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Abstract: Acute kidney injury (AKI) is a life-threatening complication. Malaria and sepsis are leading
causes of AKI in low-and-middle-income countries, but its etiology and pathogenesis are poorly
understood. A prospective observational cohort study was conducted to evaluate pathways of
immune and endothelial activation in children hospitalized with an acute febrile illness in Uganda.
The relationship between clinical outcome and AKI, defined using the Kidney Disease: Improving
Global Outcomes criteria, was investigated. The study included 967 participants (mean age 1.67 years,
44.7% female) with 687 (71.0%) positive for malaria by rapid diagnostic test and 280 (29.1%) children
had a non-malarial febrile illness (NMFI). The frequency of AKI was higher in children with NMFI
compared to malaria (AKI, 55.0% vs. 46.7%, p = 0.02). However, the frequency of severe AKI (stage
2 or 3 AKI) was comparable (12.1% vs. 10.5%, p = 0.45). Circulating markers of both immune and
endothelial activation were associated with severe AKI. Children who had malaria and AKI had
increased mortality (no AKI, 0.8% vs. AKI, 4.1%, p = 0.005), while there was no difference in mortality
among children with NMFI (no AKI, 4.0% vs. AKI, 4.6%, p = 0.81). AKI is a common complication in
children hospitalized with acute infections. Immune and endothelial activation appear to play central
roles in the pathogenesis of AKI.

Keywords: acute kidney injury; malaria; non-malarial febrile illness; sepsis; mortality; acute infection;
children; sub-Saharan Africa; immune activation; endothelial activation

1. Introduction

Globally, 85% of acute kidney injury (AKI) cases occur in low-and-middle-income
countries (LMIC) [1]. In sub-Saharan Africa, malaria and sepsis are leading causes of AKI
in children [2,3], with estimates of AKI prevalence ranging from 24 to 59% in children with
severe malaria using consensus definitions [4–9]. AKI is associated with increased risk of in-
hospital and post-discharge mortality [5,10–12]. In addition, AKI is a risk factor for chronic
kidney disease (CKD) [5,11,13–16] as well as non-renal morbidity in survivors [4,5,17,18].
Among severe malaria survivors, AKI is an independent risk factor for long-term neu-
rocognitive deficits and behavioral problems [5,19]. Given the global burden of AKI and
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CKD, and the unknown impact of AKI during childhood on health outcomes across an
individual’s lifespan, globally representative studies are needed to understand the etiology
and pathophysiology of AKI across diverse populations and settings.

In the context of infection, the host response is an important determinant of disease
severity and survival [20,21]. Endothelial and immune activation represent two pathways
associated with disease severity and mortality and are well-described in sepsis-associated
AKI [22–24]. These pathways can be interrogated by measuring levels of circulating
biomarkers [25–27]. In African children, Plasmodium falciparum is the primary cause of
severe malaria and is characterized by the cytoadherence of parasitized red blood cells to
the endothelium [28,29]. Parasite sequestration can exacerbate microvascular dysfunction
contributing to tissue hypoxia and endothelial activation [28]. Severe malaria-associated
AKI is associated with higher sequestered parasite biomass and endothelial activation
compared to children without AKI [5,30]. However, the contribution of immune and
endothelial activation in children with AKI in the context of malaria or non-malarial febrile
illnesses (NMFI) has not been systematically evaluated.

In the present study, we characterize pathways of immune and endothelial activation
in hospitalized children < 5 years of age with an acute febrile illness. We hypothesize that
children with severe malaria-associated AKI experience greater endothelial and immune
activation compared to children with NMFI-associated AKI.

2. Results

The analysis included 967 hospitalized children enrolled between February 2012 and
August 2013 (Figure 1). The mean (SD) age at admission was 1.67 years (1.07) and 44.7% of
participants were female. Overall, 71.0% of children tested positive for malaria. Participant
characteristics based on malaria status are described in Table 1.
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Table 1. Description of study population.

N Cohort
(n = 967)

NMFI
(n = 280)

Malaria
(n = 687) p-Value

Demographics
Age, years 964 1.7 (1.1) 1.6 (1.1) 1.7 (1.1) 0.065
Female sex, n (%) 957 428 (44.7) 129 (46.2) 299 (44.1) 0.55
Weight, kg 963 9.8 (3.1) 9.5 (2.8) 9.9 (3.2) 0.055
Height, cm 948 74.0 (11.6) 72.8 (11.8) 74.5 (11.4) 0.034
Medication history
Antimalarial n (%) 956 444 (46.4) 145 (52.2) 299 (44.1) 0.023
Antibiotic, n (%) 954 325 (34.1) 114 (41.0) 211 (31.2) 0.004
Infection status
HIV, n (%) 966 20 (2.1) 12 (4.3) 8 (1.2) 0.002
Clinical signs and symptoms
Axillary Temperature in ◦C 954 37.9 (1.2) 38.0 (1.1) 37.8 (1.1) 0.05
Systolic Blood Pressure, mmHg 931 105 (16) 104 (16) 105 (15) 0.14
Diastolic Blood Pressure, mmHg 929 58 (13) 58 (13) 57 (13) 0.35
Heart Rate 960 160 (25) 156 (25) 162 (24) 0.0009
Respiratory Rate 928 46 (15) 46 (15) 45 (14) 0.52
SpO2 % 960 96.8 (5.2) 95.9 (5.8) 97.2 (4.9) 0.0003
Capillary refill time > 2 s, n (%) 940 130 (13.8) 33 (11.9) 97 (14.6) 0.27
Unable to drink or breastfeed, n (%) 961 184 (19.2) 49 (17.6) 135 (19.8) 0.45
Vomiting, n (%) 963 293 (30.4) 87 (31.2) 206 (30.1) 0.74
Diarrhea, n (%) 964 289 (30.0) 108 (38.9) 181 (26.4) <0.0001
Respiratory distress, n (%) 967 309 (32.0) 88 (31.4) 221 (32.2) 0.82
Prostration, n (%) 964 219 (22.7) 52 (18.6) 167 (24.4) 0.049
Coma (BCS < 3) n (%) 949 49 (5.2) 9 (3.3) 40 (5.9) 0.09
Altered consciousness, n (%) 961 134 (13.9) 30 (10.7) 104 (15.3) 0.064
Convulsions, n (%) 966 170 (17.6) 41 (14.6) 129 (18.8) 0.12
Jaundice, n (%) 966 104 (10.8) 16 (5.7) 88 (12.8) 0.001
Severe anemia (Hb < 5.0 g/dL), n (%)

No
Yes
Missing

967
182 (18.8)
203 (21.0)
582 (60.2)

43 (15.4)
40 (14.3)

197 (70.4)

139 (20.2)
163 (23.7)
385 (56.0)

<0.0001

AKI, n (%) 967 475 (49.1) 154 (55.0) 321 (46.7) 0.02
Severe AKI (Stage 2 or 3), n (%) 967 106 (11.0) 34 (12.1) 72 (10.5) 0.45
Positive Cystatin C (≥0.8 mg/L), n (%) 967 188 (19.4) 73 (26.1) 115 (16.7) <0.001
LOD Score, n (%)

0
1
2
3

965

614 (63.6)
180 (18.7)
109 (11.3)
62 (6.4)

184 (65.7)
58 (20.7)
28 (10.0)
10 (3.6)

430 (62.8)
122 (17.8)
81 (11.8)
52 (7.6)

0.08

Outcome
Death, n (%) 966 28 (2.9) 12 (4.3) 16 (2.3) 0.10

Data presented as mean (SD) or n (%).

2.1. Prevalence of AKI in Malaria vs. NMFI

The prevalence of AKI at admission was 49.1%. AKI was observed in 46.7% of children
with malaria and 55.0% in children with a non-malaria febrile illness (NMFI) (p = 0.020).
Malaria was associated with 38% reduced odds of AKI compared to children with a NMFI
with a odds ratio (OR) of 0.62 (95% CI 0.46 to 0.83) after adjusting for child age, sex, and
disease severity (p = 0.001). The prevalence of severe AKI was comparable in children with
malaria vs. NMFI at 12.1% and 10.5%, respectively (p = 0.45). Differences in participant
characteristics based on malaria status in children with or without severe AKI are presented
in Table 2. Jaundice, a clinical sign of hemolysis, was associated with severe AKI in patients
with malaria (OR 3.65 (95% CI 2.08 to 6.41), p < 0.0001) and NMFI (OR 5.06 (95% CI 1.71 to
14.97), p = 0.003). Delayed capillary refill time, a clinical sign of shock, was associated with
severe AKI in malaria (OR 1.91 (95% CI 1.04 to 3.51), p = 0.04) but did not reach statistical
significance among children with NMFI (OR 1.79 (95% CI 0.68 to 4.72), p = 0.24).
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Table 2. Differences in disease presentation in children with malarial vs. non-malarial febrile illness
based on AKI status at enrollment.

No severe AKI
(n = 861)

Severe AKI (Stage 2 or 3)
(n = 106)

NMFI
(n = 246)

Malaria
(n = 615) p-Value NMFI

(n = 34)
Malaria
(n = 72) p-Value

Demographics
Age, years 1.6 (1.1) 1.7 (1.1) 0.12 1.7 (0.8) 2.0 (1.0) 0.16
Female sex, n (%) 115 (46.9) 278 (45.7) 0.75 14 (41.2) 21 (30.1) 0.26
Weight, kg 9.4 (2.8) 9.8 (3.2) 0.13 9.7 (2.7) 10.8 (3.1) 0.09

Length, cm 72.3
(11.8) 74 (11.3) 0.04 76.6

(11.2)
78.6

(12.1) 0.43

Medication history
Antimalarial n (%) 126 (51.6) 267 (43.9) 0.04 19 (55.9) 32 (45.7) 0.33
Antibiotic, n (%) 95 (38.9) 190 (31.4) 0.03 19 (55.9) 21 (30.0) 0.01
Infection status
HIV, n (%) 10 (4.1) 6 (0.9) 0.002 2 (5.9) 2 (2.8) 0.43
Clinical signs and symptoms
Axillary Temperature in ◦C 37.9 (1.1) 37.9 (1.2) 0.14 37.9 (1.2) 37.5 (1.1) 0.07
Systolic Blood Pressure, mmHg 104 (16.8) 105 (15.1) 0.15 104 (13.5) 105 (16.3) 0.83
Diastolic Blood Pressure, mmHg 58 (13.3) 58 (13.2) 0.37 56 (10.9) 55 (12.0) 0.61
Heart Rate 156 (25.2) 162 (24.2) 0.0003 158 (22.9) 155 (25.4) 0.66
Respiratory Rate 46 (15.1) 45 (14.2) 0.42 45 (12.7) 45 (16.2) 0.81
SpO2 % 96 (6.1) 97 (5.0) 0.0002 97 (2.5) 97 (3.5) 0.91
Capillary refill time > 2 s, n (%) 27 (11.1) 81 (13.6) 0.31 6 (18.2) 16 (23.2) 0.57
Unable to drink/breastfeed,
n (%) 39 (15.9) 114 (18.6) 0.36 10 (29.4) 21 (29.6) 0.97

Vomiting, n (%) 72 (29.4) 173 (28.2) 0.73 15 (44.1) 33 (46.5) 0.82
Diarrhea, n (%) 96 (39.2) 163 (26.6) <0.0001 12 (36.4) 18 (25.0) 0.23
Respiratory distress, n (%) 75 (30.5) 188 (30.6) 0.98 13 (38.2) 33 (45.8) 0.46
Prostration, n (%) 41 (16.7) 133 (21.7) 0.10 11 (32.4) 34 (48.6) 0.12
Coma (BCS < 3) n (%) 7 (2.9) 27 (4.5) 0.28 2 (6.3) 13 (18.8) 0.10
Altered consciousness, n (%) 21 (8.5) 82 (133.4) 0.05 9 (26.5) 22 (30.9) 0.64
Convulsions, n (%) 33 (13.4) 121 (19.7) 0.03 8 (23.5) 8 (11.1) 0.10
Jaundice, n (%) 10 (4.1) 66 (10.8) 0.002 6 (17.7) 22 (30.6) 0.16
Severe anemia 1, n (%)

No
Yes
Missing

40 (16.3)
32 (13.0)

174 (70.7)

121 (19.7)
136 (22.1)
358 (58.2)

0.001
3 (8.8)
8 (23.5)

23 (67.7)

18 (25.0)
27 (37.5)
27 (37.5)

0.01

LOD Score, n (%)
0
1
2
3

164 (66.7)
54 (21.9)
21 (8.5)
7 (2.9)

400 (65.6)
109 (17.5)
71 (11.6)
34 (5.5)

0.12

20 (58.8)
4 (11.8)
7 (20.6)
3 (8.8)

30 (42.3)
13 (18.3)
10 (14.1)
18 (25.4)

0.13

Outcome
Death, n (%) 9 (3.7) 7 (1.1) 0.01 3 (8.8) 9 (12.5) 0.58

Data presented as mean (SD) or n (%). 1 Hemoglobin < 5 g/dL.

We quantified levels of cystatin C as an alternate functional biomarker of AKI in
children at enrollment. AKI represents an abrupt loss of kidney function due to changes
in kidney filtration (assessed using filtration markers such as creatinine or cystatin C) or
urine output. Cystatin C levels had moderate ability to discriminate between children
with or without AKI in malaria with an area under the receiver operator characteristic
curve (AUC) of 0.71 (95% CI 0.64 to 0.77) and good discriminatory ability in children with
NMFI with an AUC of 0.82 (95% CI 0.72 to 0.91). Using a pre-established cystatin C cut-off
of >0.8 mg/L [31], 19.4% of children were biomarker positive for AKI. The frequency of
positive cystatin C was 16.7% in children with malaria compared to 26.1% in children with
a NMFI (p < 0.001). Furthermore, among children with malaria, a positive cystatin C test
was associated with 3.59-fold increased odds of severe AKI (95% CI 2.12 to 6.09) compared
to an 11.46-fold increase in the odds of severe AKI (95% CI 5.02 to 26.14) in children with
a NMFI.
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2.2. Immune and Endothelial Activation in AKI in Children with Malaria vs. NMFI

To study the pathophysiology of severe AKI in children based on the etiology of infec-
tion, we quantified biomarkers involved in the host’s response to infection (Figure 2). Im-
mune activation was assessed using levels of C-X-C motif chemokine Ligand 10 (CXCL10)/
interferon γ-induced protein 10 kDa (IP-10), chitinase-3-like protein 1 (CHI3L1), soluble
tumour necrosis factor receptor-1 (sTNFR1), soluble triggering receptor expressed on mye-
locytes (sTREM-1), interleukin 6 (IL-6), and interleukin 8 (IL-8). Endothelial activation
was assessed using angiopoietin-2 (Angpt-2), angiopoietin-1 (Angpt1), soluble fms-like
tyrosine kinase-1 (sFlt-1), soluble vascular cell adhesion molecules (VCAM-1), and soluble
intercellular adhesion molecule-1 (sICAM-1).
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Figure 2. Forest plot biomarkers of endothelial and immune activation in children with severe
AKI in the context of malaria and non-malarial febrile illness (NMFI). Biomarker levels presented
as median (IQR) based on AKI status. Risk ratio (RR) and 95% confidence intervals (CI) calculated
using Poisson regression with robust variance estimates on log10 biomarker levels adjusting (aRR) for
participant age and sex. Following adjustment for 22 comparisons, a p < 0.002 is considered significant.

In children with both malaria and NMFI, there was evidence of endothelial activation
(increased Angpt-2 and sFlt-1), as well as immune activation (increased sTNFR1, CHI3L1
and sTREM-1) in children with severe AKI (Figure 2, adjusted p < 0.05 for all).

However, among children with malaria, there was evidence of more pronounced
endothelial activation with increases in both sVCAM-1 and sICAM-1 and higher IL-8
levels. To evaluate potential interactions between AKI and infection-mediated immune
and endothelial activation, we standardized biomarker levels so the relative change could
be compared across fever etiology (malaria vs. NMFI) and AKI status (no severe AKI vs.
severe AKI) (Figure 3). When evaluating levels of sFlt-1, there was a significant interaction
term between malaria and AKI, suggesting that AKI and malaria interact to synergistically
increase sFlt-1 levels.
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where children who had malaria and severe AKI had increased mortality (Stage 1 AKI, 

Figure 3. Relationship between host markers of kidney injury and differences in pathways of
immune and endothelial activation. (A) Correlation matrix comparing biomarkers of immune
activation and endothelial activation in the study population using Spearman rank correlation
with Table presenting the rho value, and *** p < 0.001. Negative correlations are indicated in red.
(B) Heatmap presents the mean standardized biomarker concentrations by malaria and AKI status
(severe AKI (sAKI) vs. no severe AKI) with the number per group indicated. Biomarkers were
categorized based on known biological function as markers of kidney function (glomerular filtration)
or immune activation. Differences between groups were analyzed using linear regression with the
standardized biomarker concentrations as the dependent variable and malaria and sAKI included as
independent variables with an interaction term. The reference category included children without
malaria (non-malarial febrile illness, NMFI) or severe AKI (sAKI, stage 2 or 3 AKI) and differences that
were significant after adjusting for 36 multiple comparisons using the method of Benjamini–Hochberg
false discovery rate were indicated by an asterisk. (C) Confirmatory factor analysis was used to
derive an immune activation index (IAI) and an endothelial activation index (EAI). Differences in
the indices were evaluated in children based on malaria and sAKI status using a one-way ANOVA
with Sidak’s multiple comparison test where * adjusted p < 0.05, ** adjusted p < 0.01, **** adjusted
p < 0.0001. The factor loadings for single principal components factor model with orthogonal rotation
are presented beneath the Tukey’s boxplots with the mean presented (+).

In children with malaria and NMFI, there was an increase in CHI3L1, sTFNR1,
sTREM-1, and Angpt-2 in the presence of severe AKI (Figure 3). However, there were some
differences between the nature of the host response in children based on the presence of
malaria. Among children with malaria and severe AKI, there was evidence of more en-
dothelial activation compared to children with NMFI and severe AKI. Conversely, children
with NMFI and severe AKI had higher levels of cystatin C and IL-8 compared to children
with malaria-associated severe AKI. Biomarkers of immune activation were correlated with
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each other, as were biomarkers of endothelial activation (Figure 3). Using factor analysis as
a data reduction technique, we computed composite indices of immune and endothelial
activation (IAI and EAI), based on a linear combination of biomarker levels from each panel
(Figure 3). The EAI and IAI were correlated with the LOD score as a marker of disease
severity (rho = 0.323 (EAI), rho = 0.308 (IAI), p < 0.0001 for both), and were higher in fatal
cases (p < 0.0001 for both), providing evidence of convergent validity of the scales. Higher
IAI and EAI were associated with severe AKI in both malaria and NMFI (Figure 3).

2.3. Relationship between AKI and Mortality

Overall, 2.9% of study participants died in-hospital. We evaluated the relationship
between AKI, severe AKI, and mortality among children based on infection etiology.
Children who had malaria and AKI had increased mortality (no AKI, 0.8% vs. AKI, 4.1%,
p = 0.005), while there was no difference in mortality among children with NMFI (no AKI,
4.0% vs. AKI, 4.6%, p = 0.81). A similar relationship was seen in children with severe AKI
where children who had malaria and severe AKI had increased mortality (Stage 1 AKI,
1.6% vs. severe AKI, 12.5%, p < 0.001), while the difference in mortality among children
with NMFI was not significant (Stage 1 AKI, 3.3% vs. severe AKI, 8.8%, p = 0.18). In models
adjusting for age, sex, and disease severity, the presence of severe AKI showed a stronger
relationship with mortality in children with malaria compared to children with NFMI
(malaria, risk ratio (RR) 2.73 (95% CI 0.94 to 7.90), p = 0.06; NMFI, RR 1.04 (95% CI 0.34 to
3.18), p = 0.94). Similarly, when positive cystatin C was used as the diagnostic marker for
AKI, there was an association with increased risk of mortality among children with malaria
(RR 2.97 (95% CI 1.29 to 6.87), p = 0.01) but not among children with NMFI (RR 1.83 (95%
CI 0.77 to 4.30), p = 0.17) after adjusting for age and sex and severity of illness.

3. Discussion

In the present study, AKI was common in children hospitalized for malaria and
NMFI. We identified several biomarkers of immune (IL-8, sTNFR1, sTREM-1, CHI3L1) and
endothelial (Angpt-2, sFlt-1) activation associated with AKI in children with both malaria
and NMFI. In this population, AKI was associated with more pronounced endothelial
activation and a higher risk of mortality in children with malaria, but not among children
with NMFI.

The mechanisms of AKI in febrile Ugandan children are likely multifactorial. Jaundice
may be a clinical sign of hemolysis and was associated with AKI in both malaria and NMFI
patients in this study. Hemolysis is common with P. falciparum, an intraerythrocytic parasite,
and results in the release of free heme, a known nephrotoxin [32]. Delayed capillary refill,
a clinical sign of poor tissue perfusion and shock, which may indicate pre-renal causes
of AKI, was associated with AKI in malaria patients but not in children with NMFI. Host
biomarkers provide additional mechanistic insights. Cystatin C is an established functional
biomarker of AKI in pediatric populations. Overall, 19.4% of the participants had a positive
cystatin C test using a cut-off established in a pediatric AKI cohort [31]. Children with
NMFI were more likely to have a positive cystatin C test than children with severe malaria,
suggesting that children with a NMFI may have a greater reduction in kidney function
compared to children with severe malaria. However, the relationship between severe AKI
and mortality was more evident in the context of severe malaria, independent of disease
severity, suggesting other pathways may be contributing to increased mortality in children
with severe malaria and AKI.

Endothelial activation appears to be a common pathway leading to AKI in both
malaria and NMFI but may be more accentuated in malaria-associated AKI. Increased
endothelial activation in the context of malaria-associated AKI may reflect direct injury to
the glomerular endothelium due to P. falciparum cytoadherence [33]. However, as severe
malaria is a multi-system disease, we cannot rule out endothelial activation in other organ
systems contributing to enhanced systemic endothelial activation in the context of severe
malaria-associated AKI. In the present study, we demonstrated increased endothelial
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activation in severe malaria-associated AKI with increased circulating levels of cell surface
molecules sICAM-1, sVCAM-1, and sFlt-1. Irrespective of infection etiology, plasma Angpt-
2 levels were elevated in severe AKI. These results are consistent with Angpt-2 as a marker
of disease severity in critical illness [4,25–27,30,34–36]. Angpt-2 levels have been implicated
in both severe malaria and sepsis-associated AKI [30,37]. A polymorphism (rs2920656C > T)
near the ANGPT2 gene associated with a functional decrease in Angpt-2 production is
associated with reduced risk of developing a sub-phenotype of AKI defined based on
sTNFR1, Angpt-2, and Angpt-1 [38]. Changes in sTNFR1, Angpt-2, and Angpt-1 were
all evident in severe malaria-associated AKI and future studies are warranted to evaluate
whether polymorphisms in the ANGPT2 gene may also modify the risk of AKI severity and
recovery in the context of severe malaria.

In the present study, severe AKI was also characterized by immune activation with
specific elevations in sTNFR1, sTREM-1, CHI3L1, and IL-8. A higher immune activation
index (IAI) was associated with severe AKI in both malaria and NMFI. These findings
are consistent with markers of immune activation as biomarkers of AKI and disease
severity [39], to risk-stratify patients at risk of mortality in outpatient settings [40], and
for prognostic enrichment of patients with sepsis [41]. The current study lends additional
support to CHI3L1 and sTREM-1 as biomarkers of AKI [42], disease severity [25,43],
and mortality in severe malaria [26,44]. Additional longitudinal studies are needed to
understand the utility of these biomarkers in relation to AKI duration, severity, and kidney
recovery. There is increasing evidence of long-term non-renal complications following
pediatric AKI, including neurocognitive and behavioral problems in survivors [19], cardiac
dysfunction [45], and altered growth. Identification of biomarkers that can facilitate early
AKI identification, implementation of kidney-protective care, and assessment of long-term
risk of renal and non-renal complications of AKI have the potential to transform kidney
care in children, particularly in resource limited settings [46].

To evaluate immune activation and endothelial activation as concepts, we used confir-
matory factor analysis to derive indices of immune and endothelial activation based on
panels of correlated biomarkers with similar biological functions (Figure 3). The IAI gave
roughly equal weighting to inflammatory cytokines IL-6 and IL-8, and neutrophil activation
markers CHI3L1, sTNFR-1, and sTREM-1, but lower weighting to the chemokine CXCL-10
(Figure 3). The EAI gave nearly equal weighting to endothelial cell surface molecules
sFlt-1, sVCAM-1, and sICAM-1, vasoactive molecule Angpt-2, and negative weighting to
Angpt-1, consistent with its role in promoting endothelial quiescence (opposite in biological
effect to the markers of endothelial activation) (Figure 3) [34]. Taken together, the IAI
and EAI appear to be measuring unified constructs consistent with known roles of the
selected biomarkers.

The strengths of this study include the large sample size which enabled investigation of
the relationships between AKI severity, immune and endothelial activation, and mortality
in children hospitalized with an acute febrile illness due to malaria and NMFI. Limitations
of this study include the lack of information on the etiology of febrile illness in children
without malaria and a lack of data on co-infections. As most children tested positive
for malaria, the study was underpowered to detect smaller differences in AKI-related
mortality in children with NMFI. Despite these limitations, we show distinct differences in
markers of life-threatening host response to infection in children with malaria-associated
AKI compared to children with AKI due to other causes and demonstrate that children
with malaria are particularly susceptible to AKI-related mortality.

Together, these data suggest that pathways of immune and endothelial activation
underlie the pathophysiology of AKI in children with both severe malaria-associated AKI
and AKI related to NMFI. However, endothelial activation may be more pronounced in
the context of severe malaria than NMFI-associated AKI. Further, endothelial activation
may explain– in part– worse clinical outcomes in children with severe malaria and AKI.
Additional studies are needed to delineate differences in AKI etiology and pathophysiology
using urine biomarkers to differentiate between functional and structural kidney injury.
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Finally, studies are needed to evaluate pathways of adaptive vs. maladaptive repair
following AKI in children with malaria vs. NMFI to identify opportunities to improve
kidney recovery among children with severe malaria-associated AKI.

4. Materials and Methods
4.1. Study Population

This study was nested within a previously described prospective cohort study of
children hospitalized with an acute febrile illness at Jinja Regional Referral Hospital in
Uganda [44,47]. Children were eligible if they were between two months to five years of
age; had a history of fever within 48 h, or axillary temperature greater than 37.5 ◦C; required
hospitalization according to the admitting physician’s judgment; and the parent/guardian
consented to participate in the study. Exclusion criteria included diarrheal illness without
other symptoms. Malaria was assessed using a three-band rapid diagnostic test (RDT)
with P. falciparum histidine-rich protein 2 (HRP2) and pan-malaria lactate dehydrogenase
(pLDH) (First Response Malaria Ag. HRP2/pLDH Combo Rapid Diagnostic Test, Premier
Medical Corporation Limited, Mumbai, India) [48].

4.2. Study Design

Within the parent study, we conducted a nested sub-study to evaluate differences
in the host response associated with AKI in children with malaria and a non-malarial
febrile illness (NMFI). As a secondary outcome, we examined the association between AKI
and in-hospital mortality in children based on malaria status. A sample size calculation
indicated that we would need a minimum of 715 patients to detect a difference in mortality
between patients with and without AKI at admission, assuming a baseline mortality rate of
4% [47], a prevalence of AKI at admission of 33%, and a relative risk of death associated
with AKI of 2.5 or greater, at the α = 0.05 level of confidence, with 80% power.

4.3. Defining Acute Kidney Injury

AKI was defined using the Kidney Disease: Improving Global Outcomes (KDIGO)
criteria based on a 1.5-fold increase in serum creatinine from estimated baseline and staged
as follows: stage 1, 1.5–1.9-fold increase in creatinine over baseline; stage 2, 2.0–2.9-fold
increase over baseline; stage 3 ≥ 3.0-fold increase over baseline. Baseline creatinine was
estimated using a height-independent approach, assuming a GFR of 120 mL/min per
1.73 m2 as described [49]. AKI was classified as severe if it was stage 2 or 3 [50]. Creatinine
was tested using the modified Jaffe colorimetric method on an Alinity c instrument (Abbott,
Lake Forest, IL, USA), which is traceable to an isotope dilution mass spectrometry (IDMS)
reference method. Cystatin C was included as an alternative functional marker of AKI
measured by Luminex (R&D Systems, Minneapolis, MN, USA) and classified as positive if
levels were > 0.8 mg/L [31].

4.4. Measurement of Biomarkers of Host Response to Infection

Two panels of biomarkers were designed to interrogate host pathways of: (1) immune
activation; and (2) endothelial activation. Selected molecules have been previously validated
as biologically plausible and clinically informative markers host response to infection. Im-
mune activation was assessed using circulating (plasma) levels of C-X-C motif chemokine
Ligand 10 (CXCL10)/interferon γ-induced protein 10 kDa (IP-10) [25,26], chitinase-3-like
protein 1 (CHI3L1) [42], soluble tumor necrosis factor receptor-1 (sTNFR1) [41], soluble trig-
gering receptor expressed on myelocytes (sTREM-1) [40], interleukin 6 (IL-6), and interleukin
8 (IL-8) [41]. Endothelial activation was assessed using angiopoietin-2 (Angpt-2) [34,35],
angiopoietin-1 (Angpt1) [27], soluble fms-like tyrosine kinase-1 (sFlt-1) [30], soluble vascu-
lar cell adhesion molecules (VCAM-1) [30], and soluble intercellular adhesion molecule-1
(sICAM-1) [30]. Biomarkers of immune and endothelial activation were evaluated using a
custom Magnetic Luminex® Performance Assay (R&D Systems) in EDTA anticoagulated
plasma stored at −80 ◦C until testing [51].
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4.5. Statistical Analysis

Data were analyzed using STATAv14.0 and GraphPad Prism v7.0. Continuous data
were analyzed using Student’s t-test or Wilcoxon rank-sum test. Categorical data were
analyzed using Pearson’s Chi-square test. To evaluate the relationship between clinical
signs and severe AKI, logistic regression was used. To evaluate biomarker signatures across
groups, biomarker concentrations were standardized to have a mean of 0 and a standard
deviation of 1. The mean standardized concentration is presented by AKI and malaria
status and differences analyzed using linear regression was used to evaluate differences
in biomarker levels based on the presence of severe AKI and malaria. The reference
category was children without malaria or severe AKI and the p values from malaria, severe
AKI and the interaction term were used to evaluate significance. To adjust for multiple
comparisons, the Benjamini–Hochberg procedure was used, adjusting for 36 comparisons.
The relationships between biomarkers were evaluated using the non-parametric Spearman
correlation. Confirmatory factor analysis was used to derive a single latent construct of
immune activation (immune activation index, IAI) and endothelial activation (endothelial
activation index, EAI). Differences in the indices were evaluated in children based on
malaria and severe AKI status using a one-way ANOVA with Sidak’s multiple comparison
test. To evaluate the relationship between AKI and a positive cystatin C test and mortality,
Poisson regression was used with robust variance estimates and models adjusted for
participant age, sex, and disease severity (assessed using LODS).

5. Conclusions

AKI in children hospitalized with severe malaria is associated with greater endothelial
activation and higher mortality. With the International Society of Nephrology goal of
eliminating preventable deaths due to AKI by 2025 (0 by 25 initiative), and efforts to reduce
and eliminate malaria, increased collaborative research efforts directed towards the study
of malaria-associated AKI are urgently needed.
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