internal (KUAH) and 20-external (KUANH) datasets
out of the 76 scans that were segmented by active learning. Figure 3 shows the worst and
best results for the KUAH.

The last step is better than the other steps listed in Table 1. The figures show the
maxillary sinus segmentation of 3D volumes on CBCT. As the steps progressed, the seg-
mentation results improved on CBCT and reduced the erroneous areas outside the air. The
DSCs at each stage of air were 0.920 ± 0.17, 0.925 ± 0.16, and 0.930 ± 0.16, respectively, as
shown in Table 2. The DSCs at each stage of the lesion were 0.770 ± 0.18, 0.750 ± 0.19, and
0.760 ± 0.18, respectively (Table 2).



Diagnostics 2021, 11, 688 6 of 11

Figure 3. Best (first rows) and worst (second rows) from the test dataset (internal dataset—KUAH) at different analysis
points: (a) first step, (b) second step, and (c) last step.

Table 2. DSCs for the first, second, and last steps for the test dataset (20 cases) on KUAH.

Mean ± SD (Range) First Step Second Step Last Step

Air 0.920 ± 0.17
(0.245–0.992)

0.925 ± 0.16
(0.241–0.991)

0.930 ± 0.16
(0.243–0.996)

Lesion 0.770 ± 0.18
(0.208–0.912)

0.750 ± 0.19
(0.205–0.975)

0.760 ± 0.18
(0.208–0.96)

Note: Dice similarity coefficient (DSC); Korea University Anam Hospital (KUAH); Standard deviation (SD).

The average DSCs for maxillary sinus segmentation increased after each step, and
the final segmentation in the last step showed the best results (Table 2). Furthermore, we
evaluated the obtained inferences in KUANH using the proposed method. The DSCs for
maxillary sinus segmentation in KUANH are presented in Table 3. The results of air on
KUANH and KUAH were 0.97 ± 0.02 and 0.93 ± 0.16, respectively. Figure 4 shows the
worst and best results for KUAH and KUANH.
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Table 3. DSCs for the test dataset (20 cases of internal-KUAH and 20 cases of external-KUANH) in
Figure 1; 3D-nnU-Net.

Mean ± SD (Range) Last step (KUAH) Last step (KUANH)

Air 0.93 ± 0.16
(0.243–0.996)

0.97 ± 0.02
(0.94–0.99)

Lesion 0.76 ± 0.18
(0.208–0.96)

0.54 ± 0.23
(0.12–0.88)

Note: Dice similarity coefficient (DSC); Korea University Anam Hospital (KUAH); Korea University Ansan
Hospital (KUANH); Standard deviation (SD).

KUAH KUANH 

Ground Truth  Step3 Ground Truth  Step3 

Best 

Worst 

Figure 4. Best (first rows) and worst (second rows) from the test dataset on internal-KUAH and external-KUANH.

Comparisons of the maxillary sinus segmentation times between CNN-assisted and
manual segmentation are given in Table 4. The time consumed by the CNN-assisted and
manually modified segmentation decreased by approximately 493.2 s for 30 scans in the
second step, and by approximately 362.7 s for 76 scans in the last step when compared to
that taken in the first step.

Table 4. Comparison of segmentation times between the manual and CNN-assisted and manually
modified segmentation approaches.

First Step Second Step Last Step

Manual
segmentation

CNN-assisted and
manually modified

segmentation

CNN-assisted and
manually modified

segmentation
Time 1824.0 s 493.2 s 362.7 s

Note: Convolutional neural network (CNN).
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Interestingly, the manual and DL segmentations were classified as very accurate to
mostly accurate, and there were few inaccurate cases in Table 5. The number of very
accurate cases in the DL segmentations was larger than that for manual segmentations (air:
75.7% vs. 91%, lesion 75% vs. 90%) in KUAH. Most of the slices that indicate DL’s superior
performance are seen in the mistakenly drawn manual segmentations of the maxillary
sinus area on CBCT.

Table 5. Qualitative results from visual scoring of automatic maxillary sinus segmentation on CBCT
from 100 Randomly Selected slices (internal-KUAH and external-KUANH) *.

Grade

Manual 3D U-Net
(Last Step for Active Learning)

KUAH KUANH KUAH KUANH

Air Lesion Air Lesion Air Lesion Air Lesion

4—Very accurate 75.7 75 83.7 79.7 91 90 95.3 88
3—Accurate 19.6 16.6 15.3 19.3 8 7.4 4.7 12
2—Mostly
accurate 1 3.7 1 1 0 2.3 0 0

1—Inaccurate 3.7 4.7 0 0 0 0.3 0 0
Note: Korea University Anam Hospital (KUAH); Korea University Ansan Hospital (KUANH); * Four-point scale:
Three dentists conducted grade (manual vs. deep learning). 4—Very accurate: when the labelled maxillary sinus
part completely matches the original sinus (over 95%); 3—Accurate: when the labelled sinus almost completely
matches the original maxillary sinus (85–95%); 2—Mostly accurate: when the labelled maxillary sinus part depicts
the site of the original maxillary sinus area (over 50%); 1—Inaccurate: when the labelled part depicts outside of
the sinus or only matches small area of original maxillary sinus (under 50%).

4. Discussion

In this study, we proposed an active learning framework for maxillary sinus segmen-
tation using a customized 3D nnU-Net on CBCT [16]. The most difficult part of maxillary
sinus segmentation was separation, with the opening part that connects with other areas.
In particular, the ethmoidal area was difficult because there were many open areas with
several small holes. In addition, the part that connects to the nasal cavity is also large, so it
is not easy to separate. Discriminating whether it is the maxillary sinus, nasal cavity, or
ethmoidal region is a task requiring considerable difficulty even for a specialist. The value
of this study lies in the development of a technology that can easily separate maxillary
sinus lesions with the help of artificial intelligence.

In addition, the performance of artificial intelligence models has been improved using
active learning [20]. As each step was completed, the DSCs increased and exhibited excel-
lent performance. As shown in Table 4, the labeling time for CNN-assisted segmentation
is reduced by more than half compared to manual segmentation. Segmentation accuracy
increased over the steps, and the overall performance was reasonable compared with other
state-of-the-art segmentation networks. 3D segmentation of the maxillary sinus is not an
easy task. External validation was performed by dental specialists at both hospitals. No
matter how accurately the segmentation was performed, a slight error in the boundary area
inevitably occurs when a person performs it manually. CNN segmentation by AI first and
modification is more efficient and time-saving compared to manual labeling from scratch.
Therefore, it can be concluded that active learning can reduce the labeling effort through
CNN-assisted segmentation and increase training efficiency through iterative learning with
limited data.

When comparing its performance with other similar studies, 3D U-Net has become
one of the most popular methods for pixel-by-pixel semantic segmentation because it
shows excellent performance in medical image processing. However, several researchers
have further advanced this network by combining detection architectures and cascading
methods. Tang et al. proposed a cascade framework consisting of a detection architecture
and a segmentation module using the VGG-16 model [21]. Roth et al. also proposed a
two-stage FCN model in a cascading manner, with a focus on the target boundary area [22].
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Yang et al. proposed a deep active learning framework by combining an FCN with active
learning [23]. Lubrano et al. also proposed a similar framework for the segmentation of
myelin sheaths in histological data [24]. The authors used Monte Carlo dropout to evaluate
the model uncertainty and select samples for labeling. The segmentation performance of
this study showed similar or better performance by showing DSC values of 0.92~0.93 in
the air layer and 0.75~0.77 in the lesion compared to other studies showing DSC values of
0.66~0.85 [5,25–27]. In addition, unlike other studies, in this study, because the test was
performed with multi-center data, it can be said that the generalization of performance
was further verified.

In this study, the results of lesion segmentation were inferior to those of air segmenta-
tion in this study. Air with a certain radiopacity can be easily separated through threshold
adjustment, while the separation of lesions with various radiopacities is difficult. To label
the lesion, the entire maxillary sinus area was separated first, and the air layer was excluded.
In the process of separating the maxillary sinus, a part of the bone was also included, and
errors could also occur in the process of separating it from the adjacent sinuses. In addition,
the thickness of the soft tissue wall surrounding the maxillary sinus varies from person
to person. In the case of a thin soft tissue wall, a break may occur during the separation
process, so the lesion may not be separated neatly.

The limitation of this study is that the segmentation performance of the maxillary sinus
appeared to be low when the entire maxillary sinus was filled with inflammatory material.
In the case of severe maxillary sinusitis, it can be seen that the inside of the maxillary sinus
is hazy, which can be seen as a case where water or inflammatory substances are filled in the
maxillary sinus. These artifacts are a factor that makes segmentation difficult. To overcome
this, further studies are needed to increase our training dataset and use a better network to
address ambiguities to improve segmentation performance. To improve the effectiveness
and accuracy of the proposed scheme, further validation with more multi-center datasets
and comparisons with other segmented networks, such as cascade networks, should be
performed.

As labeling is basic but very labor-intensive, active learning can be considered to be
a useful alternative [28,29]. In addition, manual labeling is not always constant in the
segmentation process because of differences between people. Active learning frameworks
can reduce this uncertainty by improving the accuracy by increasing collaboration with
deep-learning algorithms. In addition, it is necessary to study the classification of seg-
mented lesions in the future. This study suggests that, even for organs with complex
structures such as the skull, the use of segmentation, lesion analysis, and diagnosis using
active learning can be widely used.

5. Conclusions

In conclusion, this study demonstrates that a deep active learning framework (human-
in-the-loop) can alleviate annotation efforts and costs by efficiently training limited CBCT
datasets.
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