
Received: 27 February 2022 | Revised: 7 May 2022 | Accepted: 1 June 2022

DOI: 10.1002/pcn5.26

I N V I T ED R EV I EW

Approaches and hurdles of implementing pharmacogenetic
testing in the psychiatric clinic

Abdullah Al Maruf PhD, M.Pharm1,2,3,4,5 | Chad A. Bousman PhD, MPH4,5,6,7,8

1Rady Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada

2Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada

3Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada

4The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada

5Departments of Psychiatry and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada

6Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada

7Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada

8Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada

Correspondence

Chad A. Bousman, PhD, MPH, The Mathison

Centre for Mental Health Research &

Education, Hotchkiss Brain Institute, University

of Calgary, 3330 Hospital Dr NW, Calgary, AB

T2N 4N1, Canada.

Email: chad.bousman@ucalgary.ca

Abstract

Pharmacogenetic (PGx) testing has emerged as a tool for predicting a person's ability to

process and react to drugs. Despite the growing evidence‐base, enthusiasm, and

successful efforts to implement PGx testing in psychiatry, a consensus on how best to

implement PGx testing into practice has not been established and numerous hurdles to

widespread adoption remain to be overcome. In this article, we summarize the most

used approaches and commonly encountered hurdles when implementing PGx testing

into routine psychiatric care. We also highlight effective strategies that have been used

to overcome hurdles. These strategies include the development of user‐friendly clinical

workflows for test ordering, use, and communication of results, establishment of test

standardization and reimbursement policies, and development of tailored curriculums

for educating health‐care providers and the public. Although knowledge and awareness

of these approaches and strategies to overcome hurdles alone may not be sufficient for

successful implementation, they are necessary to ensure the effective spread, scale, and

sustainability of PGx testing in psychiatry and other areas of medicine.
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INTRODUCTION

The treatment of moderate to severe mental health conditions

involves the use of psychotropic drugs (e.g., antidepressants,

antipsychotics, mood stabilizers, anxiolytics/hypnotics, or stimulants)

either alone or in combination with psychosocial therapy (e.g.,

cognitive behavioral therapy). Currently, more than 200 drugs are

available to treat psychiatric disorders. At the population level, these

drugs are typically regarded as efficacious and tolerable when used as

indicated. At the individual level, however, the efficacy and
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tolerability of these drugs can vary tremendously. This variability can

make finding an appropriate drug and dose for an individual

challenging, a process often referred to as “trial‐and‐error.”

To combat the trial‐and‐error process, personalized prescribing

strategies, such as hepatic and renal function testing, therapeutic

drug monitoring, and adhering to clinical practice guidelines, have

been used for decades. Yet still many individuals endure the trial‐and‐

error process. For example, 30%–50% of patients with major

depressive disorder (MDD) do not respond to the first antidepressant

prescribed1 and in the United States alone there are 25,000

emergency visits per year due to antidepressant‐induced adverse

events.2 As such, additional personalized prescribing strategies that

can complement current strategies are needed.

One such strategy is pharmacogenetic (PGx) testing. PGx testing

utilizes genetic variation as a surrogate marker of a person's ability to

process and react to drugs. This genetic variation is typically split into

three groups: pharmacokinetic, pharmacodynamic and immune‐

related. Pharmacokinetic genetic variants are linked to genes that

encode proteins involved in the absorption, distribution, metabolism,

or elimination of drugs. Pharmacodynamic genetic variants are linked

to genes that encode proteins involved in a drug's physiological

effects, such as receptors, ion channels, and signaling pathways,

while immune‐related genetic variants are in genes that encode

proteins associated with the human leukocyte antigen (HLA) system.

All three groups of genetic variation have the potential to improve

psychotropic drug prescribing but only pharmacokinetic (CYP2C19,

CYP2D6, CYP2C9) and immune‐related (HLA‐A, HLA‐B) genes have

published guidelines with actionable PGx‐based psychotropic drug

selection and dosing recommendations.3–7

PGx‐based guidelines are developed by expert groups, such as

the Canadian Pharmacogenomics Network for Drug Safety

(CPNDS),8 French National Network of Pharmacogenetics (RNPGx),9

Dutch Pharmacogenetics Working Group (DPWG),10 and Clinical

Pharmacogenetics Implementation Consortium (CPIC),11 the latter

two being the most utilized guidelines globally. CPIC guidelines have

been endorsed by several professional organizations, such as

the American Society of Health‐System Pharmacists (AHSP)12 and

the American Society of Clinical Pharmacology and Toxicology

(ASCPT).13 To date, these expert groups have collectively developed

guidelines for 24 psychotropic drugs and an additional nine

psychotropic drugs contain actionable pharmacogenetic information

on their FDA‐approved labels (Table 1). These guidelines and drug

labels have, in part, facilitated global recognition and clinical

acceptability of PGx testing. This is exemplified by numerous medical

centers and health systems across North America, Europe, and Asia

that have implemented PGx testing14 and an exponential growth in

commercial pharmacogenetic testing options.15,16 There are also

examples of PGx testing being adopted at the national level via PGx

identification card systems (e.g., Thailand and Taiwan)17 and electronic

drug prescribing and dispensing systems (e.g., Netherlands).18 Notably,

the National Health Service Improvement and Genomics England

recently announced plans to implement pharmacogenetic testing by

2025.19 Moreover, members of the International Society of Psychiatric

Genetics have published a consensus supporting PGx testing for

specific antidepressants, antipsychotics, mood stabilizers and ADHD

medications,20 reflecting the increasingly favorable attitudes toward

PGx testing among health‐care providers,21,22 patients,23 and the

public.24

Despite the growing evidence‐base, enthusiasm, and successful

efforts to implement PGx testing, a consensus on how best to

implement PGx testing into practice has not been established and

numerous hurdles to widespread adoption remain to be overcome.

Herein, we review the current approaches and hurdles to implement-

ing PGx testing into routine psychiatric care. When available, we also

highlight effective strategies that have been used to overcome

hurdles to further facilitate the spread, scale, and sustainability of

PGx testing in psychiatry.

APPROACHES

The point at which PGx testing is offered and by whom along the

clinical care continuum varies significantly as does the type of testing

that is offered. In this section, we summarize the most used PGx

testing approaches with the acknowledgement that the approaches

discussed are not mutually exclusive nor inclusive of all the

approaches that are currently being implemented.

Timing of PGx testing

PGx testing is offered using three main approaches: reactive, point‐

of‐care, and preemptive (Figure 1). The reactive approach is the most

used in psychiatry.25 Users of this approach offer PGx testing after an

individual experiences an inadequate response or intolerable side‐

effects to a psychotropic drug. The notion being that individuals who

experience inadequate response or intolerable side‐effects may be

more likely to carry genetic variants that predispose them to

unfavorable drug outcomes and that PGx testing could prevent

future unfavorable drug outcomes. In the point‐of‐care approach, PGx

testing is offered during or after the initial prescribing decision, but

prior to an individual experiencing an inadequate response or

intolerable side‐effect. Although this approach does not inform

immediate drug selection and dosing, it does provide an opportunity

to adjust the drug regimen upon receipt of the test results and in

theory, reduces unfavorable drug outcomes. The effectiveness and

appropriateness of this approach is reliant on the time required to

generate the test results, which can range from several days to weeks

depending on the test provider. In contrast, the preemptive approach

is less reliant on testing turnaround time because testing is offered,

and results are available prior to the initiation of drug selection and

dosing decisions. As a result, health‐care providers can use an

individual's PGx testing results to inform prescribing decisions

without delay. Despite the obvious advantages, few health services

have implemented the preemptive approach26 primarily due to the

paucity of clinical trials evaluating this approach and reimbursement
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TABLE 1 List of drug–gene pairs with actionable recommendations and their PharmGKB evidence level

Mental health medications Genes(s) CPIC DPWG FDA CPNDS RNPGx

PharmGKB clinical annotations

Level Phenotype category

Antidepressants

Amitriptyline CYP2D6 ● ● ● 1A Metabolism/PK, toxicity

Amoxapine CYP2D6 ● ‐ ‐

Desipramine CYP2D6 ● ● ● 1A Metabolism/PK, toxicity

Doxepin CYP2D6 ● ● ● ● 1A Metabolism/PK

Clomipramine CYP2D6 ● ● ● ● 1A Metabolism/PK, toxicity

CYP2C19 Metabolism/PK

Imipramine CYP2D6 ● ● ● ● 1A Metabolism/PK, toxicity, dosage

CYP2C19 Metabolism/PK

Nortriptyline CYP2D6 ● ● ● ● 1A Metabolism/PK, toxicity

Protriptyline CYP2D6 ● ‐ ‐

Trimipramine CYP2D6 ● ● ● ● 1A Metabolism/PK

CYP2C19 Metabolism/PK

Fluvoxamine CYP2D6 ● ● 1A Metabolism/PK

Citalopram CYP2C19 ● ● ● 1A Metabolism/PK, toxicity

Escitalopram CYP2C19 ● ● ● 1A Metabolism/PK, toxicity

Paroxetine CYP2D6 ● ● 1A Metabolism/PK

Sertraline CYP2C19 ● ● 1A Metabolism/PK

Venlafaxine CYP2D6 ● ● ● 1A Metabolism/PK, toxicity

Vortioxetine CYP2D6 ● 3 Metabolism/PK

Antipsychotics

Aripiprazole CYP2D6 ● ● 1A Metabolism/PK

Brexpiprazole CYP2D6 ● ● ‐ ‐

Clozapine CYP2D6 ● ‐ ‐

Haloperidol CYP2D6 ● 1A Metabolism/PK

Iloperidone CYP2D6 ● 3 Toxicity

Perphenazine CYP2D6 ● ‐ ‐

Pimozide CYP2D6 ● ● ‐ ‐

Quetiapine CYP3A4 ● 1A Metabolism/PK

Risperidone CYP2D6 ● 1A Metabolism/PK

Thioridazine CYP2D6 ● 3 Other

Zuclopenthixol CYP2D6 ● 1A Metabolism/PK

ADHD medication

Atomoxetine CYP2D6 ● ● ● 1A Metabolism/PK, toxicity

Anticonvulsants/mood stabilizers

Carbamazepine HLA‐A ● ● ● 1A Toxicity

HLA‐B

Fosphenytoin CYP2C9 ● ● ● 1A Metabolism/PK, toxicity

HLA‐B Toxicity

(Continues)
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policies that favor reactive approaches.27 However, PGx testing

results produced using a reactive or point‐of‐care approach are often

used preemptively, when appropriate, for future drug selection and

dosing decisions. Conversely, individuals who undergo preemptive

PGx testing for only a select number of genes may need additional

testing (reactive or point‐of‐care testing) if they require a drug that

has associated genetic information that was not available through the

preemptive testing.26

PGx testing providers

PGx testing is offered by commercial and noncommercial entities,

although most testing in psychiatry is being performed by commercial

laboratories. In the United States alone, 76 commercial laboratories

offer PGx testing16 and testing in about 50 medical centers or health

systems worldwide,14 including approximately 18 Children's Hospi-

tals in the United States,25 includes a mix of commercial and

noncommercial testing. Both commercial and noncommercial PGx

testing are mostly performed in an accredited clinical laboratory (e.g.,

College of American Pathologists/Clinical Laboratory Improvement

Amendments [CAP/CLIA]; International Organization of Standardiza-

tion [ISO] 15189; Canadian Association For Laboratory Accreditation

[CALA]). However, commercial and noncommercial PGx testing often

differ in the model used to offer the testing.

There are two types of models: direct‐to‐consumer and gate-

keeper. The direct‐to‐consumer model does not require the involve-

ment of a health‐care provider in the ordering process, whereas the

gatekeeper model requires a referral from a health‐care professional

(e.g., physicians, pharmacists) prior to commencing the PGx test.

Commercial laboratories have adopted both models, but medical

health centers exclusively employ the gatekeeper model. In the

direct‐to‐consumer model, individuals will directly receive their PGx

testing results from the laboratory and sometimes include a free

consultation with a health‐care provider. In contrast, tests within the

gatekeeper model are typically interpreted by physicians, pharma-

cists, genetic counsellors, or nurse practitioners, individually or as

part of a team‐based approach.28 Although there is debate on which

of these models or variations of them are optimal for use in

psychiatry, there is a consensus that a health‐care provider,

preferably a provider who knows the patient's history, should be

involved in the test ordering and interpretation of results.29

Types of PGx testing

There are three types of PGx tests: single gene tests, multi‐gene

tests, and combinatorial tests. Single gene tests include one or multiple

genetic variants (also known as alleles) in a single gene that is

associated with efficacy or tolerability of a drug or group of drugs.

For example, CYP2C19 for escitalopram, CYP2D6 for risperidone, or

HLA‐B*15:02 for carbamazepine. The second type of test is a multi‐

gene test (also known as a “panel test”) where a laboratory tests

genetic variants in multiple genes. Multi‐gene tests are sometimes

organized by therapeutic area (e.g., mental health, cardiovascular, or

pain management) in which genes most relevant to the drugs used in

TABLE 1 (Continued)

Mental health medications Genes(s) CPIC DPWG FDA CPNDS RNPGx

PharmGKB clinical annotations

Level Phenotype category

Oxcarbamazepine HLA‐B ● ● 1A Toxicity

Phenytoin CYP2C9 ● ● ● 1A Metabolism/PK, toxicity

HLA‐B Toxicity

Anxiolytics/hypnotics

Clobazam CYP2C19 ● 3 Metabolism/PK, toxicity, efficacy

Diazepam CYP2C19 ● 3 Metabolism/PK

Note: Level 1A/B = high, 2A/B =moderate, 3 = low, 4 = unsupported. Detailed PharmGKB level of evidence definitions can be found here: https://www.
pharmgkb.org/page/clinAnnLevels.

Abbreviations: CPNDS, Canadian Pharmacogenomics Network for Drug Safety; CPIC, Clinical Pharmacogenetics Implementation Consortium; DPWG,
Dutch Pharmacogenetics Working Group; FDA, US Food and Drug Administration; PK, pharmacokinetics, RNPGx, French National Network of
Pharmacogenetics.

F IGURE 1 Pharmacogenomics
implementation approaches.
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that area are included. Both commercial and noncommercial

laboratories typically offer this type of testing. Finally, combinatorial

tests are a special type of multi‐gene panel test that uses proprietary

algorithms to translate test results into prescribing recommendations.

Although some of these combinatorial PGx tests have positive clinical

findings,30,31 the drug selection and dosing recommendations may

differ when compared to recommendations based on published PGx‐

based prescribing guidelines (e.g., CPIC, DPWG) or PGx information

on drug labels (e.g., FDA).32–34

HURDLES

When implementing any innovative solution, there are hurdles

(Figure 2) that must be overcome along the path toward full

adoption. Although PGx testing in psychiatry faces many such

hurdles, none are unsurmountable. In this section, we will summarize

the most consistently reported hurdles in the literature29,35–40 and

offer potential strategies to overcome them.

Uncertainty about clinical efficacy and
cost‐effectiveness

The credibility and reliability of scientific evidence regarding the

efficacy of PGx testing is one of the main hurdles for implementation

into clinical practice. Although there is robust evidence for several

gene–drug associations relevant to psychiatry (Table 1), most of the

evidence is from retrospective cohorts or pragmatic trials.20,41–44

A lack of high‐quality randomized controlled trials (RCTs) has

contributed to the low confidence in the clinical efficacy of PGx

testing in psychiatry. The RCTs that have evaluated PGx‐guided

versus unguided (standard) prescribing in psychiatry have been

sponsored by commercial laboratories and most have utilized

proprietary combinatorial testing, raising concerns about conflicts

of interest and transparency, respectively.38 A meta‐analysis of five

RCTs showed that adults with MDD that received PGx‐guided

prescribing (n = 887) were 71% more likely to achieve symptom

remission compared to those that received unguided prescribing

(n = 850).45 In children, one RCT with 176 adolescents diagnosed

with MDD has been conducted and found that combinatorial PGx‐

guided treatment had no effect on symptom improvement, side‐

effect burden, or patient satisfaction.46 Although RCTs are typically

seen as the gold standard in evidence‐based medicine, this approach

is not always necessary, practical, or possible for evaluation of PGx‐

guided treatment.47 Pragmatic studies are more generalizable, less

costly, and more efficient to conduct compared to RCTs; however,

they are prone to selection bias and confounding.42 High‐quality

pragmatic trials could provide us necessary real‐world evidence to

facilitate the implementation of PGx testing as a companion tool to

further refine prescribing decisions in psychiatry practice. Supporting

this notion, several pragmatic preemptive and reactive PGx imple-

mentation trials are underway, such as the Implementing GeNomics

In pracTicE (IGNITE) and the Ubiquitous Pharmacogenomics Con-

sortium's PREemptive Pharmacogenomic Testing for Preventing

Adverse Drug REactions (PREPARE) study.42

Accompanying uncertainty related to the clinical efficacy is

uncertain evidence related to the cost‐effectiveness of PGx testing

F IGURE 2 Hurdles of implementing pharmacogenetic (PGx) testing in psychiatry.
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compared to standard care. Although most economic analyses have

shown PGx testing to be a cost‐effective or cost‐saving strategy,48

few studies have been conducted in the mental health‐care context.

The economic studies that have been conducted in mental health

have evaluated commercial PGx tests. One such study found

significant reductions in health‐care utilization (e.g., emergency room

visits, hospitalizations)49 and three other studies showed overall per

patient cost savings that ranged from $5962 to $7112 USD per

year.50–52 Despite the supportive evidence, methodological limita-

tions are present (e.g., absent of quality‐of‐life or willingness‐to‐pay

thresholds, focus on the US health‐care system, small samples, or

data derived from non‐RCTs). Willingness‐to‐pay thresholds are

particularly important as they play a key but not necessarily

determining role in whether PGx testing is covered by a health‐

care system. Notably, willingness‐to‐pay thresholds are defined on a

national level and vary by country. For example, the United Kingdom

has a threshold of £20,000, whereas a value between $50,000 and

$70,000 is considered cost‐effective in the United States.48

Additional economic evaluations addressing this and other limitations

will be needed before firm conclusions about the cost‐effectiveness

of PGx testing in psychiatry can be made.

Clinical generalizability

The generalizability of PGx testing results poses another hurdle in the

implementation effort. For example, almost all prospective PGx

studies in psychiatry have included patients with MDD who have

failed one medication trial or developed adverse drug reactions. This

raises the issue of the utility of the evidence for initial drug selection

and/or dosing decisions. Moreover, some panel‐based tests do not

detect all genetic variants that are applicable to all ethnic groups. This

can result in inaccurate prediction of metabolizer phenotype and

potentially erroneous medication selection and dosing recommenda-

tions. For example, using 1000 Genomics Project Phase III data,

Wright and colleagues53 found that most of the variation (>90% of

variants) within 120 pharmacogenes were rare, with allele frequen-

cies less than 0.5%, and that the frequency of many rare variants

differ by ancestry. As such, PGx testing based on European

population data may lack generalizability to non‐European popula-

tions and create challenges for universal applicability. To ensure PGx

testing is equally useful across different populations, concerted

efforts to include individuals from non‐European populations in PGx

research are required and should be a priority for the field.

Standardization and regulation

The genes and alleles included in PGx testing panels vary

significantly.15,32–34,54 This lack of standardization across tests stems

from loose regulations in most jurisdictions and the challenge of

developing a consensus on which genes and alleles should or should

not be included on a PGx panel. The variability in gene and allele

content between these tests can ultimately lead to differences in

prescribing decisions, as clinical recommendations are dependent on

the genes and alleles tested.32 To mitigate this issue, the Association

for Molecular Pathology has created allele selection recommenda-

tions for CYP2D6,55CYP2C19,56 and CYP2C957 and others have

proposed a minimum gene and allele panel for psychiatry.58 The

Standardizing Laboratory Practices in Pharmacogenomics (STRIPE)

forum was also recently formed to connect public and private sector

members to achieve common objectives and leverage collective

opportunities to accelerate the development of precision medicine

practices as a standard of care.59 The hope is that these initiatives will

result in a more standardized approach to pharmacogenetic testing.

In addition to standardization of gene and allele content, it is also

recognized that medication selection and dosing guidelines devel-

oped by the CPIC, DPWG, and FDA are not always concordant60

because of differences in evidence review and genotype‐to‐

phenotype translation procedures.40,61 Recent efforts are currently

underway to rectify the discordance in these procedures. For

example, the genotype‐to‐phenotype translation procedure for

CYP2D6 was recently harmonized between the CPIC and DPWG to

reduce interlaboratory discrepancies and differences in clinical

recommendations.62

Incorporation into clinical practice guidelines

PGx‐based prescribing guidelines help with how to interpret and use

PGx information when it is available but provide minimal or no advice

on when and who to test. PGx‐based prescribing guidelines defer

from clinical practice guidelines developed and endorsed by

professional clinical associations, networks, or societies. Current

clinical practice guidelines used in psychiatry are silent or provide

minimal guidance on the use of PGx testing in practice. This in turn

creates uncertainty among psychiatrists about when and for whom

the testing should be performed. Notable exceptions include

recommendations from the International Society of Psychiatric

Genetics (ISPG) to conduct HLA‐A and HLA‐B testing prior to use of

anticonvulsants (carbamazepine and oxcarbazepine), in alignment

with drug regulatory agencies and expert groups.63 The ISPG also

recommends that “Genetic information for CYP2C19 and CYP2D6

would likely be most beneficial for individuals who have experienced

an inadequate response or adverse reaction to a previous anti-

depressant or antipsychotic trial.”20,63 Future inclusion of similar

recommendations in clinical practice guidelines developed by

psychiatric associations, societies, and networks around the globe

are needed to facilitate the implementation of PGx testing in mental

health care.

Integration into electronic health records

To be clinically useful, PGx test results must be easy to access and

update. Traditionally, PGx testing results are provided in paper‐based
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or static electronic (e.g., PDF) formats that are stored in a paper chart

or scanned into an electronic health record (EHR). This type of

integration into a patient health record presents challenges for

longitudinal use of PGx testing results. In this situation, the ordering

physician is often the only one aware that PGx testing has been

performed, reducing the clinical utility of the testing. Fortunately,

advancements have been made for the transition from paper‐based

reporting to PGx alerting systems integrated into the EHRs. For

example, Vanderbilt University Medical Center successfully imple-

mented a system that can generate summaries of drug–gene

interactions, treatment recommendations and alerts, and can update

genetic records when guidelines and/or clinical recommendations are

updated.64 Another successful example is the integration of a clinical

decision support tool into the EHR at St Jude Children's Hospital.64

However, the process is not seamless, and health‐care professionals

have raised concerns about the current processes of incorporating

PGx results into the EHR, including delays in incorporating the

results, how alert systems are being set up, and increases in

consultation time.65,66 The lack of a standardized process for

reporting PGx test results from different laboratories makes their

translation, interpretation, and integration into clinical workflows

difficult.36 To increase the uptake of PGx testing into clinical

workflows, PGx reports need to be simplified and standardized

(e.g., allele function and phenotype determination) across providers

to improve interpretability by clinicians.41

Testing cost and reimbursement

The cost and lack of reimbursement of testing are commonly cited

hurdles to PGx testing, given that for most patients testing is an out‐

of‐pocket expense with few, if any, reimbursements available from

third‐party payors. Insurance support for reactive testing is gaining

momentum in the United States, such as the recent approval of

expanded coverage for Medicare patients through new Molecular

Diagnostic Services local coverage determinations.27 With the cost of

PGx and genetic testing continuing to decline, it is expected that the

monetary hurdle to testing will be largely mitigated in the future. In

the short‐term, we anticipate reimbursement for PGx testing to

remain a hurdle to testing for many patients, resulting in equity

concerns among those with lower incomes. The development of

public programs to offset these disparities will be needed to ensure

equitable access to PGx testing.

Ethical and legal issues

The use of testing without concrete clinical evidence (e.g., RCT

evidence), nonapplicability, or nongeneralizability of testing results,

informed consent, incidental findings, misuse of data, accessibility,

cost/affordability, and reimbursement are some of the fundamental

ethical issues regarding PGx testing. The fear of misuse of genetic

data, that is, genetic discrimination, is a major hurdle of

implementation. A survey of health‐care professionals reported

genetic discrimination could affect health‐care systems in several

ways, including the cost of insurance premiums, the use of

confidential medical information, patient access to therapy, and the

impact of physician and/or patient preferences in selecting treatment

choices.67 Legislation to prevent genetic discrimination in insurance

determination, including life insurance, has been enacted in many

countries. The US Congress passed the Genetic Information Non-

discrimination Act (GINA) in 2008 to protect Americans from genetic

discrimination. A similar law, Bill S‐201, in Canada prohibits and

prevents genetic discrimination, which also amends the Canadian

Human Rights Act to prohibit discrimination on the ground of genetic

characteristics. The purpose of these laws is to prohibit private health

insurance companies from using an individual's health status,

including genetic information, in deciding whether to issue or modify

an insurance policy.68 The fear of misuse is also linked with data

privacy, which is justified with many cases of unauthorized access

(e.g., hacking) of health data. The nontransparency of the future use

of data also adds to the fear of data privacy. In the case of data

privacy, legislation is in place to protect consumers, and testing

providers need to be compliant with these regulations, for example,

Health Insurance Portability and Accountability Act (HIPAA), USA; The

Personal Information Protection and Electronic Documents Act (PIPE-

DA), Bill 6, Canada; and General Data Protection Regulation (GDPR),

Europe.69

Legal liability associated with the use (or failure to use) PGx

information when available could also be seen as both a hurdle and

motivation of implementation of PGx testing in psychiatry practice.

To reduce litigation risk, it has been recommended that physicians

should become familiar with PGx guidelines for medications they

most frequently prescribe, document the use of (or decision not to

use) test results, and seek expert consultation when needed.29

Moreover, physicians should discuss PGx test results with their

patients and set realistic expectations about how the results can be

reasonably used.70

Upon receipt of PGx test results, secondary or incidental findings

are typically low, but there are examples where some PGx test results

may have implications for an individual's health status or disease

risk.71 In addition, PGx testing might reveal information that would be

relevant to family members, which raises fundamental questions

about how “informed consent” for testing is obtained and how test

results should be communicated to patients. This is a major concern

as there are no standard guidelines regarding this issue. Patient and

provider education regarding these issues will both increase

knowledge and reduce adverse responses related to secondary

findings.71

Knowledge and education gaps

The most consistent hurdles to PGx testing identified by numerous

studies29,35–38,72,73 are knowledge and education gaps among

physicians, pharmacists, genetic counsellors, nurse practitioners,
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and the public. Studies to date suggest that 80%–90% of health‐care

professionals agree about the value of PGx testing in drug selection

and dose optimization; however, only 10%–20% are properly

trained or confident enough to routinely use PGx testing in their

practice.23,73–75 The lack of training stems from the fact that most

medical schools have not integrated pharmacogenomics into their

curriculum.76 In 2016, the Center for the Advancement of

Pharmacy Education recommended “pharmacogenomics” to be

incorporated into the clinical realm of pharmacy education. This

led to the addition of PGx education in pharmacy curriculum in

almost all pharmacy schools in North America.76 Continuing

professional educational programs with online delivery are

showing signs of success in educating practicing health‐care

professionals.37 Proper education, training, and awareness among

all stakeholder groups, including next‐generation health‐care

trainees, will help to reduce the gap and ultimately help the

implementation process.

CONCLUSION

Despite the many hurdles, PGx testing has great promise to optimize

medication selection and dosing in psychiatry practice. While the

clinical evidence‐base is growing, a collaborative multi‐stakeholder

approach can overcome hurdles discussed in this review. The

development of user‐friendly systems for test ordering, guidelines

for use and communication of results, reimbursement policies, and

strategies for effectively educating health‐care providers and the

public will facilitate the successful implementation of PGx testing into

the psychiatric clinic.
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