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Bone is a very dynamic tissue hosting different cell types whose functions are regulated by
a plethora of membrane-bound and soluble molecules. Intercellular communication was
recently demonstrated to be also sustained by the exchange of extracellular vesicles (EVs).
These are cell-derived nanosized structures shuttling biologically active molecules, such
as nucleic acids and proteins. The bone microenvironment is a preferential site of primary
and metastatic tumors, in which cancer cells find a fertile soil to “seed and blossom”.
Nowadays, many oncogenic processes are recognized to be sustained by EVs. For
example, EVs can directly fuel the vicious cycle in the bone/bone marrow
microenvironment. EVs create a favourable environment for tumor growth by affecting
osteoblasts, osteoclasts, osteocytes, adipocytes, leukocytes, and endothelial cells. At the
same time other crucial tumor-mediated events, such as the premetastatic niche
formation, tumor cell dormancy, as well as drug resistance, have been described to be
fostered by tumor-derived EVs. In this review, we will discuss the main body of literature
describing how the cancer cells use the EVs for their growth into the bone and for
educating the bone microenvironment to host metastases.

Keywords: bone tumor, extracellular vesicles, vicious cycle, dormancy, drug resistance, premetastatic niche
EXTRACELLULAR VESICLES: AN INTRODUCTION

Biogenesis of EVs
EVs are nanosized structures actively released by all cells (1). They are complex phospholipidic bi-
layers distinguishable in subtypes accordingly to their dimension: small EVs range below 100 nm
(also known as exosome or exosome-like vesicles), middle/large EVs size between 100 and 1000 nm
(also known as microvesicles and shedding vesicles), and finally apoptotic bodies, with a diameter
ranging from 800 to 5000 nm (2). Nowadays apoptotic bodies are considered a stand-alone class of
EVs, due to their peculiar biogenesis and biological functions, being mainly involved in
programmed cell death. However, recent evidence has recognized an immunomodulatory role
for these particles (1–3). Besides the size, the most important difference between the small and
medium/large EVs lies in their biogenesis (4). In fact, small EVs arise from the fusion of endocytic
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vesicles sorted in a multivesicular body (MVB) via a complex
molecular machinery involving endosomal sorting complex
required for transport (ESCRT) components, ceramide/
sphingomyelinase pathway members, and Ras-related proteins
in brain (RAB) proteins (4). This MVB then fuses with the
plasma membrane and releases the small EVs in the extracellular
space. Medium/large EVs arise directly from the plasma
membrane via ADP-ribosylation factor (ARF) 6-mediated
activation of phospholipase D (PLD), resulting in the
recruitment of extracellular signal-regulated kinase (ERK) and
phosphorylation of the myosin light-chain kinase (MLCK). This
cascade triggers the budding of the cellular membrane,
culminating in the formation and release of EVs from the cell
(4) . During their biogenesis , EVs entrap different
macromolecules, such as nucleic acids (DNA, mRNA,
miRNAs, long non-coding RNAs), lipids, and proteins
(cytosolic factors, receptors, and ligands), which are then
transferred to target cells where they induce metabolic
changes (1).

Paracrine and Systemic Effects of EVs
Once EVs reach a target cell, the physical/molecular interactions
between EV and cell membranes activate the EV uptake. This
interaction has been shown to occur via multiple routes,
including a direct fusion between EVs and the plasma
membrane (5), as well as EV internalization via lipid draft-,
c l a t h r in - , and ca l v eo l a e -d ependen t endocy t o s i s ,
macropinocytosis, and phagocytosis (6–8). Indeed, the route of
EVs uptake is likely dependent on the following factors: lipid and
protein composition of the released EVs and of the plasma
membrane of recipient cells, EV subtype, cell metabolic status,
and extracellular space conditions (i.e. pH, oxygen tension, and
extracellular matrix components).

The contribution of EVs in the paracrine and distant
communication is easily conceivable, since EVs can be found
in all biological fluids and bloodstream and can reach every site
of the body. However, to demonstrate these events is quite
challenging. Lai et al. addressed this point by staining EVs
with multiplexing bioluminescent (Gaussia luciferase, Gluc)
and fluorescent (enhanced green fluorescent, EGFP, and
tandem tomato, tdTomato) reporters into the mouse thymoma
cell line EL4, finding that EV uptake and delivery of the mRNAs
to recipient cells occurred within 1 hour (9). Furthermore,
seeding EL4 cells in diffusion chambers, which are then
subcutaneously implanted in the dorsal skin of mice,
confirmed the systemic distribution of released EVs (9).
Similar evidence was reported in another study, where EVs
visualization and EVs cargo transfer between tumor cells and
stromal cells in mice was assessed by high-resolution intravital
imaging. Based on the Cre-LoxP system, the physiological effects
of this exchange were studied in different melanoma and
mammary tumor models (10). By generating Cre-expressing
B16 melanoma cells and injecting them in mice expressing the
Cre-LoxP reporter tdTomato, EVs release and uptake to distant
organs (i.e., lymph nodes, lungs, and spleen) were observed
within 2 weeks. In the same work, the authors showed that
EVs released by eGFP+ MDA-MB-231 breast cancer cells
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orthotopically injected in mice were taken up by the less
malignant T47D tumor cells located into the contralateral
mammary pad. Moreover, these EVs carry mRNAs involved in
migration and metastasis. In fact, T74D cells that incorporated
MDA-MB-231-EVs metastasized to lung 7.9-fold more than
control cells (10). Later on, You and colleagues exploited the
intrinsic optical properties of tissues and tumor-derived EVs
based on their NADH content (11). In fact, they reached a label-
free visualization and characterization of metabolic fingerprint of
EVs on a multiphoton microscopy via 2-photon fluorescence of
FAD, 3-photon fluorescence of NAD(P)H, and third harmonic
generation for the structural properties (lipid–water interface) of
the EVs. With this method, EVs located inside fresh human
breast biopsies collected from invasive ductal carcinoma patients
were analyzed and compared to EVs collected from biopsies of
healthy women subjected to breast reduction surgery, finding
that the former presented with a higher NAD(P)H amount.
Moreover, the concentration of NAD(P)H-rich EVs allowed not
only to discriminate between patients and healthy subjects, but
also to stratify the former according to tumor staging. However,
this approach failed to reveal the dynamics of EVs in the tumor
microenvironment, showing EVs firmly attached to the
extracellular matrix and vessel walls, both in human biopsies
and in animal models of breast tumor (11).

More recently, de Jong et al. described a CRISPR-Cas9-based
reporter system to in vitro trace the EV-shuttling of small non-
coding RNA molecules at single-cell resolution (12). They
applied this technique on different breast cancer cell lines and
demonstrated the functional transfer of small RNAs by means of
EVs within 5 days. Moreover, knocking down genes involved in
EV biogenesis and trafficking, such as Alix, Rab27a, Pak1, Rac1,
Cav1, and RhoA, decreased EV uptake, while the silencing of
Ankyrin Repeat And FYVE Domain Containing (ANKFY1),
involved in vesicle transport, increased EV uptake (12).
EXTRACELLULAR VESICLES IN
BONE PHYSIOLOGY

Bone is an active tissue in which different cell types live together
and their crosstalk guarantees the mechanical, biochemical, and
hormonal functions of the skeleton (13, 14). A fine cell-to-cell
communication exists by means of membrane-bound and
soluble molecules, allowing a selective spatial cellular
differentiation and activity (15). The pivotal functional bone
unit is the “bone remodeling unit” (BRU), constituted by bone
forming osteoblasts and bone resorbing osteoclasts (16). Their
activity is tightly coordinated by two main cytokines expressed
by osteoblasts: macrophage-colony stimulating factor (M-CSF)
and receptor activator of NF-kB Ligand (RANKL), having their
receptor on pre-osteoclasts/monocytes: the colony stimulating
factor 1 receptor (CSF1R, alias c-fms) and RANK, respectively
(17). Once mature osteoclasts have resorbed the bone, a plethora
of molecules are released from the extracellular matrix, affecting
the osteoblast function and differentiation, such as transforming
growth factor (TGF)-b, connective tissue growth factor (CTGF),
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osteocalcin (OCN), osteopontin (OPN), bone morphogenetic
proteins (BMPs), insulin-like growth factor (IGF)-1 and -2,
platelet-derived growth factor (PDGF), and calcium ions (18,
19). Beside these molecules, many others concur to regulate this
cellular crosstalk, such as stromal derived factor (SDF)-1,
interleukin (IL)-1 and -6, fibroblast growth factor (FGF),
parathyroid and parathyroid hormone related peptide (PTH/
PTHrP), Lipocalin-2 (LCN2), NOTCH family members, Ephrin
ligands and receptors, Semaphorins, and vascular endothelial
growth factors (VEGFs), that establish the so called “virtuous
cycle of the bone” (20–23). In addition, the BRU establishes a
further crosstalk with the bone/bone marrow-resident cells
thorough juxtacrine and paracrine communications (24–26).
Indeed, EV involvement in bone physiology has been elucidated
in many aspects. The very first observation for a contribution of
EVs in the process of bone mineralization was reported by two
different groups in late ‘60s (27, 28). Later on, EVs from
osteoblasts were demonstrated to bind, by means of annexin 2,
calcium phosphate, and other ions, thus triggering the formation
of nuclei of mineralization in the bone matrix (29). Moreover, EVs
have been described to be active coupling factors in osteoblast-
osteoclasts crosstalk. In fact, it is known that osteoblasts secrete
EVs shuttling RANKL, which in turn sustains in vitro osteoclast
formation (30). In line with this data, we found that osteoblast-
derived RANKL-positive EVs injected in osteoclast-poor RANKL
knock out mice induced the osteoclastic commitment and the
appearance of tartrate-resistant acid phosphatase (TRAP) positive
cells in these mice (31). These results demonstrate another way
exploited by osteoblasts to regulate osteoclast formation besides
the juxtacrine and paracrine signaling. Vice versa, osteoblast
differentiation and function can be also regulated by osteoclasts,
as shown byMa et al., who found that apoptotic bodies released by
mature resorbing osteoclasts trigger osteoblast differentiation by
activating the RANKL reverse signaling in these cells (32, 33). The
pro-osteoblast differentiating effect could be also accomplished by
an autocrine mechanism, since it has been demonstrated that EVs
from mineralizing osteoblasts promote their own differentiation
by activating Wnt- b-catenin pathway, while reducing Axin1
expression in bone marrow stromal cells (34). Recent reports
show that osteocytes, the most abundant cells in bone having not
only a mechanosensing role but also a regulatory role on osteoclast
and osteoblast differentiation, accomplish these functions by
releasing EVs. As a matter of fact, Morrel et al. found that under
mechanical stress osteocytes release EVs, which in turn enhance in
vivo bone formation (35). At the same time, osteocyte homeostasis
is regulated by EVs, as demonstrated by Ren et al., who found that
exosomes from adipose tissue MSCs counteracted the hypoxia-
and serum deprivation-induced apoptosis of the osteocyte-like cell
line MLO-Y4, eventually leading to a lower production of RANKL
by these cells and, consequently, to an inhibition of osteoclast
formation (36). Consistently, Lu and colleagues found that
exosomes isolated from adipose tissue-derived MSCs promoted in
vitro proliferation and osteogenic differentiation of primary human
osteoblasts. Moreover, pre-conditioning of the donor cells with
tumor necrosis factor (TNF)-a increased the pro-osteoblastogenic
effect by a Wnt signaling dependent mechanism (37).
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Finally, endothelial cells also contribute to bone homeostasis by
releasing EVs, which induce osteogenic differentiation of MSCs by
shuttling Galectin-3 (38).
EXTRACELLULAR VESICLES
CONTRIBUTION TO TUMOR
COLONIZATION OF BONE

Neoplastic bone diseases are fueled by EVs (39). As a matter of
fact, the onset and progression of both primary and metastatic
bone cancers are promoted by a massive release of EVs,
characterized by an abnormal molecular cargo (40). This event
is not surprising considering that many key mechanisms involved
in cancer progression, such as microenvironment acidification or
aberrant pathways activation, also induce EVs production (41).
In the bone context, tumor cells exploit the molecular pathways
involved in bone remodeling to their own advantage, thus
converting this “virtuous cycle” in a “vicious” one (42).

Different types of tumors can thrive in the bonemilieu: primary
tumors such as osteosarcoma (OS), Ewing ’s sarcoma,
chondrosarcoma or fibrosarcoma and, very frequently, metastatic
tumors frombreast, prostate, lung, renal, colon, andbladder cancers
(43, 44). All these tumors can hijack physiological stimuli to their
advantage. Key examples are SDF-1, RANKL, andOPN, which can
be exploited by cancer cells due to their chemoattractant and pro-
mitogenic activities, that summoning and promoting the
engraftment of cancer cells into the bone microenvironment (45).
The interaction between tumor cells and the bone induces a
deregulation of bone giving rise to bone lesions can be classified
as osteosclerotic, characterized by osteoblastic overactivation,
osteolytic, due to an exacerbated osteoclast function, and mixed,
when both features coexist in the same site (46, 47). Indeed, OS can
generate all the three types of lesions, due to a wide histologic
variety: the majority of OS cases (>85%) has osteosclerotic features,
telangiectatic OS (~7%) presents osteolytic lesions, while small cell
OS (~2%) produces mixed lesions (48, 49). In contrast, breast and
lung cancers usually give rise to osteolytic bone metastases, while
osteosclerotic lesions characterize most of prostate cancer-induced
bone metastases (47–50).

Extracellular Vesicles in Bone Tumors Growth
OS is the most common primary tumor of bone, predominantly
occurring in adolescents, with a second peak in elderly adults
(51). MSCs and osteoblast precursors undergo malignant
transformation, eventually leading to the deposition of an
aberrant, immature bone (52). As for other types of tumors
(Figure 1 and Table 1), growing evidence demonstrates a crucial
impact of EVs on OS development. An interesting work by
Macklin and colleagues demonstrated that the OS aggressive
behavior can be transferred from the highly metastatic KHOS OS
cell line to a non-metastatic KHOS subtype by means of EVs
(67). This effect was due to an enrichment, inside the EVs, of
molecules involved in G-protein coupled receptor signaling.
Moreover, the highly metastatic OS cells secrete 3-fold more
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vesicles than the lower metastatic ones, while multiphoton
microscopy with fluorescence lifetime in vivo imaging
demonstrated a preferential seeding of lungs by EVs derived from
the highlymetastatic OS clonal variants (67). Interestingly, Qi et al.
Frontiers in Oncology | www.frontiersin.org 4
showed that proliferation of the MG63 OS cell line is supported by
EVs derived from bonemarrow stromal cells, eventually leading to
the activation of the Hedgehog pathway in the recipient cells (68),
while other studies found that aggressiveness and metastatic
FIGURE 1 | Cartoon summarizing the intercellular molecular cargo exchanged by means of EVs in the context of primary bone tumors, between tumor cells and
resident cells. Only molecules shuttled by EVs were indicated, all positively involved in premetastatic niche formation, tumor dormancy, and chemoresistance, except
for miR-101, inversely correlated with dormancy potential.
TABLE 1 | Extracellular vesicles in the premetastatic niche in bone and in osteotropism provision.

Donor EV-Mediator Target Effect Refs

Osteosarcoma cells U2-OS,
SAOS2, MG-63

miR-148a,miR-21-5p Osteoclasts,endothelial cells TRAP and MMP9 upregulation,VEGF, IL-6, -8
upregulation

(53)

SAOS2 miR-21-5p, miR-143-3p,miR-148a-3p
and 181a-5p

MG63 LOX, TIMP3 increase (54)

CAFs miR-1228 MG-63 SCAI suppression (55)
MSCs miR-208a SAOS2, MG63 PDCD4 suppression (56)
Osteosarcoma LM7vcells Whole EVs Macrophages Tgfb2, CCL2 (57)
143-B, SAOS2 Whole EVs Alveolar macrophages Immune cells recruitment (58)
Melanoma cells LCP Whole EVs Melanoma cells WM-266,

SK-Mel28
CXCR7 upregulaiton (59)

NSCLC, CRL-2868 lung cells Amphiregulin osteoclasts EGFR induction (60)
Lung A549 miR-192 Endothelial cells angiogenesis (61)
Breast cancer cells SCP28 miR-21 Osteoclasts PDCD4 repression (62)
Prostate cancer cells C4 miR-940 Osteoblasts ARHGAP1/FAM134A repression (63)
Prostate tumor cells TRAMP-C1 Whole EVs Osteoclast Osteoclast differentiation decrease (64)
Prostate cancer cells PC-3 Whole EVs Osteoclasts miR-214 and p-p65 downregulation (65)
Prostate cancer cellsDu145 and
PC3

TGF-b Adipose cells VEGF-A, HGF, MMPs induction (66)
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potential of OS are directly related to the release of soluble and EV-
boundurokinase plasminogen activator (uPA) aswell as EV-bound
to PD-L1/N-cadherin (69, 70).

OS derived-EVs are also able to influence bone resident cells to
promote OS grown. As an example, OS derived EVs stimulate
endothelial cells to increase the secretion of IL-6,-8 and VEGF, by
shuttlingmiR-148a andmiR-21-5p (53). Osteoclasts are important
players in OS, whose number seems to be correlated with tumor
aggressiveness andmetastatization (71). Interestingly, Garimella et
al. found that EVs isolated from the 143BOS cell line contain a pro-
osteoclastogenic cargo including matrix metalloproteinases-1 and
-13 (MMP-1, -13), TGF-b, CD-9, and RANKL, thus suggesting a
role for these EVs in mediating bone degradation (72). Similarly,
our recent work shows that EVs isolated from the MNNG/HOS
human OS cell line significantly impair osteoblast differentiation
while increasing osteoblast secretion of pro-osteoclastogenic/
inflammatory cytokines (i.e., IL-6, Lcn2, RankL, CCL2,5,6,12, and
CXCL1,2,5) and of MMP3. Moreover, OS-derived EVs have a
proangiogenic effect, evaluated both in vitro and in vivo (73).

Ewing’s sarcoma is the second most common bone cancer in
children and adolescents. It presents with small round cells derived
from the neural crest and is usually associated with the chimeric
fusion gene Ewing sarcoma breakpoint region 1/Friend leukemia
integration 1 transcription factor (EWSR1/FLI1) (74). Miller et al.
firstly described that Ewing’s sarcoma-released EVs are enriched in
the mRNA of the chimeric fusion gene, along with Six
transmembrane epithelial antigen of the prostate 1 (STEAP1) and
Lipase, member 1 (LIP1) mRNA (75). Interestingly, the specificity
of this EV cargo could make circulating EVs suitable biomarker
candidates for patients.

Chondrosarcoma accounts for approximately 20% of bone
tumors and is due to a malignant transformation of chondroblasts
(76). From an histological point of view, it is classified in three stages
according to cytonuclear atypia, number of multinucleated cells,
degeneration of chondroid matrix, and absence of mitosis. Also for
this tumor, a contribution of EVs in its progression has been
hypothesized. As an example, the SW1353 chondrosarcoma cell-
derived EVs shuttle the long non-coding RNA (lncRNA) RAMP2-
AS1, which acts as a molecular decoy for miR-2355-5p to regulate
VEGFR2 expression thus increasing the angiogenic ability of
HUVEC endothelial cells (77).

Finally, also the aggressiveness of fibrosarcoma seems to be
supported by EVs release. This is a very rare bone tumor (0.5 cases
in a million per year) caused by malignant transformation of
fibroblasts (78). Malignant cells are strongly positive for vimentin
and have an altered production of collagen, which is inversely
correlated to the histological grade (78). Hakulinen et al. found
that EVs isolated from the human fibrosarcoma cells HT‐1080
contain both the inactive cleaved and the active full-length forms
of MT1-MMP, which in turn activate pro-MMP2, allowing type I
collagen and gelatin degradation (79).

Extracellular Vesicles in
Metastasis Development
OS frequently metastasizes to lungs and its aggressiveness is related
to osteoclastogenesis and neo-angiogenesis (80, 81). Likewise, it has
Frontiers in Oncology | www.frontiersin.org 5
been demonstrated that OS derived EVs increase both osteoclasts
and neo-angiogenesis, by shuttling miR-148a and miR-21-5p to
target cells (53). Jerez et al. investigated whether EV cargo can be
predictive for metastatic potential of OS by investigating the
miRNAs profile of EVs from metastatic SAOS2 and non-
metastatic MG63 osteosarcoma cell lines (82). They found that
SAOS2-EVs were particularly enriched in miR-21-5p, miR-143-3p,
miR-148a-3p, and 181a-5p compared to MG63-EVs. Consistently,
bioinformatic analysis revealed, among the miRNA targets, some
genes involved in ECM remodeling, such as the collagen-
crosslinking enzyme lysyl oxidase (LOX), and the tissue inhibitor
metalloproteinase 3 (TIMP3), suggesting that SAOS2 related
miRNAs may influence metastatic potential of OS at least in part
by modulating ECM remodeling (82). Interestingly, another study
highlights the protumoral role of cancer associated fibroblasts
(CAFs) on OS by releasing EVs enriched in miR-1228. Once
taken up by the OS cell lines MG-63 and HOS, miR-1228
suppressed SCAI (suppressor of cancer cell invasion), resulting in
the promotion of migration and invasion of OS cells (83). Of note,
MSCs have also been described to support osteosarcoma
progression by releasing EVs (84). In particular, MSC-EVs
enriched in miR-208a are taken up by SAOS2 and MG63 cells,
which inhibited programmed cell death 4 (PDCD4) eventually
stimulating tumor cells proliferation, migration and invasion (84).

Once reached the metastatic site, which is usually in the lungs,
OS cells regulate the function of resident cells by means of EVs.
Indeed, it has been reported that the LM7metastatic osteosarcoma
cell line releases EVs able to induce the production of IL-8, TGF-
b2 and CCL22 from alveolar macrophages and the impairment of
the macrophagic immune-surveillance function by promoting a
switch of the M1-to-M2 phenotype (85). Interestingly,
Mazumadar and colleagues found that EVs from the human OS
cell lines 143B and SAOS2 (highly metastatic and non-metastatic,
respectively) when injected intraperitoneally into SCID mice
promote the recruitment of CD11+ Gr+ immune cells into
lungs. Moreover, OS-derived EVs alone can recapitulate myeloid
cell infiltration in the lungs of naïve mice but are insufficient to
promote the development of OS metastasis, thus indicating that
the establishment of the PMN in the lungs may require a
combination of tumor-secreted factors along with EVs (86).

As already mentioned, to engraft and colonize a distant organ,
cancer cells are able to influence the future host tissue by
preparing the resident cells to receive tumor cells and support
their growth (87). This process, generating a microenvironment
suitable for cancer dissemination before the dissemination itself
occurs, is called “premetastatic niche” (88). Many mechanisms
and secreted factors inducing the premetastatic niche (PMN)
have been discovered (89) and undoubtedly EVs are important
players in this process. This is also true for bone metastases
which, as already stated, represent the preferential secondary site
of growth for several tumors. The accumulation of EVs in a
metastatic site is accompanied by several modifications in the
microenvironment, such as resident cells activation, matrix
deposition and vascular proliferation (Figure 2 and Table 1).

Prostate cancer (PrCa) is the tumor with the highest
propensity to metastasize to bone. In PrCa-induced bone
September 2021 | Volume 11 | Article 722922
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metastases, several reports have emerged, showing the crucial
role of tumor-derived EVs cargo in the preparation of the “soil”.
Hashimoto et al. found that miR-940 is highly expressed in EVs
from highly osteotropic prostate cancer cells, and promotes
osteoblastic/osteosclerotic bone lesions by targeting Rho GTPase
Activating Protein 1 (ARHGAP1) and family with sequence
similarity 134 member A (FAM134A) (90). Consistently,
Karlsson et al. found that EVs from the TRAMP-C1 prostate
tumor cell line impair osteoclast formation, while enhancing
abnormal bone formation at the metastatic site (91). On the
same line, other authors showed that PC3 PrCa cells decrease
osteoclasts formation by means of EVs, which reduce the
expression of miR-214 and the phosphorylation of p65 in
osteoclast cells, finally suppressing the NF-kB signaling and
osteoclast differentiation (92).These events enhance angiogenesis
and finally tumor proliferation and invasiveness. PrCa cells also
affect bone marrow MSCs behavior by means of EVs, by
promoting a shift from an adipogenic toward a myofibroblastic
differentiation. The latter cells in turn secrete high levels of pro-
angiogenic (VEGF-A) and pro-invasive factors like MMP-1,-3 and
-13 (93). Consistently PrCa cell (i.e., C4‐2B, PC‐3 and RWPE‐1)-
derived EVs contribute to tumorigenic reprogramming of MSCs
by delivering oncogenic transcripts of H‐Ras, K‐Ras and
Frontiers in Oncology | www.frontiersin.org 6
oncomiRNAs miR‐125b, miR‐130b, and miR‐155 as well as the
Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a (94).
Finally, an autocrine effect of tumor cell-derived EVs was also
demonstrated by Dai and Gao, who found that miR-183 shuttled
by PC3 derived EVs promotes cancer cell proliferation, migration
and invasion through the inhibition of Tropomyosin 1
(TPM1) (95).

With regards to breast cancer (BrCa), it also very frequently
metastasizes to bone, inducing osteolytic lesions. EVs released by
the SCP28 BrCa cells are enriched in miR-21 which is
internalized by the osteoclasts (96). Inside these cells miR-21
represses PDCD4, a negative regulator of osteoclastogenesis,
leading to an exacerbation of the osteoclast function. In
agreement with these observations, breast cancer patients with
bone metastasis showed higher expression of miR-21 in serum
exosomes than those without metastasis or with non-bone
metastasis (97).

Hypoxic BrCa cells 4T1 release miR-210-containing EVs in
the tumor microenvironment resulting in inhibition of Ephrin-
A3 and Protein tyrosine phosphatase 1B (PTP1B), as well as in
the increase of angiogenesis and tumor proliferation (98). BrCa-
associated fibroblasts secrete EVs that activate the Wnt-planar
cell polarity (Wnt-PCP) and finally promote dissemination of
FIGURE 2 | Cartoon summarizing the intercellular molecular cargo exchanged by means of EVs between tumor cells and resident cells in bone metastases. Only
molecules encompassed in EVs were indicated and reported to be positively involved in osteotropism, tumor dormancy, and chemoresistance.
September 2021 | Volume 11 | Article 722922
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cancer (99). Finally, we recently demonstrated that MDA-MB-231
derived-EVs affect bone cells in vitro, since they increase osteoclast
formation while dramatically impairing osteoblast differentiation
and activity. Moreover both in vitro (tube formation assay) and in
vivo (Matrigel plug assay) experiments demonstrated the ability of
these EVs to promote angiogenesis (100).

Melanoma is a very aggressive tumor, frequently generating
visceral metastasis (101) while bone metastases occurr in around
15% of patients, with a dramatic worsening of quality of life and
survival (102). An in vitro study from Mannavola and colleagues
showed that the osteotropic melanoma LCP cells release EVs able
to switch the non osteotropic WM-266 and SK-Mel28 cell lines
to an osteotropic one, by increasing the expression of CXCR7
(103). In contrast, the expression of a6b4 or avb5 integrins favors
a specific affinity for the lung and the liver, respectively (54). In
line with these observations, integrins b4 and av expression in
EVs isolated from the plasma of melanoma patients predict
metastasis to lung and liver (54).

Lung cancer can also metastasize to the bone, and EVs facilitate
this event (55). Indeed, EVs from the CRL-2868 non-small cell
lung cancer (NSCLC) cell line and from lung cancer patients
contain Amphiregulin (AREG) which in turn promotes osteoclast
differentiation and exacerbated bone resorption by an EGFR-
dependent mechanism (56). In another study, metastatization to
bone of lung adenocarcinoma A549 cells is reported to be inversely
correlated miR-192 expression (57). In particular, the authors
found that EVs from the highly metastatic A549-M1 subclone
presented with a lower content of miR-192 compared to A549
parental EVs. Interestingly, intravenous administration of miR-
192-enriched EVs the day before the intracardiac injection of the
A549-M1 subclone, drastically reduced the bone metastatic
burden of these cells in the tibia, as well as the number of CD31
positive cells in comparison to naïve EVs (57).
EXTRACELLULAR VESICLES
CONTRIBUTION TO TUMOR CELL
DORMANCY IN THE BONE

Once cancer cells reach a distant organ, they can encounter a
dormancy-permissive environment (58). In particular, the
resident stem cell niche compartment can favors the survival
of a distant cancer stem cell, by the same mechanisms usually
Frontiers in Oncology | www.frontiersin.org 7
employed to regulate the maintenance of the stem cell pool and
the recruitment of uncommitted cells into the tissue (59, 104,
105). On the other side, the dormant tumor cells can acquire
stem cell-like properties overexpressing specific genes to interact
with the niche (46). As an example, BrCa cells can shift toward a
dormant phenotype in the endosteal niche, activating a
hematopoietic stem cell profile via the Notch2 pathway (106).
Cancer dormancy accounts for a considerable clinical problem,
since it is responsible for tumor recurrence; in fact the tumor
awakening leads to the generation of secondary tumor lesions,
which in many cases constitute the cause of the death of
patients (107).

Several studies revealed that EVs can also trigger the dormant
phenotype of tumor cells (Figure 1 and Table 2). Kling et al. found
that under hypoxic conditions, the Ewing’s sarcoma cells A673 and
SK-ES-1 upregulate and load miR-210 in their EVs, which
suppresses Caspase 8 Associated Protein 2 (CASP8AP2)
expression in parental cells, eventually inhibiting OS cells
apoptosis and inducing a stem-like phenotype (60). Furthermore,
OS modulate its aggressiveness and dormant phenotype by the EV-
shuttled miR-101 (61). In fact, in vivo injection of SAOS2 and
SOSP-9607 cells overexpressing miR-101 resulted in less lung
metastases in mice, through the silencing of B cell lymphoma
protein, BCL6. Consistently, when miR-101 was overexpressed in
MSCs, the MSC-EVs were enriched in this miRNA and effectively
reduced in vitro migration and invasion of SAOS2 and 143B cells.
These effects have been confirmed in immunocompromised mice,
in which the treatment with MSC-EVs-miR-101 reduced the lung
metastatic foci after 2 weeks of intratibial injection of 143B. In
addition, other studies found that plasma EV-miR-101 is able to
distinguish betweenOS patients withmetastasis from those without.
Insulin like growth factor (IGF)2, was reported to be shuttled by
EVs and was isolated from biological fluids of healthy subjects as
well as of cancer patients (62). Moreover, OS survival is sustained by
IGF2, that induced dormancy by triggering autophagic pathways
and inducing chemoresistance to adriamycin in syngenic animal
models injected with the OS murine ATX cells (117). Notably, in
biopsies from OS patients with favorable prognosis after
chemotherapy, IGF2 levels are decreased.

With regards to bone metastases (Figure 2 and Table 2), in an
in vitro study Ono et al. found that EVs from MSCs decrease the
proliferation, invasion, and sensitivity to chemotherapeutics of the
bone metastatic human BrCa BM2 cells (63). These effects were
due to the shuttling of miR-23b from MSC-EVs to cancer cells,
TABLE 2 | Extracellular vesicles in the support of tumor dormancy in the bone.

Donor EV-Mediator Target Effect Refs

EWS cells A673,SK-ES-1 miR-210 Autologous CASP8AP2 silencing (108)
SAOS2, SOSP-9607, 143-B miR-101 Autologous BCL6 silencing (109)
AXT osteosarcoma cells IGF2 Autologous Autophagy induction (110)
MSCs miR-23b Breast cancer cells BM2 MARKS suppression (111)
Breast cancer cells MDA-MB-231, T47D miR-222/223 MSCs/autologous Switch in G1-G0 phase (112)
Breast cancer cells MDA-MB-231, T47D Whole EVs M1/M2 macrophages Cancer proliferation/dormancy (113)
MSCs miR-31/-205 Breast cancer cells MDA-MB-321 UBE2N suppression (114)
MSCs Whole EVs Breast cancer cells MCF7 Dormancy induction (115)
Endothelial cells miR-126 Leukemic cells Dormancy induction (116)
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which suppresses MARKS (myristoylated alanine-rich C kinase
substrate) expression, encoding for a protein that promotes cell
cycling and motility. Likewise, a study from Bliss demonstrated
that BrCa cells promote the MSCs release of EVs enriched in miR-
222/223, which in turn arrested into G1-G0 phase a subset of
cancer cells, thus favoring a quiescent phenotype. In contrast,
naïve MSC-derived EVs induced MDA-MB-231 cells into cycling
(64). The same group dissected the crosstalk of the bone marrow
macrophages with dormant BrCa cells, finding that M2
macrophages support the dormancy of BrCa cells through gap
junctions, arresting tumor cell cycle. Interestingly, Walker et al.
demonstrated that M1 macrophages release EVs able to awake
cancer cells and induce proliferation, migration, and epithelial to
mesenchymal transition (65). Another study revealed that MSCs
support the dormancy of MDA-MB-321 through the EV-
mediated shuttling of miR-31 and 205 (66). These miRNAs
target ubiquitin conjugating enzyme E2 N (UBE2N) gene,
suppressing the proliferation, migration, and invasion of tumor
cells in bone. Similarly, proliferation and migration ability were
reduced in MCF7 BrCa cells treated with MSC-EVs while
enhancing cell adhesion (118).
EXTRACELLULAR VESICLES IN BONE
CANCER DRUG RESISTANCE

Overcoming chemoresistance is a major clinical unmet need, since
what is usually the first line treatment is not an option for patient
with chemoresistant cancer. Many mechanisms have been
elucidated in the establishment of chemoresistance, and EVs
have been shown to shuttle the necessary molecular machinery
(Figures 1, 2 and Table 3) to promote drug resistance (131).

Drug Resistance in Bone Tumors:
Role of EVs
Primary OS MG63 cells treated with doxorubicin (DXR) increased
their expression of P-glycoprotein (P-gp)1, a membrane transporter
pumping xenobiotics outside the cell. Consistently, EVs from DXR
treated MG63 presented with higher levels of both ABCB1 transcript
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and P-gp encoded pretein expression, that can be transferred to
untreated MG63 cells, conferring them drug resistance (132). In
another study, upregulation of miR-25-3p, which silences the
Dickkopf WNT signaling pathway inhibitor 3 (DKK3) gene, was
detected in human OS samples, where it is negatively correlated with
clinical outcome (133). The same authors demonstrated that miR-25-
3p upregulation supported tumor growth and drug resistance and
that the same effects were observed after DKK3 silencing.
Interestingly, miR-25-3p was found in cell-derived EVs. In another
study by Weinman et al. the correlation between drug resistance and
EVs has been investigated in a spontaneous canine model of OS
(134). The authors clustered the animals in two cohorts based on the
responsiveness to amputation and adjuvant carboplatin
chemotherapy (good, disease-free interval > 300 days; poor, disease-
free interval < 100 days) and analyzed the protein profile of
circulating EVs by mass spectrometry. The proteomic profile
revealed differences in EV cargo, identifying tetranectin, which was
decreased in the poor prognosis group, as the most
reliable biomarker.

The clinical relevance of EV-mediated drug resistance in OS
patients has been investigated by Pan et al. (135). The analysis of
circulating EVs from 43 OS patients compared to healthy subjects
revealed overexpression of the circular RNA circRNA103801 in
the former. The level of this circRNA presented a prognostic value,
being inversely correlated with the overall survival of patients. The
authors further investigated the biological function of the
circRNA103801 in an in vitro model of OS. The overexpression
of circRNA103801 in MG63 cells increased the sensitivity to
cisplatin, the OS cells released also EV enriched in the circRNA.
When these EVs were incubated to naïve MG63 and U2OS cells,
both the OS cells increased the sensitivity to cisplatin, upregulating
the expression of P-gp andMultidrug Resistance Protein 1, MRP1.
These experiments demonstrated that circRNA103801 is
responsible for conferring chemoresistance in OS patients.

Drug Resistance in Bone Metastases:
Role of EVs
Like in OS, the expression P-gp was increased in MCF7 BrCa
cells after exposure to docetaxel (DOC) Moreover, EVs from
TABLE 3 | Extracellular vesicles in cancer drug-resistance in the bone.

Donor EV-Mediator Target Effect Refs

MG-63 P-gp1 Autologous Resistance to doxorubicin (119)
Osteosarcoma biopsies, 143B, U2-OS miR-25-3-p Autologous Dkk3 silencing (120)
Osteosarcoma HMPOS cells,canine osteosarcoma biopsies Tetranectin Autologous Resistance to cisplatin (121)
Seric EVs from patients,MG63, U2OS cells circRNA103801 Autologous Resistance to cisplatin
Breast cancer cells MCF7 P-gp1 Autologous Resistance to docetaxel (122)
Breast cancer cells MCF7 UCH-L1 Autologous Resistance to doxorubicin (123)
Breast cancers cells MCF7 miR-222 M2 macrophages PTEN silencing and M2 proliferation (124)
Breast cancer cells MCF7 miR-222 Autologous Resistance to tamoxifen (125)
Breast cancer cells MCF7 GSTP1 Autologous Resistance to doxorubicin (126)
MDA-MB-231 Survivin Autologous Resistance to paclitaxel (127)
Breast cancer cells SKBR3 and BT474 HER2 Autologous Resistance to trastuzumab (128)
CAFs 5’-triphospate

RNA
Breast cancer cells Radiation- and chemo-resistance (129)

CAFs miR-423-5p prostate cancer cells(LNCAP, 22RV-1, C4) Resistance to taxane (130)
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DOC-treated MCF-7 expressed higher levels of P-gp compared to
EVs from naïveMCF-7, and the incubation with DOC-MCF-7 EVs
reduced cell apoptosis of naïve MCF-7 (108). It is known that
ABCB1 can be activated by the ubiquitin carboxy-terminal
hydrolase (UCH) L1 through MAPK/ERK pathway. Consistently,
MCF7 treated with adriamycin (ADR) show high level of UCH-L1
and phospho-ERK compared to control cells and when naïveMCF7
cells were cultured with EVs from ADR-MCF7 they acquired a
reduced sensitivity to ADR and increased p-ERK and P-gp levels
(109). Interestingly, EVs from blood of BrCa patients were positive
for UCH-L1 and show an inverse correlation with chemosensitivity.

Chemotherapeutics resistance can also occur via EV-mediated
miRNAs transfer. In fact, ADR/DOC-resistant BrCa cells release
EVs enriched in miR-222, suppressing phosphatase and tensin
homolog (PTEN) gene, a tumor suppressor which negatively
regulates intracellular levels of phosphatidylinositol trisphosphate
and the Akt signaling (136). These EVs are also taken up by M2
macrophages, eventually promoting their activation and
polarization to support cancer cells. Accordingly, miR-222 has
been also found in EVs from plasma and tissue of chemoresistant
patients (110). Exosomal miR-222 is also responsible for the
resistance to tamoxifen in MCF7 cells, suppressing p27 and
Estrogen Receptor (ER) alpha expression (110).

Cancer cells can counteract chemotherapeutics like ADR by
overexpressing the glutathione-S-transferase P1 (GSTP1), a phase
II-metabolizing enzyme that detoxifies chemicals by conjugating
with glutathione. Yang et al. found that this enzyme is present in
EVs from ADR/MCF7 and sera of chemoresistant patients (111).
Another study described that, when exposed to paclitaxel (PTX),
MDA-MB-231 specifically released EVs enriched in Survivin, an
inhibitor of apoptosis (112). The protective effects of Survivin-
enriched EVs were effective on drug-sensitive fibroblasts and
SKBR3 cells when exposed to PTX. Furthermore, tumor cells
can directly counteract chemotherapeutics by EV release, via a
decoy-like system. Indeed, Ciravolo et al. described that the
human epidermal growth factor receptor 2 (HER2)-positive
BrCa cells SKBR3 and BT474 release HER2-positive EVs. These
EVs are able to bind and neutralize the biological drug
trastuzumab, an anti-HER2 antibody, while EVs from triple
negative BrCa cells MDA-MD-231 do not (113). In fact, SKBR3
cells treated with autologous EVs were less sensitive to the anti-
proliferative effect of trastuzumab. Interestingly, the authors found
that EVs purified from sera of HER2-positive BrCa patients
showed lower binding to trastuzumab compared to EVs
circulating in sera from patients with advanced disease.

Notably, cancer cells can also take advantage of CAFs derived
EVs to acquire chemoresistance. Indeed, it has been shown that
EVs from CAFs sustain radiation- and chemo-resistance of
MDA-MB-231 BrCa cells by activating retinoic acid-inducible
gene I (RIG-I), signal transducer and activator of transcription
(STAT) 1, and NOTCH3 pathways (114). Similarly, Shan et al.
dissected the role of CAF-EVs in taxane resistance-acquisition by
PrCa cells, finding an enrichment of miR-423-5p in these EVs
which, once internalized in PrCa cells (LNCAP, 22RV-1 and C4
cells) suppressed GREM2 (encoding for gremlin2 protein
inhibitor of bone morphogenetic proteins family members,
Frontiers in Oncology | www.frontiersin.org 9
BMPs) and increased TGF-b eventually leading to a reduced
sensitivity to taxane (115).
POTENTIAL APPLICATIONS OF EVS IN
CLINICAL MANAGEMENT

Cancer-derived EVs can be also used for diagnosis and to
monitor cancer progression, exploiting them in the field of
liquid biopsy. Of note, fibronectin shuttled by EVs isolated
from BrCa patients is becoming a reliable diagnostic marker
for detecting tumor early stages (116). On the same line,
developmental endothelial locus-1 protein (Del-1) has been
proposed as an exosomal biomarker to discriminate between
benign and malignant BrCa (119). Periostin is another potential
EV-related biomarker, since it has been found enriched in
circulating exosomes from BrCa patients, and allowing the
stratification of patients with localized disease versus those with
lymph node metastasis (120). HER2 expression in circulating
EVs has been found to be consistent with the positivity assessed
by immunohistochemistry on tumor biopsies (121). Similarly,
PrCa diagnosis can be addressed via EVs, since the classical
marker prostate specific antigen (PSA) can be measured in EVs
from patients, distinguishing benign hyperplasia from malignant
transformation (137). EV-bound survivin has been proposed as a
biomarker and clinical tool for diagnosing or monitoring PrCa as
well as PTEN, both being detectable only in patients (138).
Melanoma can be also monitored by circulating EVs profile of
caveolin 1, and lung cancers can be histologically discriminated
through a multimarker model based on the expression on
circulating EVS of tetraspanin 8/CD151/CD171 (122, 139). Not
only protein cargoes but also miRNA profiles of circulating EVs
in patients suffering from cancers are pursued for prognostic and
diagnostic aims (123–126).

Another useful approach in the EVs field is their employment
as pharmacological delivery system for the treatment of different
cancers (127). Indeed, EVs present with attractive potentialities
due to a relatively long half-life, high biocompatibility, and
minimal or no adverse effects. As an example, Melzer et al.
showed the efficacy of taxol-loaded MSC-derived exosomes in
targeting MDA-MB-231 growth and metastases in NOD-SCID
mice (128). Similarly, zoledronate and dasatinib were
efficaciously delivered by osteoblast-EVs and suppressed
osteoclast formation and function in vivo, thus potentially
being efficacious in reducing tumor-induced osteolysis (31).
Consistently, EVs from the monocyte/macrophage cell line
RAW264.7 have been reported to be efficient vehicles for
paclitaxel and doxorubicin shuttling and treatment of mice
orthotopically injected with MDA-MB-231 cells (129).

Finally, EVs are promising tools for immunotherapy (130).
As an example, EVs derived from overexpressing IL-12
transgenic renal and bladder cancer cells efficiently trigger a
strong antitumoral activity of cytotoxic T cells through the FasL/
Fas signaling pathway, and the same strategy could be applied to
bone primary tumors (140). Xu’s group demonstrated that EVs
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from macrophages carry phagocytosed antigens to dendritic cells
and strengthen T-cell responses, conferring anti-tumor
immunity (141). Dendritic cell-derived EVs induced specific
cytotoxic T cell activation suppressing the growth of lung
adenocarcinoma in a xenograft mouse model (142), while Zhu
et al. found that NK cell primed by IL-15 shuttled-EVs show a
higher cytolytic effect against BrCa cells MDA-MB-231 injected
in nude mice (143). Many other studies and ongoing clinical
trials are endorsing these approaches.
OUTLOOK AND PERSPECTIVES

The whole body of evidence from the literature strongly indicates
that EVs exert a critical role in the progression of both primary and
secondary bone tumors. Bone is an attractive microenvironment for
tumor cells growth and metastasis, through the establishment of a
crosstalk among many different resident cell types, occurring via
juxtacrine, paracrine, and EV-mediated mechanisms. The latter are
an additional piece of the complex system by which tumor fuels this
“vicious cycle”. The translational significance of this aspect is
endorsed by the growing interest of the application of EVs in
diagnostic and therapeutic fields, as well as the patent
applications/grants and clinical trials based on the use of EVs.
However, many challenges are still present in the field. For the
basic research side the main issues are: i) to isolate with very high
purity the different EV subpopulations, ii) to identify specific
mechanisms of selective EV uptake into target cells, iii) to track the
kinetics and distribution of EVs towards distant tissues, and iv) to
distinguish the real contribution of the molecular legacy of EVs
into an complex microenvironment, such as the tumormilieu. The
isolation and quantification methods are still a crucial issue.
Depending of the technique used for the isolation, the
composition and the effect of the EVs from the same source can
be different, and the same goes for the quantification. Of course,
there are consensus methods in the field, but every method
presents pitfalls to take into account. Protein titration, one of
the most widely used methods in laboratory practice, can be
affected by “exogenous” contaminants and does not consider the
size distribution. Methods of quantification based on physical
features, such as dynamic light scattering and resistive pulse
sensing, cannot estimate the entire EV population, since
generally a size cut-off must be applied on the instruments, and
cannot distinguish between intact and damaged EVs.

The possible experimental approaches to dissect biological
aspects of EVs have pros and cons: the in vitro studies can help
Frontiers in Oncology | www.frontiersin.org 10
to quantify and estimate the contribution of a specific pathway in
the cellular context. However, the in vitro cell system cannot take
in consideration the paracrine and systemic contribution of all cell
types on cancer metabolism and related EVs. Furthermore, the EV
cargo is a balanced cocktail of molecules that can exert opposite
effects (i.e., EVs can shuttle both RANKL and OPG), and generally
the investigators focus only on one member of them, possibly
overestimating the importance of the single factor using targeted
rather than system/pathway-oriented overexpression or knock-
down techniques. On the other side, the in vivo studies in animal
models can help to assess the real contribution of a molecular
player on a biological system, but many confounding factors are
present due to the complexity of the system. The in vivo studies
help to investigate the kinetics of release and integration of EVs,
frequently using intravital microscopy approaches. These studies
provide impactful data, but are limited by technical constraints,
such as resolution, signal/noise ratio and cellular recycling of the
tags used for tracking the EVs.

Finally, a real clinical setting of EVs is hindered by many
limitations. The main technical issues are shared with basic
research. Indeed, a lack of standardization methods for isolation,
characterization, quality control, large scale production and
storage conditions reduce the translational value of EVs (144).
Moreover, the EVs and their molecular profile can change for
several patient-related variables, including the circadian rhythm
and lifestyle habits as well as comorbidities, affecting their
prognostic reliability (145, 146).

In conclusion, EVs are an active field of study for a better
understanding of the biological bases of tumorigenesis, but also
offer a promising translational tool for diagnosis, monitoring,
and treatment of cancer patients.
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