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a b s t r a c t

Background: Since the discovery of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012,
diagnostic protocols were quickly published and deployed globally.
Objectives: We set out to assess the quality of MERS-CoV molecular diagnostics worldwide.
Study design: Both sensitivity and specificity were assessed using 12 samples containing different viral
loads of MERS-CoV or common coronaviruses (OC43, 229E, NL63, HKU1).
Results: The panel was sent to more than 106 participants, of which 99 laboratories from 6 continents
returned 189 panel results.Scores ranged from 100% (84 laboratories) to 33% (1 laboratory). 15% of
respondents reported quantitative results, 61% semi-quantitative (Ct-values or time to positivity) and
24% reported qualitative results. The major specific technique used was real-time RT-PCR using the WHO
recommended targets upE, ORF1a and ORF1b. The evaluation confirmed that RT-PCRs targeting the ORF1b
are less sensitive, and therefore not advised for primary diagnostics.
Conclusions: The first external quality assessment MERS-CoV panel gives a good insight in molecular
diagnostic techniques and their performances for sensitive and specific detection of MERS-CoV RNA
globally. Overall, all laboratories were capable of detecting MERS-CoV with some differences in sensitivity.
The observation that 8% of laboratories reported false MERS-CoV positive single assay results shows room
for improvement, and the importance of using confirmatory targets.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Background

A novel beta-coronavirus, named Middle East respiratory syn-
drome coronavirus (MERS-CoV), was identified as the cause of
severe respiratory disease in humans in the Middle East in 2012
[1,2]. Within weeks after the initial reports, protocols were pub-
lished for diagnosing this agent by real-time reverse transcriptase
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polymerase chain reaction (RT-PCR) [3,4]. In the first report [3],
real-time RT-PCR assays were described for two targets, one located
upstream of the envelope gene (UpE) and one within open read-
ing frame 1b (ORF1b). The second report [4] included a diagnostic
screening algorithm describing an assay targeting the ORF1a gene,
which was more sensitive than the ORF1b assay and therefore rec-
ommended as confirmatory assay rather than ORF1b RT-PCR. In the
meantime, other laboratories had developed their own assays tar-
geting the nucleocapsid (N) gene, showing similar sensitivity to the
upE RT-PCR [5,6]. The World Health Organization (WHO) recently
published updated interim recommendations for laboratory testing
of MERS-CoV [7], in which the upE RT-PCR is recommended as first-
line screening assay. According to this recommendation, positive
MERS-CoV RT-PCR should subsequently be confirmed with either
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ORF1a, ORF1b, or N gene RT-PCR’s. An alternative for the confirma-
tory RT-PCR is sequencing of the N gene or RNA dependent RNA
polymerase (RdRP) gene (ORF1), as described before [3]. Presently,
laboratories around the world have implemented in-house or com-
mercial methods for MERS-CoV molecular diagnostics [8], mostly
based on the above described publications [9], but with substantial
diversity in nucleic acid extraction methods, RT-PCR (master) mixes
and thermocyclers used. External quality assessment (EQA) studies
give insight in the possible effects of this variation on assay perfor-
mance, thereby allowing the participating laboratories to assess the
quality of current diagnosis, and identify possible weaknesses and
strengths of the range of diagnostic methods that are used.

2. Objectives

With the first MERS-CoV EQA panel we set out to assess the qual-
ity of nucleic assay testing (NAT) assays for MERS-CoV worldwide.

3. Study design

3.1. Participants

The information for participating in the MERS-CoV PCR EQA
was sent to all members of the European Network for Imported
Viral Diseases (ENIVD), external collaborating partners, European
national microbiological focal points (NMFP) and diagnostic lab-
oratories in charge of the MERS-CoV diagnostics suggested by the
WHO. This EQA was requested by ECDC as part of its joint initiatives
with the WHO Office for Europe to support laboratory prepared-
ness building across EU/EEA and European Region Member States.
In total, more than 106 participants were invited to take part in
the MERS-CoV EQA 2014 study. The participation in the study
was free of charge. For benchmarking, all participants received a
complete anonymized list of all submitted results with only their
own laboratory recognizable. Participants agreed to publication of
anonymized results.

3.2. Specimen preparation

The MERS-CoV strain EMC [1] was provided by the Erasmus MC,
Rotterdam, The Netherlands. The human coronaviruses (HCoV)-
NL63, HCoV-OC43, HCoV-229E were cultivated in the Robert
Koch-Institute, Berlin, Germany. All viruses were grown in Vero
E6 cells, of which cell culture supernatant was harvested, inacti-
vated by heating (1 h at 60 ◦C) and gamma irradiated (25 kilo gray).
The proficiency test panel included seven samples containing serial
10-fold dilution of MERS-CoV positive cell culture supernatant
(1:10–1:107), four samples with common human coronavirus
(NL63, OC43, 229E, HKU1) positive culture supernatants, and two
negative control sera as specificity controls. The samples were
freeze-dried in 2× Lyophilization reagent (Ops diagnostics, NJ, USA)
using an EPSILON 2-6D Pilot Freeze Dryer (Martin Christ GmbH,
Osterode am Harz, Germany) in 0.5 ml glass vials. The human coro-
navirus HKU1 was propagated as previously described [10,11]. No
infectious virus was detected when tested for residual infectivity
after heat and gamma irradiation by inoculation in cell culture.
The participants were assured that they were provided with non-
biohazardous material, but recommending to handle all material
with care as is recommended for human specimens in general.

3.3. Validation and dispatch of the panel sets

The panel was validated at the Robert Koch-Institute (RKI) and
in three reference laboratories (University of Bonn Medical Centre,
Germany, Erasmus MC, Rotterdam, The Netherlands and Univer-

Table 1
Number of reported MERS-EQA panel results sorted by result type and target.

Target Quantitative Semi quant (Ct value) Qualitative Total

upE 17 45 12 74
ORF1a 5 16 5 26
ORF1b 1 13 4 18
N2 0 9 2 11
N3 0 8 2 10
N 0 2 0 2
Nseq 0 0 2 2
ORF16 1 1 0 2
RdRpSeq 0 0 2 2
RNA-pol 1 1 0 2
ORF1ab 0 1 0 1
ORF5/E 0 1 0 1
Unknown 5 17 16 38

Total 30 114 45 189

sity of Vienna, Austria) using in-house validated methods as well
as a commercial assay, for which samples were reconstituted and
in 100 �l water and analyzed according to the locally used RT-PCR
protocols. The EQA samples were shipped by regular mail or by
courier, with instructions for use, and an evaluation form to log
results. This included information on the assay protocol, the inter-
preted result (diagnosis) for each sample, the coronavirus strain
identified, the number of genome copies, if possible, as well as any
problem encountered.

3.4. Scoring

Based on validation and returned laboratory results, sample 8
was omitted for analysis of the EQA panel, since the concentra-
tion of this sample was too low for equal distribution. Returned
quantitative results were recalculated to copies/ml for uniformity
(copies/�l were multiplied by a factor 1000). To measure the per-
formance of the labs, 1 point per correct result (per sample) was
rewarded, and thus 12 points would result in 100% score. Further-
more, to test the differences in performance between PCR targets
(with n > 8 datasets, see Table 1), student’s T-test and F-test for
variance were calculated by Microsoft Excel 2010.

4. Results

The response rate from 106 participants that had requested the
MERS-CoV EQA panel was 93.4% (99 laboratories, see supplemen-
tary Table 1). The majority of the laboratories (66.6%) submitted
separate results for multiple RT-PCR assays, reflecting their confir-
matory diagnostic algorithm, resulting in 189 panel results. A few
laboratories did indicate their use of confirmatory PCRs, but only
reported one final result. Fig. 1 shows the geographical location of
all participants coming from 66 countries. 50% of the participants
were located in a European Union (EU) member country, 14% in
Asia, 11% in Western Asia (Middle East), 8% in Africa, 7% in a non-
EU European country, 4% in Latin America, 3% in North America, and
2% in Oceania according to the United Nations geographic areas.

In total, 189 panel results were returned, of which 15% (n = 29)
reported quantitative results (copies/�l or copies/ml (qRT-PCR),
61% (n = 115)) reported semi-quantitative results (Cycle threshold
(Ct)-values) from real-time RT-PCRs or time-to-positivity, in case of
reverse transcriptase recombinase polymerase amplification (RT-
RPA) assay, and 24% (n = 45) reported qualitative results (positive
and negative). In total, 13 genomic targets were used, among which
11 different targets for (real-time) RT-PCR or RT-RPA (n = 1) assays,
and 2 targets for sequencing (N gene and RdRP). This may indi-
cate that a number of unpublished, in-house developed tests were
used. Table 1 summarizes the number of panel results returned for
each genomic target combined with the analysis type (quantitative,



S.D. Pas et al. / Journal of Clinical Virology 69 (2015) 81–85 83

Fig. 1. World map of MERS-CoV EQA participants per country. n = 1; n = 2; n = 3; n = 5; n = 12.

semi-quantitative or qualitative). As recommended by WHO, upE
is the most widely used RT-PCR, followed by ORF1a and ORF1b.

4.1. Sensitivity

Overall data showed that the performance of the majority of
the laboratories was good, with 85% of the returned results having
a score of 100% (12 points) and 9.5% having a score of 92%. Further-
more, 1 lab (0.53%) returned a panel with a score of 86%, 3.7% of
the labs scored 83%, 1 lab (0.53%) scored 75% and one lab scored
33%. Table 2 shows the percentage of correct results per MERS-
CoV positive sample of the total EQA panel (n = 7), and the results
per assay type, including median (range) per sample for quanti-
tative and semi-quantitative results. Quantitative results showed
quite a big variance in the viral load (VL), with the lowest vari-
ance for sample #5 (�maxVL−minVL = 3.45 10 log genome equivalents
(geq./ml)) and highest for sample #6 (�maxVL−minVL = 4.78 10 log
geq./ml), without sample #8 taken into account. These differences
were observed despite the fact that most laboratories indicated
the use of a quantified in vitro transcribed RNA, provided by the
European Virus Archive (EVA) as quantifying standard. To study if
this variance is due to the quantification transformation (Ct values
into geq./ml) or to the variance of the reported real-time RT-PCR
results (Ct values), the viral load variance of the quantitative results
described above were recalculated from geq./ml to Ct-values (with
arbitrary 100% efficiency, 1 log∼3.3Ct), equalling 11–16 �Ct. This
variation is comparable to the semi-quantitative data of the EQA
panel (15.2–21.5 �Ct for samples #13 and #6 or #9, respectively)
and the wide range in reported loads can therefore not be attributed
to the quantification transformation.

Furthermore, we have assessed the difference in yield of spe-
cific targets for which more than 8 returned panel results were
available (Table 1), to advice on the best targets to use, based on
Ct-values. The distributions of Ct values of the semi-quantitative
RT-PCR’s targeting UpE [3], ORF1a [4], ORF1b [3], N2 [6], and N3 [6]
were compared using Students T-test, after checking that variances
were similar (by using F-test)(Table 3). The Ct values produced by
the ORF1b RT-PCR were significantly higher than those of all other

targets in the comparison, whereas no significant differences were
observed for the other four targets.

4.2. Specificity

To assess the specificity of MERS-CoV molecular diagnostics,
two negative controls (sample #1 and #4) and the four known
common human coronaviruses, namely HCoV-HKU1 (sample #3),
HCoV-OC43 (sample #7), HCoV-229E (sample #11) and HCoV-
NL63 (sample #12) were part of the first MERS-CoV EQA panel.
HCoV-HKU1 and HCoV-OC43 are beta-coronaviruses similar to
MERS-CoV. Two laboratories reported MERS-CoV RNA detected in
one of the negative controls (2%). Additionally, 6.1% of the labora-
tories reported detection of MERS-CoV RNA in the samples spiked
with the non-MERS HCoV, of which three in the HCoV-NL63 sample
and one laboratory in the HCoV-229E sample alone. However, one
laboratory reported MERS-CoV RNA detected in both HCoV-229E
and HCoV-HKU1 samples, and one laboratory in the samples con-
taining HCoV-NL63, HCoV-229E and HCoV-HKU1. The false positive
results were not associated with a specific assay, as other laborato-
ries using the same protocols did not report this reactivity. This may
suggest that these aspecific results originated from contamination
rather than non-specific reactions with non-MERS HCoVs or from
a different interpretation algorithm of the raw data. Nevertheless,
in total 8.1% of the laboratories reported false-positive results.

4.3. Testing for common human coronaviruses

In total, 34 laboratories reported results for the four com-
mon hCoV samples. The median (range) Ct-values were calculated
from the 11 returned panel results, being 27.7 (20.0–34.0) for
HCoV-HKU1, 27.9 (18.0–33.4) for HCoV-OC43, 28.0 (18.0–35.0) for
HCoV-229E, and 28.5 (20.0–36.0) for HCoV-NL63. Some of these
laboratories missed one or more common HCoVs, being 23.5%
HCoV-HKU1, 2.9% HCoV-OC43, 12.1% HCoV-229E, and 12.1% for
HCoV-NL63. One laboratory reported having performed the molec-
ular diagnostics for the non-MERS CoVs as well, but was not able
to detect any of the common human coronaviruses.
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Table 2
MERS-CoV specific sensitivity results of the first MERS-CoV EQA panel 2014.

Quantitative RT-PCR Semi-quantitative RT-PCR Qualitative RT-PCR

Sample no. Origin Dilution Correct results total Correct results Median viral loadb (range) Correct results Median Ct-value (range) Correct results

#13 MERS-CoV 10−2 99.5% 100.0% 7.59 (5.86–9.70) 99.1% 22.2 (16.0–31.2) 100.0%
#9 MERS-CoV 10−3 99.5% 100.0% 6.79 (3.99–8.70) 100.0% 25.1 (15.0–36.5) 97.8%
#2 MERS-CoV 10−4 98.9% 100.0% 5.88 (3.78–7.26) 99.1% 29.0 (22.0–37.7) 97.8%
#5 MERS-CoV 10−4 98.4% 100.0% 5.78 (3.63–7.08) 99.1% 28.9 (23.0–39.7) 95.6%
#6 MERS-CoV 10−5 96.3% 100.0% 4.84 (2.91–7.70) 96.5% 31.7 (18.0–39.5) 93.3%
#10 MERS-CoV 10−6 84.6% 46.2% 3.83 (1.97–5.46) 87.7% 35.5 (28.6–43.6) 73.3%
#8a MERS-CoV 10−7 56.5% 43.3% 2.98 (0.56–6.82) 54.4% 37.7 (32.0–41.5) 51.2%

a Sample #8 is omitted for further analysis, since the viral load reached the Poisson distribution-level.
b Viral load in log copies/ml.

Table 3
Significance levels of compared semi-quantitative RT-PCR data (Ct-valuesa) of most
used PCR targets.

Target 1 compared to Target 2 T-test (pb) F-test (p-valueb)

upE ORF1a 0.11 0.59
upE ORF1b 0.00* 0.75
upE N2 0.30 0.69
upE N3 0.08 0.95
ORF1a ORF1b 0.00* 0.48
ORF1a N2 0.85 0.69
ORF1a N3 0.62 0.74
ORF1b N2 0.00* 0.83
ORF1b N3 0.00* 0.79
N2 N3 0.56 0.95

* Significant.
a Median Ct values (range) upE 28.7 (16.7–41.7); ORF1a 27.65 (17.3–42.9); ORF1b

32.45 (17.3–43.6); N2 28.35 (15.0–37.6); N3 27.3 (16.0–39.0).
b Significance levels were calculated without the data of sample 8, since MERS-

CoV was not equally distributed.

5. Discussion

Since the discovery of MERS-CoV in 2012, diagnostic protocols
were quickly deployed globally. In this study, 99 of 106 partici-
pants have returned (multiple) results on the first MERS-CoV EQA
assessment, with good overall results. A quarter of the laborato-
ries (26.2%) reported quantitative results, though the variance in
reported viral concentration was high. This may be due to the fact
that there is no international NAT standard (IS) available. Using
inactivated complete virus control (provided by the RKI) is recom-
mended, since this takes the variations of the nucleic acid extraction
as well as RT-PCR variations into account. However, using a quanti-
fied RNA control, provided by European Viral Archive (EVA) merely
quantifies the amount of RNA added to the RT-PCR, but does not
take variations induced by nucleic acid extractions into account.
Though, differences in performance of RT-PCR mixes can be mea-
sured using RNA controls. It is known that the variation in viral
loads quantified by in-house standards is much higher than if lab-
oratories world-wide use one NAT IS, which can be handled in
the exact way as clinical sample (QCMD CMV panels, unpublished
results).

In this MERS-CoV EQA panel, almost 90% of the reported results
were obtained by in-house real-time RT-PCR, of which the assays
published by Corman et al. [3], Corman et al. [4], and Lu X et al.
[6] were mostly used. Only one laboratory reported the use of
an unpublished assay targeting ORF16 and scored 100%, indicat-
ing a well validated in-house assay. A minority of laboratories
used other techniques than real-time RT-PCR, like RT-RPA and
conventional RT-PCR for MERS-CoV detection. The recommenda-
tion of WHO to use confirmatory RT-PCR on a second MERS-CoV
genomic target was followed by a majority of the laboratories,
though multiple laboratories indicated to have sequencing avail-
able for confirmation. Currently there are a number of MERS-CoV

specific commercial real-time RT-PCR assays marketed, having the
advantage of included (internal and positive) controls in a sin-
gle kit whose quality is regulated by authorities. Of the reported
commercial real-time RT-PCRs (n = 16), most used were Fast Track
Diagnostics (3 labs, 100% score), Genesig Primer Design Path-HCoV-
2012 (3 labs, 83–92% score) and Real Star MERSCoV Altona (3 labs,
100% score).

Furthermore, we investigated if there was a difference (in Ct
level) between the published targets, taken the reported panel
results into account. We found that the Ct values produced by the
ORF1b RT-PCR were significantly higher than those of all other tar-
gets in the comparison, whereas no significant differences were
observed for the other four targets. This combined with the lower
number of correct ORF1b results observed in the data (not shown),
indicates that ORF1b is the weakest RT-PCR target of the published
RT-PCRs, as was suggested by the publication of Corman et al. [4].

The composition of this MERS-CoV EQA panel does not com-
pletely reflect the real life performance when testing clinical
samples, it merely gives an indication on analytical sensitivity
and specificity of the molecular diagnostic test used. Interpret-
ing the results, one needs to realize that the viral concentration
in MERS-CoV infected patients in throat swabs, serum and fae-
ces may be in the lower range (>Ct30), depending on timing of
sampling. MERS-CoV has not been detected in upper respiratory
tract samples (nose swabs) in some infected humans, suggesting
the potential for missed cases if only such specimens are col-
lected [12,13]. In lower respiratory tract samples (trachea aspirates,
broncho-alveolar lavages) MERS-CoV concentrations were found
to be significantly higher than in upper or middle respiratory tract
samples [14,15], though these samples may not be easy to take
from patients with respiratory distress. Taken the fact that most
diagnostic samples sent for MERS-CoV molecular diagnostics are
throat swabs containing low MERS-CoV RNA concentrations, and
that 84.6% of the reported results were correct for sample 10,
having the lowest concentration in the panel (median viral load
3.83E3 geq/ml), this may reflect underdiagnosis of MERS-CoV infec-
tions due to sensitivity problems in the diagnostic method used by
a small portion of the laboratories.

The first external quality assessment MERS-CoV panel gives a
good insight in molecular diagnostic techniques and their per-
formances for sensitive and specific detection of MERS-CoV RNA
globally. The overall score was good, though for sensitive detec-
tion in clinical samples the laboratories are advised to validate
another confirmatory target than ORF1b and critically evaluate
their results. This survey indicated a robust capability and capacity
for detection and confirmation of MERS-CoV in most participating
laboratories as of June 2013. The finding that 8.1% of laboratories
produced false positive results is disturbing and supports confir-
matory testing by either a second RT-PCR target and/or a second
laboratory.
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