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Abstract

VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through

experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the

Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was

supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-

thioglucose obese mice. However, this anabolic role for VGF has not been supported by a

number of subsequent studies investigating the physiological effects of VGF-derived pep-

tides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expendi-

ture and rectal temperature in mice and protected against diet-induced obesity. Similarly,

ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this

was due to a decrease in food intake, with no effect on energy expenditure. Subsequently

NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing

roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF

in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vec-

tor to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental

effects or associated functional compensation. Initially, hypothalamic over-expression of VGF

in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks

post-infusion hamsters had increased oxygen consumption and a tendency to increased car-

bon dioxide production; this attenuated body weight gain, reduced interscapular white adipose

tissue and resulted in a compensatory increase in food intake. These observed changes in

energy expenditure and food intake were associated with an increase in the hypothalamic

contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of

the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides

during development, as well as in the adult.
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Introduction

VGF is a neurotrophin-induced gene that is widely expressed in neuronal and neuroendocrine

cells. The VGF gene encodes a 68kDa polypeptide which is cleaved by prohormone conver-

tases (PCs) into multiple smaller peptides and released upon depolarising stimuli [1–4]. Whilst

VGF mRNA is expressed in many regions of the nervous system, the highest concentrations of

VGF immunoreactivity are found in the ventromedial hypothalamus, in particular the arcuate

nucleus (Arc) and paraventricular nucleus (PVN) [5–7].

VGF was first highlighted to have a role in energy homeostasis through experiments involving

dietary manipulation in mice. Fasting increased VGF mRNA in the Arc, and levels were subse-

quently reduced upon refeeding [8]. This anabolic role for VGF was supported by observations

in a VGF null (VGF-/-) mouse [8]. VGF-/- mice are small, lean, hypermetabolic and hyperactive.

They consume more food per gram body weight than wildtype littermate controls, and display

increased oxygen consumption and locomotor activity [8]. Interestingly, ablation of the VGF gene

blocked the development of obesity in diet- and gold-thioglucose mice and VGF-/- mice crossed

with the (Ay/a) (agouti) mouse, whilst weight gain was attenuated in the ob/ob mouse [9, 10].

However, this anabolic role for VGF has not been supported by a number of subsequent stud-

ies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular

(ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice

and protected against diet-induced obesity [11]. Similarly, ICV infusion of TLQP-21 into Sibe-

rian hamsters significantly reduced body weight, but this was due to a decrease in food intake,

with no effect on energy expenditure [12]. Subsequently NERP-2 was shown to increase food

intake in rats via the orexin system (body weight data not included) [13], suggesting opposing

roles for these VGF-derived peptides. More recently, VGF expression was shown to be depen-

dent upon metabolic state in rats [14], whilst in the Siberian hamster, TLQP immunoreactivity

was found to be expressed throughout the hypothalamus (the preoptic area, supraoptic nucleus,

suprachiasmatic nucleus and median eminence) in axons and perikarya [15]. A possible explana-

tion for the differences observed between the functional studies utilising the different VGF

derived peptides [11, 12] and the genetic studies in the VGF-/- mouse [8] is that global ablation

of the gene produces an errant phenotype, possibly due to VGF having pleiotropic roles during

development and adult life, as recently reviewed [4].

The aim of this study was therefore to better understand the role of VGF in the regulation of

energy homeostasis by utilising a recombinant adeno-associated viral vector (AAV) to over-

express VGF in the hypothalamus of adult male Siberian hamsters, thus avoiding any develop-

mental effects or associated functional compensation. We previously demonstrated the feasibility

of using the viral 2A sequence in combination with AAV for the long-term over-expression of

VGF and fluorescent reporter (eGFP) genes in the hypothalamus of the Siberian hamster [16].

Methods

Animals

Male Siberian hamsters (Phodopus sungorus) aged 3 months were taken from a colony main-

tained by the University of Nottingham (Ebling, 1994). Hamsters were housed in individual

cages under controlled temperature (21±1˚C) and on a reverse photoperiod of 16h light/8h

dark (lights off at 11:00h), with ad-libitum access to food and water, unless otherwise stated.

The diet was standard laboratory chow comprising of 19% extruded protein and 9% fat (Tek-

lad 2019, Harlan, UK). All animal procedures were approved by the University of Nottingham

Animal Welfare and Ethical Review Board and were carried out in accordance with the UK

Animals (Scientific Procedures) Act 1986 (project licence PPL 40⁄3604).
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Synthesis of construct and viral particles

Synthesis of constructs and viral particles, including in vitro and in vivo validation, has been

described previously [16]. In brief, pAAV-CBA-VGF-2A-eGFP (subsequently called pAAV-

VGF-GFP) was constructed by removing the AgRP-IRES-eGFP from the plasmid pAAV-

CBA-AgRP-IRES-eGFP-WPRE (a kind gift from Dr Miguel Sena-Esteves (University of

Massachusetts, Worcester, USA; [17]) and inserting VGF-2A-eGFP. The plasmid was then

sequenced to confirm removal of AgRP-IRES-eGFP and insertion of VGF-2A-eGFP in the

correct orientation. Following in vitro validation in the SH-SY5Y neuroblastoma cell line, the

pAAV-VGF-GFP plasmid was packaged into AAV-2 by Vector BioLabs (PA, USA) and the

packaged AAV-GFP control was purchased from Vector Biolabs (PA, USA).

Infusion of viral constructs

Animal surgical procedures were carried out as previously described [16, 17]. Briefly, animals

were placed in a Kopf stereotaxic frame (David Kopf Instruments, NY, USA) with the incisor

bar positioned level with the interaural line under general anaesthesia (0.5–2.5% isoflurane).

Analgesia was maintained via subcutaneous injection of carprofen (50 mg/kg Rimadyl, Pfizer,

Kent, UK). Using the sutures confluence bregma as a landmark, a small hole was drilled on

midline and the dura mater was pierced just lateral to the mid-sagittal sinus. A drawn glass

capillary microinjector (30-micron tip diameter) was lowered to the correct location. Using a

Nanolitre Injection system (WPI, Stevenage, UK) 200nl of the viral vector (AAV-GFP, n = 3

or AAV-VGF-GFP, n = 4) was directed towards the PVN (anteroposterior +0.03, mediolat-

eral ± 0.03, dorsoventral -0.58 (co-ordinates from [18]). Infusions were over two minutes,

however the glass microinjector was kept in place for an additional 5 minutes to allow for dif-

fusion and prevention of backflow through the cannula track, and the incision was closed

using Michel clips. The surgically-prepared Siberian hamsters were allowed a seven day recov-

ery period, during which they were handled on a daily basis, received analgesia and had access

to a palatable diet consisting of soaked Teklab diet. Over-expression of VGF mRNA and eGFP

was previously described (16).

Metabolic gases and feeding behaviour

Multiple respiratory and feeding behaviour parameters were measured using a Comprehen-

sive Lab Animal Monitoring System (CLAMS; Linton Instrumentation, Linton, UK, and

Columbus Instruments, Columbus, OH, USA) as described previously [16, 17, 19]. This is

an open-circuit calorimeter configured for small rodents, where the rodents were individu-

ally housed with food hoppers in the centre of each cage containing chow ground into a

rough powder, and dropper-style water bottles. Metabolic parameters measured included

oxygen consumption (VO2) and carbon dioxide production (VCO2), normalised over the

estimated lean mass (BW 0.75) due to the change in body composition, such that the energy

expenditure (EE) and respiratory exchange ratio (RER) could be calculated as previously

described [20]. Feeding behaviour parameters measured included the timing and duration

of feeding, individual meal size, and total food intake per unit time. A meal equal to or

greater than 0.02g is considered to be a feeding bout. Ambulatory (locomotor) activity was

also measured continuously using two sets of infrared beams traversing each cage that mea-

sure linear and vertical movement. The system was operated with an air intake of 0.6 L⁄min

for each chamber, and an extracted outflow of 0.4 L⁄min. All measurements were taken at an

ambient temperature of 21–22˚C.
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Effect of over-expression of VGF in the hypothalamus of Siberian hamsters

Three groups of adult male Siberian hamsters were utilised. Group 1 received a bilateral infu-

sion of 200nl of either AAV-GFP (n = 3, 1 x 1013 genomic copies/ml, one animal from this

group was euthanized due to poor recovery from anaesthesia) as control or AAV-VGF-GFP

(n = 4, 7.2 x 1012 genomic copies/ml) directed towards the PVN. We have previously shown

this to be an effective strategy for infecting the hypothalamus, an area of high VGF expression

[17]. After recovery bodyweight and food intake were measured weekly in the home cage. 2

weeks post viral infusion, Group 1 were euthanized by injection of pentobarbital sodium

(Euthatal; Rhone Merieux, Harlow, UK) and organs removed, weighed and immediately snap

frozen at -80˚C. Group 2 received the same vectors as described, were subjected to CLAMS

analysis for 48 hours (the first 24 hours were discarded as a period of habituation; the second

24 hours were used for analysis and presented here, a strategy successfully utilised in[16, 17,

19]) at 2 and 12 weeks post viral infusion and subsequently euthanized by injection of pento-

barbital sodium and organs removed, weighed and immediately snap frozen at -80˚C. Group 3

received the same vectors as described (n = 6 per treatment) and 32 weeks post viral infusion

were euthanized by injection of pentobarbital sodium and the brains removed and immedi-

ately snap frozen at -80˚C [16]. eGFP visualization and in situ hybridization were performed as

previously described [16]. Briefly, antisense transcripts were generated from the pSC-B-AMP/

KAN plasmid (containing VGF cDNA) using T7 polymerase (NEB, USA) in the presence of

digoxigenin(DIG)/fluorescein-12-uridine-5-triphosphate (a kind gift from Dr Dylan Sweet-

man, UoN). Riboprobes were purified on a spin column. Slides containing 20μm coronal sec-

tions were fixed in 4% PFA/0.1% gluteraldehyde before treatment with proteinase K (10μg/

ml). Slides were incubated with hybridization solution containing riboprobe for 6h at 65˚C.

Post-hybrisidation, sections were washed with hybridization solution for 10mins at 65˚C, fol-

lowed by two washes with maleic acid buffer containing 0.1% Tween-20 (MABT, pH 7.5). Sec-

tions were subsequently blocked in MABT/2% Roche blocking agent for 1h and subsequently

incubated overnight with anti-DIG conjugated to alkaline phophatase (1:2000) at 4˚C. Slides

were washed with MABT for 1h followed by an overnight incubation in MABT at 4˚C. To per-

form the colour reaction, sections were washed with 1-methyl-5-thiotetrazole (NMTT) con-

taining nitroblue tetrazolium (NBGT) and 5-bromo-3-indocyl-phosphate (BCIP). The colour

reaction was stopped by washing the sectionsin 5x TBST (1xTBS, 0.1% Tween 20, 0.2mM

sodium azide) overnight at 4˚C. This process was repeated the following day to intensity the

signal and reduce background. Images were captured using a Lecia DMRB microscope (Ger-

many) and OpenLab software (UK). To determine VGF mRNA and GFP expression, slides

were scored for the density of signal in the hypothalamic region reflecting hybridization of the

VGF probe and GFP signal by an observer who was blind to the treatment: 0 = no hybridiza-

tion, 1 = a few cells expressing VGF mRNA, 2 = moderate VGF mRNA expression, 3 = abun-

dant VGF mRNA [21].

Peptide quantification

Quantification of the VGF peptides including, TLQP, AQEE and NERP-2 was carried out via

ELISA on whole hypothalamic samples. The antibodies used in each assay were produced

against the following peptides: the N-terminal decapeptide of TLQP-21 (rat VGF556-565),

AQEE-30 (rat VGF586-595), and the C-terminal nonapeptide of NERP-2 (rat VGF342-350)

that contains an amide group at its C-terminus, conjugated with bovine thyroglobulin or key-

hole limpet hemocyanin via an additional cysteine at the C-terminus (TLQP, AQEE) or N-ter-

minus (NERP-2). Each antibody has a high affinity for the corresponding VGF peptide, but

other cleaved peptides encompassing the sequence could also be recognised, as previously

Central over-expression of VGF
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observed with TLQP antiserum which binds to TLQP-21, but also TLQP-62 [15]. The ELISA

was carried out as previously described [15]. Briefly, multi-well plates coated with the specific

synthetic VGF peptides were incubated with the VGF antisera in parallel with tissue samples

and standards (the same synthetic peptides used for immunizations) followed by the relevant

biotinylated secondary antibodies (Jackson, West Grove, PA, USA) and the streptavidin-per-

oxidase conjugate (Biospa, Milan, Italy). Each VGF assay was characterized using various syn-

thetic peptides (see Table 1).

Statistical analysis

Descriptive statistics (mean±SEM) were generated using GraphPad Prism (version 6.0, Graph-

Pad Software Inc., San Diego, CA, USA). Body weight, home food intake, data obtained from

the CLAMS apparatus and peptide quantification were analysed using two-way repeated mea-

sures ANOVA followed by a post hoc Bonferroni test. Data on organ weights at the end of the

study were analysed using a Student’s unpaired t-test. Scores were analysed by a Kruskal-Wallis

test with post-hoc Dunn’s tests for multiple comparisons. Statistical significance was accepted at

p<0.05.

Results

Over-expression of VGF mRNA

Post mortem analysis revealed high levels of GFP expression in both groups, however, VGF

mRNA expression was lowly expressed in the hypothalamus of AAV-GFP animals. Animals

treated with AAV-VGF-GFP demonstrated high levels of hypothalamic VGF mRNA which

corresponded to the pattern of GFP expression (see S1 Fig).

Effect of over-expression of VGF on body weight, food intake and

ingestive behaviour

Bilateral infusion of AAV-VGF-GFP into the hypothalamus of Siberian hamsters had no effect

on body weight at 2 weeks post infusion compared to AAV-GFP control (Fig 1A), however

over the 12 week experimental period an attenuation in the increase in body weight was

observed (time vs. treatment interaction F = 5.037, p< 0.001). Siberian hamsters infused with

AAV-GFP control increased in bodyweight by an average 12.6% at the end of the 12 week

study period whereas those infused with AAV-VGF-GFP only increased by an average of 1.0%

(Fig 1A).

Table 1. VGF assay characterization. IC50: 50% inhibitory concentration; CV1 and CV2: intra- and inter-assay variation, respectively; h: human; r: rat. 1pep-

tide used for plate coating and assay standard. 2Des-amidated peptide and 3peptide with an additional glycine residue at the C-terminus were used to test for

cross reactivity. All of the antisera used for the tissue VGF quantification showed 100% cross-reactivity with the corresponding peptides.

Assay Peptide IC50 pmol/ml CV1 CV2 Cross-reactivity

TLQP rVGF556-564 (TLQPPASSR)1 1.1 3–5 6–10 100

rVGF555-564 3.5

rVGF556-567 (TLQP-11) 122

rVGF556-576 (TLQP-21) 183

AQEE hVGF586-595 (AQEEAEAEER)1 3 3–4 10–13 100

NERP-2 rVGF312-350-NH2
1 1 3–5 5–8 100

rVGF342-350-NH2 73

rVGF342-350 (des-amide)2 <0.001

rVGF342-351 (“G” extended)3 <0.001

doi:10.1371/journal.pone.0172724.t001
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Over the 12 week experimental period a significant increase in cumulative food intake was

observed in the AAV-VGF-GFP group compared to AAV-GFP control group (time vs. treat-

ment interaction F = 10.91, p<0.0001, Fig 1B). Analysis of the pattern of ingestive behaviour

over a 24 hour period at 2 weeks post infusion revealed no effect of treatment on meal dura-

tion, frequency and intake (Fig 1C, 1E and 1G, respectively). At 12 weeks post infusion,

AAV-VGF-GFP treated animals had a significant increase in meal duration (Fig 1D effect of

treatment F = 8.385, p<0.05), but there was no significant change in meal frequency (Fig 1F).

Food intake was significantly increased (Fig 1H, effect of treatment F = 5.784, p< 0.05).

Effect of over-expression of VGF on metabolic parameters

Analysis of metabolic parameters at 2 weeks post bilateral infusion with AAV-VGF-GFP

revealed no effect of treatment at this stage compared to the AAV-GFP control group (Fig 2A–

2E). However, by 12 weeks post infusion there was a significant increase in VO2 in the

AAV-VGF-GFP treated group compared to the AAV-GFP control animals (effect of treat-

ment = 8.854, p< 0.05; Fig 2F), while there was a trend for an increase in VCO2 (effect of treat-

ment F = 5.706, p = 0.06; Fig 2G). The effect was primarily in the dark phase, with VO2 being

13.4% higher in the AAV-VGF-GFP treated group compared to the AAV-GFP control group.

This resulted in a significant increase in energy expenditure in the AAV-VGF-GFP control

group (effect of treatment F = 7.968, p<0.05; Fig 2H). No effects on RER (Fig 2I) or ambula-

tory activity (Fig 2J) were observed.

Effect of over-expression of VGF on organ weight

There was no effect on organ or tissue weight in Siberian hamsters bilaterally infused with

AAV-VGF-GFP (compared to those infused with AAV-GFP as a control) 2 weeks post infu-

sion (Table 2). However, at 12 weeks post infusion, there was an increase in the weight of inter-

scapular brown adipose tissue (p<0.05, Table 2) and a decrease in weight of interscapular

white adipose tissue (p< 0.05, Table 2) in the AAV-VGF-GFP group. There were no signifi-

cant effects on the wet weights of the epididymal white adipose tissue and the liver (Table 2).

Effect of over-expression of VGF peptide levels in the hypothalamus

Bilateral infusion of AAV-VGF-GFP for two weeks (Group 1) did not result in any changes in

the levels of VGF derived peptides TLQP, AQEE and NERP-2 compared to those infused with

AAV-GFP, however by 12 weeks an increase in all three peptides was apparent (Fig 3A–3C,

time vs. treatment interactions F = 5.02, 5.07 and 3.78 respectively, p<0.05).

Discussion

Hypothalamic over-expression of VGF in adult Siberian hamsters produced a complex pheno-

type; at 2 weeks post infusion there was no effect on metabolic parameters. AAV-2 has a rela-

tively slow onset of transcription but has been previously shown to efficiently and stably over-

express trans- and reporter-genes [17, 22, 23]. By 12 weeks hamsters had increased oxygen

consumption and a tendency to increased carbon dioxide production; though no significant

Fig 1. Hypothalamic over-expression of VGF attenuates body weight gain, whilst increasing food intake; a

consequence of increased meal duration. Adult male Siberian hamsters received bilateral infusion of either AAV-GFP

(control, GFP) or AAV-VGF-GFP (treated, VGF), with bodyweight (in grams) (A) and food intake (grams per gram body

weight) (B) determined over the 12 weeks in home cages; while meal duration (C and D) and meal frequency (E and F) were

determined over a 24hr period in metabolic cages at 2 (C and E) and 12 weeks (D and F) post-infusion. Values are group

mean ±SEM, n = 3–4 per treatment, interaction **** p<0.0001; effect of treatment * p<0.05.

doi:10.1371/journal.pone.0172724.g001
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change in RER and therefore no evidence that substrate utilization (carbohydrate vs. fat oxida-

tion) was affected. The increase in oxygen consumption 12 weeks post viral infusion was not

due to an increase in locomotor activity, as this was similar in AAV-GFP and AAV-VGF-GFP

infused animals. We infer that the significant increase in oxygen consumption, and therefore

energy expenditure, 12 weeks post viral infusion, particularly during the dark phase, was the

main driver for the attenuated body weight gain in AAV-VGF-GFP infused animals. Indeed,

hypothalamic over-expression of VGF reduced interscapular white adipose tissue weights, but

increased interscapular brown adipose tissue weights, 12 weeks post infusion, which may

potentially account for the increased energy expenditure. Interestingly, externally located

WAT depots are relatively spared in response to photoperiod change in the Siberian hamster;

epididymal WAT demonstrates proportionally greater decreases [24]. This suggests differential

sympathetic neural control in WAT depots in this species. There was a small but significant

increase in food consumption measured in the home cage in AAV-VGF-GFP infused animals.

The increase in cumulative food intake was apparent 3 weeks post infusion and persisted for the

12 week experimental period; this resulted in significantly increased cumulative food intake

(grams per g body weight) in the AAV-VGF-GFP infused group. This reflected increased meal

duration and intake, as measured in CLAMS at 12 weeks post viral infusion, since meal fre-

quency was unaffected. There was no effect on these behavioural parameters 2 weeks post infu-

sion. We infer that these increases in food intake were a compensatory mechanism to limit

weight loss and maintain energy stores. These observed changes in energy expenditure and

food intake were associated with an increase in the hypothalamic contents of the VGF-derived

peptides, AQEE, TLQP and NERP-2. These peptides have been shown to be involved regulating

energy homeostasis, since ICV administration of TLQP-21 has been shown to reduce food

intake in Siberian hamsters [12] and increase energy expenditure in mice [11], while ICV infu-

sion of NERP-2 in rats was shown to increase energy expenditure and food intake via the orexin

system [13], suggesting opposing roles for these two distinct VGF derived peptides. These func-

tional studies conducted with VGF derived peptides in multiple species largely support the phe-

notype produced by hypothalamic over-expression of VGF in the Siberian hamster. Both of

these VGF derived peptides (TLQP and NERP-2) were increased 12 weeks post viral infusion

with AAV-VGF-GFP and may contribute to the observed increase in energy expenditure. Inter-

estingly, TLQP-62 is the most prominent VGF derived peptide [3], whilst AQEE-30 increases

Fig 2. Hypothalamic over-expression of VGF increases oxygen consumption (VO2) which is unrelated

to ambulatory activity. 24 hour profiles of oxygen consumption (VO2) (A and F), carbon dioxide production

(VCO2) (B and G), energy expenditure (C and H), respiratory exchange ratio (RER) (D and I) and ambulatory

(locomotor) activity (E and J) of adult male Siberian hamsters measured in metabolic cages at 2 (A-E) and 12

weeks (F-J) post-infusion with either AAV-GFP (control, GFP) or AAV-VGF-GFP (treated, VGF) viral vectors.

Values are group mean ±SEM, n = 3–4 per treatment, effect of treatment * p<0.05.

doi:10.1371/journal.pone.0172724.g002

Table 2. Hypothalamic over-expression of VGF in Siberian hamsters increases BAT weight and reduces interscapular white adipose tissue

weight. Mean (± SEM) wet tissue weight (mg per g BW) in Siberian hamsters receiving bilateral AAV-GFP or AAV-VGF-GFP at 2 and 12 weeks post viral

infusion. * p < 0.05.

Group Treatment LIVER (mg/g BW) eWAT (mg/g BW) iBAT (mg/g BW) iWAT mg/g BW)

Group 1 (week 2) AAV-GFP 34.9 ± 2.2 25.6 ± 0.7 2.6 ± 0.3 17.4 ± 3.5

AAV-VGF-GFP 32.9 ± 1.4 27.5 ± 0.6 2.5 ± 0.2 16.3 ± 2.1

Group 2 (week 12) AAV-GFP 36.1 ± 1.9 23.6 ± 1.6 2.9 ± 0.2 24.4 ± 3.4

AAV-VGF-GFP 38.0 ± 3.7 22.8 ± 0.5 4.6 ± 0.4* 17.4 ± 3.5*

eWAT = epididymal white adipose tissue; iBAT = intrascapular brown adipose tissue; iWAT = intrascapular white adipose tissue

doi:10.1371/journal.pone.0172724.t002
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Fig 3. Hypothalamic over-expression of VGF resulted in time-dependent increases in the VGF-derived

peptides, TLQP, AQEE and NERP-2, in the hypothalamus of adult male Siberian hamsters.

Hypothalamic peptide levels (nmol/g protein) of TLQP (A), AQEE (B) and NERP-2 (C) in adult hamsters

bilaterally infused with either AAV-GFP (control, GFP) or AAV-VGF-GFP (treated, VGF) viral vectors at 2 or

12 weeks post infusion. Values are group mean ±SEM, n = 3–4 per treatment, interaction *p<0.05.

doi:10.1371/journal.pone.0172724.g003
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upon high caloric feeding in rats [25] and analysis of hSNP mice (where the C terminal of VGF

is deleted) suggests AQEE-30 may have a positive effect on energy homeostasis (as these mice

have reduced adiposity) or act as functional antagonists of TLQP-21 under physiological condi-

tions [26]. However, this ablation is once again associated with a robust increase in oxygen con-

sumption, food intake and locomotor activity; a consequence of hyperactivity [26].

Interestingly, hypothalamic knockdown of VGF leads to metabolic disturbances in male

mice [27]. Hypothalamic knockdown of VGF, using a Cre-loxP system, resulted in weight gain

and decreased body temperature, oxygen consumption, RER and locomotor activity. Whilst

food intake was unaffected, glucose tolerance was impaired. These effects resulted in increased

adiposity and reduced UCP1 protein in BAT, a phenotype that is mostly opposite (and there-

fore in agreement with) the phenotype described here for hypothalamic VGF over-expression

and largely consistent with the proposed role of TLQP-21 in adult mice [11].

Interestingly, these effects of VGF over-expression are analogous to studies of cocaine

amphetamine regulated transcript (CART), which has orexigenic and anorectic effects depen-

dent upon its site of hypothalamic ICV infusion [28–30]. Furthermore, the phenotype pro-

duced by the hypothalamic over-expression of VGF in the Siberian hamster is very similar to

transgenic mice that over-express orexin, with orexin having been shown to mediate the effects

of NERP-2 in rats [13, 31]. Interestingly, these orexin transgenic mice are resistant to diet-

induced obesity as a result of increased energy expenditure despite significantly increased

daily food intake [31].

It is also of note that VGF gene expression is photoperiodically regulated, with short day

length (SD) which leads to reduced adiposity, associated with a decrease in expression of VGF

in the Arc but dramatically higher expression in the dorsomedial posterior Arc of Siberian

hamsters [21, 32]. Given the nature of the phenotype produced by hypothalamic over-expres-

sion of VGF in Siberian hamsters in long day length (LD) described here, there is a need to

determine peptide levels in specific hypothalamic nuclei to further elucidate their role in sea-

sonal adaptation.

The findings of the studies presented here are largely in agreement with those of Bartolo-

mucci et al. [11] and Jethwa et al. [12], which both utilised the VGF derived peptide TLQP-21,

as well as the hypothalamic knockdown studies conducted by Foglesong et al. [27]. However,

they are in contrast with the VGF-/- and hSNP mice, which are lean, hypermetabolic and

hyperactive [8, 26]. The complex phenotype of the VGF-/- mice [8] is a likely consequence of

global ablation of the gene and its derived peptides during development, as well as in the adult.

Hahm et al. [8] postulated that an increase in VGF expression in the hypothalamus of mice

would increase food intake and body weight, while energy expenditure would decrease, result-

ing in an obese phenotype. Indeed germline over-expression of VGF in mice modestly

increased body weight and food intake, whilst reducing locomotor activity [26]. The current

study demonstrates that over-expression of VGF in the hypothalamus of the Siberian hamster

actually results in the opposite phenotype, increasing energy expenditure and reducing body

weight gain, despite increasing food intake, highlighting the complexity of VGF and its derived

peptides during development and adulthood.

Supporting information

S1 Fig. Hypothalamic over-expression of VGF mRNA corresponds to GFP expression in

AAV-VGF-GFP treated animals. Hypothalamic VGF mRNA is increased in AAV-VGF-GFP

treated animals and is limited to a few cells in the AAV-GFP group (if detected) despite high

levels of GFP expression. Values are group mean ±SEM, n = 6 per treatment.

(PDF)
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