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Complete Genome Sequence of the Putative Phosphonate
Producer Streptomyces sp. Strain 16, Isolated from Indonesian
Mangrove Sediment
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ABSTRACT Streptomyces sp. strain 16 is a novel strain isolated from an Indonesian
mangrove sediment sample. Bioinformatic analysis of the genome sequence of
Streptomyces sp. 16 revealed 23 biosynthetic gene clusters. One of them encodes the
synthesis of a putative phosphonate secondary metabolite, a class of underexplored
natural compounds with great pharmaceutical potential.

ctinomycetes have turned out to be prolific sources for new antibiotics, as 70% of

all known antibiotics were derived from actinomycetes (1). Unique habitats are
suggested to be a good source for novel antimicrobial species that offer new natural
compound chemistry (2). Indonesia is especially biodiverse (3) and may be host to
unknown antibiotic-producing actinomycetes. Streptomyces sp. strain 16 is a novel
isolate from a mangrove sediment soil sample from Tanjung Kelor Beach, Sekotong,
West Lombok, Indonesia. The strain was isolated via selective medium, as described
previously (4). In order to uncover its potential to produce novel natural compounds,
we report here the whole-genome sequence and bioinformatic analysis of Streptomyces
sp. 16.

For genome isolation, Streptomyces sp. 16 was cultivated for 2 days in 50 ml of R5
medium (5) at 30°C. For cell lysis, lysozyme (10 mg/ml; Serva) and achromopeptidase
(5 mg/ml; Sigma) were added, as reported previously (6). Genomic DNA was extracted
and purified using the Genomic-tip 100/G kit (catalog number 10243; Qiagen). The
genomic DNA isolation procedure was carried out following the standard protocol
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for assembly, BLASR v1 (9) for mapping, and Quiver v1 for consensus polishing, using
only unambiguously mapped reads. HGAP3 settings were kept at the defaults, except
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Streptomyces sp. 16 is closely related to Streptomyces sp. strain CNT302, with an average
nucleotide identity (ANI) of 94.0%.
In order to identify biosynthetic gene clusters (BGCs), the genome sequence was
analyzed with antiSMASH version 4.0 (14), which predicted 23 BGCs. For five of them,
antiSMASH predicted 100% similarity to the BGCs for tirandamycin (15), isorenieratene
(16), desferrioxamine B (17), scabichelin (18), and staurosporine (19). One BGC showed
88% similarity to the echinomycin (20) BGC. The remaining BGCs were predicted to
encode two terpenes, two thiopeptides, two bacteriocins, one polyketide, one linaridin,
one melanin, one polyketide-siderophore hybrid, one phosphonate-nonribosomal
peptide hybrid, one polyketide-lanthipeptide-polyketide hybrid, one butyrolactone-
polyketide-nonribosomal peptide hybrid, and three other secondary metabolites.

A particularly interesting BGC from Streptomyces sp. 16 is the hybrid phosphonate-

nonribosomal peptide cluster, which may encode a phosphonopeptide. Phosphonates
in general are promising secondary metabolites due to their unique chemical proper-
ties and broad spectrum of activities (21). The key enzyme in phosphonate biosynthesis
is the phosphoenolpyruvate mutase (PepM), which catalyzes the conversion of phos-
phoenolpyruvate to phosphonopyruvate (22, 23). A putative pepM gene (ctg1_4282) is
present within the phosphonate-nonribosomal peptide BGC of Streptomyces sp. 16. This
indicates that Streptomyces sp. 16 has the genetic potential to produce a phosphono-
peptidic secondary metabolite.

Data availability. This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number RHDP00000000. The version de-
scribed in this paper is version RHDP01000000. Raw sequencing data are available
under BioProject accession number PRINA498008 and SRA accession number

SRX4939820. For all software analyses, default settings were used.
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