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Background: N6-methyladenosine is the most abundant RNA modification, which plays
a prominent role in various biology processes, including tumorigenesis and immune
regulation. Multiple myeloma (MM) is the secondmost frequent hematological malignancy.

Materials and Methods: Twenty-two m6A RNA methylation regulators were analyzed
between MM patients and normal samples. Kaplan–Meier survival analysis and least
absolute shrinkage and selection operator (LASSO) Cox regression analysis were
employed to construct the risk signature model. Receiver operation characteristic
(ROC) curves were used to verify the prognostic and diagnostic efficiency. Immune
infiltration level was evaluated by ESTIMATE algorithm and immune-related single-sample
gene set enrichment analysis (ssGSEA).

Results: High expression of HNRNPC, HNRNPA2B1, and YTHDF2 and low expression
of ZC3H13 were associated with poor survival. Based on these four genes, a prognostic
risk signature model was established. Multivariate Cox regression analysis demonstrated
that the risk score was an independent prognostic factor of MM. Enrichment analysis
showed that cell cycle, immune response, MYC, proteasome, and unfold protein reaction
were enriched in high-risk MM patients. Furthermore, patients with higher risk score
exhibited lower immune scores and lower immune infiltration level.

Conclusion: The m6A-based prognostic risk score accurately and robustly predicts the
survival of MM patients and is associated with the immune infiltration level, which
complements current prediction models and enhances our cognition of immune
infiltration.
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INTRODUCTION

Multiple myeloma (MM) is a neoplastic hematological
malignancy characterized by clonal proliferation of malignant
plasm cells in bone marrow (BM). MM has been the second most
frequent hematological malignancy and accounts for 1.79% of all
new cancer cases and 2.11% of all cancer deaths worldwide (1).
The treatment arsenal in the battle of MM began with
chemotherapy, and was rediscovered with proteasome inhibitor
(PI)-based triple-drug combination, and extended with the
splendid results achieved by immunotherapy, such as
monoclonal antibodies (mAbs) and chimeric antigen receptor-
engineered T cells (CAR-T). The survival of MM patients has
dramatically prolonged in the last decade. Nonetheless, the
medical needs of MM patients remain unmet, especially high-
risk patients (2). Two leading obstacles for MM treatment are
high recurrence rate and highly heterogeneous cell population
whose subclone content evolves over time. Not only are
genotypes and phenotypes of MM responsible for the high
tumor heterogeneity but also the tumor microenvironment is
implicated in it. Similar to what is observed in chemotherapy,
MM presents capability to escape from immunotherapy, which is
associated with high genetic instability and the protection of
bone marrow microenvironment (BMME) corrupted by MM
cells (3). Considerable research emphasizing the role of BMME
in hematological cancers explicitly demonstrated that cellular
components of bone marrow, including immune cell and stromal
cell, can support the proliferation of MM cells and shield MM
cells from the attack of chemotherapy and immune system (4).
The alteration of immune infiltration level in BMME involves the
development and recruitment of multiple immunosuppressive
cells, such as regulatory T cells (Treg), myeloid-derived
suppressor cells (MDSCs) and tumor-associated macrophages
(TAMs) (5). In addition, the dysregulation of immune
checkpoint genes, such as programmed cell death 1 ligand1/L2
and TIGIT, and the loss or downregulation of human leukocyte
antigen (HLA) are also involved in the immune-suppressive
status of BMME (6–8).

N6-methyladenosine (m6A) was first discovered in eukaryotic
mRNA in the 1970s, and it has been recognized as themost abundant
RNA modifications among more than 160 types of distinct
chemically posttranscriptional modifications (9–11). However, it
was not until 2012 that the first whole transcriptome high-
throughput sequencing of m6A modification was finished,
initiating the detailed investigation of m6A in various diseases,
especially in cancers (12, 13). Similar to DNA and histone
methylation, m6A RNA modification is dynamically reversible with
the involvement of m6A “writers,” “erasers,” and “readers”. The
installation of m6A is catalyzed by writers/methyltransferase complex
(MTX), including methyltransferase-like protein 3 (METTL3),
METTL14, METTL16, WT1-associated protein (WTAP), RNA-
binding motif protein 15 (RBM15), RBM15B, KIAA1429 (or
named VIRMA), and zinc finger CCCH-type containing 13
(ZC3H13). Eraser is a class of demethylases, including fat mass and
obesity-associated protein (FTO), a-ketoglutarate-dependent
dioxygenase homolog 5 (ALKBH5), and ALKBH3 (14). Read
proteins can recognize specific m6A sites and regulate the
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translation, degradation, and splicing of target RNA. YT521-B
homology domain family proteins 1/2/3 (YTHDF1/2/3) and YTH
domain containing 1/2 (YTHDC1/2) are associated with RNA
translation efficiency and degradation (15, 16). Heterogeneous
nuclear ribonucleoprotein A2B1 (HNRNPA2B1) plays an
important role in microRNA maturation. HNRNPC and
HNRNPG, which can mediate RNA abundance and splicing, are
considered as “indirect” readers upon their tendency to preferentially
bind to an RNA structure switch induced by m6Amodifications (17,
18). Insulin-like growth factor 2 mRNA-binding proteins 1/2/3
(IGF2BP1/2/3) can promote mRNA stability and translation.
Emerging studies have demonstrated that aberrant m6A
modification is involved in oncogenesis, metastasis, drug resistance,
and antitumor immunity (19–22). Dali et al. (22) observed that
YTHDF1-deficient mice presented an enhanced CD8+ T cell
infiltration level and the improved therapeutic efficacy of PD-L1
checkpoint inhibitor. However, in MM, very few studies also have
revealed the involvement of m6A-related genes in oncogenesis and
progression at single gene level (23–26). Research focusing on the
systematic cognition of the role of m6A in the prognosis and immune
microenvironment of MM is warranted.

In the present study, we used the gene expression data and
clinical information from the Gene Expression Omnibus (GEO)
database to explore differentially expressed and prognosis-related
m6A regulators. Then, we established a four-gene prognostic risk
signature model using least absolute shrinkage and selection
operator (LASSO) Cox regression analysis to evaluate the
survival outcomes of MM patients. Finally, enrichment analysis
and the evaluation of immune infiltration level were performed.
Our study systematically dissected the abnormal expression
status of m6A-related genes and revealed the role of m6A
RNA methylation modification in the prognosis and immune
infiltration of MM, which complements current prediction
models and enhances our cognition of immune infiltration.
MATERIALS AND METHODS

Data Preparation
The gene expression matrix and clinical information of all
samples were downloaded from the NCBI GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The raw count data was
preprocessed with normalization and log2 transformation. The
overall design and workflow of this study is given in
Supplementary Figure S1. Briefly, The GSE47552 was applied
for the identification of differentially expressed m6A-related
genes. The GSE47552, GSE6477, and GSE13591 were used for
the evaluation of risk score for MM diagnosis. Three
independent series GSE24080, GSE9782, and GSE57317 were
identified using the following selection criteria: (1) >40 subjects,
(2) available survival data, and (3) confirmed MM patients.
Three hundred thirteen MM patients from the GSE24080 was
used as the training cohort for model construction, and the
GSE9782 and GSE57319 were used as validation cohorts.
Detailed information of all datasets used in this study are
shown in Supplementary Table S1.
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Identification of Differentially Expressed
m6A RNA Methylation Regulators
We systematically analyzed the expression of 22 m6A-related genes
according to previously published articles (27), including 7 writers
(METTL3, METTL14, WTAP, KIAA1429, RBM15, RBM15B, and
ZC3H13), 3 erasers (FTO, ALKBH5, and ALKBH3), and 12 readers
(IGF2BP1/2/3, YTHDF1/2/3, YTHDC1/2, HNRNPA2B1,
HNRNPC, and RBMX) in GSE47552. The heatmap was
generated via the PHEATMAP package (version 1.0.12; https://
cran.rstudio.com/web/packages/pheatmap/index.html).

Protein–Protein Interaction Network and
Spearman Correlation Analysis
The PPI network among the differentially expressedm6A regulatory
genes was constructed using the STRING online database (www.
string-db.org). Cytoscape software (version 3.8.2) was used for
visualization (28). Spearman correlation analysis was performed to
demonstrate the association among different m6A-related genes
based on the Spearman’s correlation coefficient (r) value between
−1 and +1. The CORRPLOT package (version 0.84; https://github.
com/taiyun/corrplot) was used to visualize the correlation matrix.

Construction of the Prognostic Risk Model
First, all MM patients in the training cohort were divided into two
groups according to themean expression level of each gene. Kaplan–
Meier survival analysis with log-rank test was used to evaluate the
survival rate by the “SURVIVAL” package (version 3.2-7; https://
github.com/therneau/survival). We selected four genes (ZC3H13,
HNRNPA2B1, HNRNPC, and YTHDF2) showing significant
correlation with the overall survival (OS) as prognostic-related
genes. Second, we performed the least absolute shrinkage and
selection operator (LASSO) Cox regression analysis to select the
optimal weighting coefficient and build the risk model with the
“glmnet” package (version 4.1-1; https://glmnet.stanford.edu/).
Optimal values of penalty parameter lambda were determined by
1,000-fold cross-validation via the minimum criteria (29). The risk
score formula was as follows: risk score = (−0.4820058*expression
value of ZC3H13) + (0.4641464*expression value of HNRNPA2B1)
+ (0.3691959*expression value of HNRNPC) + (0.2454545*
expression value of YTHDF2). Third, we divided MM patients of
the training cohort into high- and low-risk groups upon the optimal
cutoff of the risk score with the “Survminer” package (version 0.4.9;
https://rpkgs.datanovia.com/survminer/index.html) and analyzed
the survival rate by Kaplan–Meier survival analysis. Subsequently,
the predictive performance of the m6A risk score was assessed using
ROC curves and the value of area under the ROC curve (AUC). The
reliability and stability of this prognostic risk model was further
ensured in two validation cohorts.

Establishment and Assessment
of the Nomogram
Univariate and multivariate Cox regression analyses were employed
to evaluate the prognostic efficiency of other clinical features and to
identifywhether the risk scorewas an independent prognostic factor.
Briefly, variables with p < 0.10 in univariate analysis were eligible for
multivariate Cox regression analysis with forward likelihood ration
(LR)method, andp<0.05was considered statisticallydifferent.Then,
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the nomogramwith independent prognostic factors was constructed
using the “rms” package (version 6.2-0; https://hbiostat.org/R/rms/).
The predictive performance of the nomogram was evaluated with
calibration curves and ROC curves.

Differential Expression Analysis
Three hundred thirteen MM patients from the GSE24080 were
stratified into high- and low-risk groups according to the cutoff
value in the survival analysis. Differential expression analysis was
applied using the LIMMA package (30) (version 3.46.0; http://
bioinf.wehi.edu.au/limma/). An absolute log2 fold change (FC) >
0.6 and adjusted p < 0.05 was used as the cutoff for differentially
expressed genes (DEGs).

Enrichment Analysis
The online website WebGestalt (http://www.webgestalt.org/) (31)
was applied to analyze enriched biological terms of DEGs, including
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway. Gene set enrichment analysis (GSEA)
was conductedwithGSEA software (version 4.1.0). Official gene sets,
includingHallmark (H), KEGG (C2), and Gene ontology (C5), were
downloaded fromGSEAwebsite (http://www.gsea-msigdb.org/gsea/
msigdb/index.jsp) for enrichment. A permutation number of 1,000
was adopted. A p-value cutoff of 0.05with a false discovery rate (FDR
q-value) < 0.05 was considered statistically significant.

Evaluation of Immune infiltration Level
The ESTIMATE algorithm (32) was used to calculate the immune
score, stromal score, and tumor purity of each sample for
preliminary evaluation. Next, we obtained gene sets marking each
tumor microenvironment infiltration immune cell type from
previous studies (33, 34). We performed single sample GSEA
(ssGSEA) to derive the enrichment score of each immune-
associated gene set to represent the relative abundance of each
infiltrating cell in each sample by using “GSVA” package (version
1.38.2; https://github.com/rcastelo/GSVA).

Statistical Analysis
Statistical analysis was conducted using SPSS 26.0, R Studio
(version 1.4.1103; https://rstudio.com/) and GraphPad Prism
software (version 8.0.2). Continuous variables were described
as the mean ± standard deviation (SD); Mann–Whitney test and
Student’s t-test were used to compare the difference in subgroups
as appropriate. One-way ANOVA followed by Bonferroni post-
hoc comparison were employed to compare the difference of
more than two subgroups. p < 0.05 was considered statistically
significant if not specified. All statistical tests were two-sided.
RESULTS

Nine of 22 m6A-Related Genes Were
Differentially Expressed in MM
The gene expression of 22 m6A-related genes in 5 normal plasm
cell (NPC) samples and 41 MM patients from the GSE47552 was
used for differentially expressed analysis. The heatmap showed
that the expression of nine m6A methylation regulators (FTO,
November 2021 | Volume 11 | Article 731957
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HNRNPC, IGF2BP3, KIAA1429, METTL16, METTL14,
METTL3, RBMX, and ZC3H13) were differentially expressed
in MM patients compared to normal volunteers (Figure 1A). We
observed that RBMX and HNRNPC were significantly
upregulated, while METTL3, METTL14, METTL16, ZC3H13,
KIAA1429, FTO, and IGF2BP3 were significantly downregulated
in MM patients (Figure 1B). Furthermore, we used the online
database cBioPortal (http://www.cbioportal.org/) to determine
the mutant frequency of m6A-related genes in MM samples;
however, no frequent mutation was found (Supplementary
Figure S2) (35, 36).

PPI Network and Spearman
Correlation Analysis Among m6A
RNA Methylation Regulators
To further investigate the relationship among nine m6A RNA
methylation regulators, PPI network was established (Figure 1C),
which demonstrated that KIAA1429 and METTL3 were hub
genes. In addition, IGF2BP3 had no protein–protein association
with others, which was hidden in the figure. Moreover, the
correlation of each gene expression level was analyzed by the
Spearman correlation analysis (Figure 1D). The correlation
between METTL3 and METTL14 was most positively significant
(r = 0.26), and the relationship between METTL3 and IGF2BP3,
FTO, and RBMX were most significantly negative (r = −0.16).

Construction and Validation of the
Prognostic Risk Model Based on Four
m6A Methylation Regulators
Three hundred thirteen IgG MM patients from the GSE24080
were divided into low- and high-expression groups according to
Frontiers in Oncology | www.frontiersin.org 4
the mean expression level of each m6A-related gene. We found
that the overexpression of YTHDF2 (p = 0.00248), HNRNPC (p =
0.02291), and HNRNPA2B1 (p = 0.02719) was associated with the
poor OS, and survival outcomes of patients with high ZC3H13
expression were significantly prolonged than that of patients with
low expression (p = 0.01062, Figures 2A–D). However, the
expression levels of other genes were not correlated with OS
(Supplementary Figure S3). Subsequently, based on the result
of LASSO Cox regression analysis using the penalized maximum
likelihood estimator andmin criteria for the optimal lambda value,
four m6A methylation regulators, including ZC3H13,
HNRNPA2B1, HNRNPC, and YTHDF2, were identified to
construct the risk model (Figures 2E, F). Then, we calculated
the risk score for each patient of the training cohort and stratified
them into low- and high-risk groups according to the optimal
cutoff value (7.060, calculated by R program). Kaplan–Meier
survival analysis showed that MM patients in high-risk group
had significantly shorter OS than patients in low-risk group (p <
0.0001, Figure 2G). The ROC curve analysis was used to
investigate the predictive specificity and sensitivity of the risk
score. The AUC values of the risk score for 1-, 2-, 3-, 4-, and 5-year
survival were 0.5529 (95%CI, 0.4202–0.6856, p = 0.4286), 0.6020
(95%CI, 0.5089–0.6952, p = 0.0351), 0.5979 (95%CI, 0.5170–
0.6789, p = 0.0185), 0.6390 (95%CI, 0.5646–0.7133, p = 0.0004),
and 0.6573 (95%CI, 0.5785–0.7360, p = 0.0002), respectively
(Figure 2H).The AUC values indicated that the risk score had a
great discrimination ability for the prognosis of MM patients.

Next, Kaplan–Meier survival analysis and ROC curve for the
risk score were conducted in two validation cohorts. The OS of
low-risk patients was significantly longer than that of high-risk
patients in the GSE9782 (p < 0.0001, Figure 3A) and GSE57317
A

B DC

FIGURE 1 | The expression status and correlation of differentially expressed m6A-related genes in MM. The heatmap (A) and the bar chart (B) showed the
expression of nine differentially expressed m6A-related regulators in 41 MM and 5 NPC samples from the GSE47552 dataset. The color bar of heatmap from red to
blue denotes high to low gene expression. (C) The PPI network of the differentially expressed m6A-related genes. Yellow, green, and blue nodes represent “writer,”
“eraser,” and “reader,” respectively. Node size represents the expression value. Edge size represents the combined score (low score to orange and high score to
green). (D) The Spearman correlation analysis of the differentially expressed m6A-related genes. The size of each circle denotes the Spearman correlation coefficient
(negativity to red and positivity to blue). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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(p < 0.0001, Figure 3C). The AUC values of the risk score for 1-
and 2-year survival were 0.5566 (95%CI, 0.4827–0.6305, p =
0.1329) and 0.6388 (95%CI, 0.5558–0.7219, p = 0.0019) in the
Frontiers in Oncology | www.frontiersin.org 5
GSE9782 (Figure 3B). Parallel values in the GSE57137 were
0.8488 (95%CI, 0.7224–0.9753, p = 0.0061) and 0.8333 (95%CI,
0.6841–0.9825, p = 0.0014, Figure 3D). Our results
A B D

E F

G

I

H

C

FIGURE 2 | Construction and evaluation of the four-gene prognostic risk signature in the training cohort of MM patients. Kaplan–Meier survival curves for YTHDF2
(A), HNRNPC (B), HNRNPA2B1 (C), and ZC3H13 (D). (E) The LASSO Cox analysis identified four m6A-related genes in the training cohort. Each curve corresponds
to one gene (red, HNRNPA2B1; green, HNRNPC; blue, YTHDF2; black, ZC3H13). (F) Partial likelihood deviance of different numbers of variables. One-thousand-fold
cross-validation was applied for tuning penalty parameter selection. (G) Kaplan–Meier survival analysis by different risk score levels in training cohort. (H) ROC curve
was applied to assess the predictive efficiency of the prognostic risk signature. (I) Forest plot of the multivariate Cox regression analysis. *P<0.05, **P<0.01.
November 2021 | Volume 11 | Article 731957
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demonstrated the great efficiency of the prognostic risk score for
MM patients.

The development of MM has been widely identified as a
multistage process starting with the premalignant condition
monoclonal gammopathy of unknown significance (MGUS),
followed by the intermediate stage smolder MM (SMM), and
Frontiers in Oncology | www.frontiersin.org 6
some progressed into the refractory and/or relapse MM
(RRMM) or plasma cell leukemia (PCL). We observed that the
risk score was significantly increased with the development of
MM (Figures 3E–G). The ROC curves showed that the risk score
could discriminate between MM and normal individuals with
high sensitivity and specificity; the AUC values were 0.9383 (95%
A B

D

E F

H

C

G

FIGURE 3 | Confirmation of the predictive performance of risk signature for MM prognosis and diagnosis in validation cohorts. (A, B) Kaplan-Meier survival analysis
and ROC curve in the GSE9782 dataset. (C, D) Kaplan-Meier survival analysis and ROC curve in GSE57317 dataset. (E–G) The risk score levels of the continuous
disease spectrum in MM datasets GSE6477 (E), GSE47552 (F) and GSE13691 (G). (H) ROC curves of risk score in MM to assess the diagnostic efficiency.
*P<0.05, ***P<0.001, ****P<0.0001.
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CI, 0.8854–0.9913, p = 0.0009), 0.7005 (95%CI, 0.5703–0.8306,
p = 0.0149), and 1.000 (95%CI, 1.000–1.000, p = 0.0003) in
GSE13591, GSE6477, and GSE47552, respectively (Figure 3H).

The Risk Score as an Independent
Prognostic Factor
The GSE24080 was used for univariate and multivariate Cox
regression analyses to identify the independent prognostic factor
of the risk score and other relevant clinicopathological factors,
including age, gender, race, lactic dehydrogenase (LDH),
albumin (ALB), hemoglobin (HGB), ISS stage, bone marrow
plasm cell (BMPC), bone lesion, and cytogenetic abnormality.
The results showed that LDH [hazard ratio (HR), 2.040; 95%CI,
1.327–3.137; p = 0.001], ISS stage (HR, 1.869; 95%CI, 1.217–
2.869; p = 0.004), BMPC (HR, 1.601; 95%CI, 1.027–2.497; p =
0.038), cytogenetic abnormalities (HR, 1.819; 95%CI, 1.202–
2.753, p = 0.005), bone lesion (HR, 2.323; 95%CI, 1.411–3.826;
p = 0.001), and the risk score (HR, 1.928; 95%CI, 1.278–2.907;
p = 0.002) were significantly associated with OS (Table 1 and
Figure 2I), which indicated that the risk score based on four
m6A regulators is an independent prognostic factor for MM
patients. To quantify the OS predication, we integrated the risk
sore and independent clinical features (LDH, ISS stage, BMPC,
bone lesion, and cytogenetic abnormalities) to construct a
nomogram (Figure 4A). The calibration curves illustrated a
great agreement between predicted and actual survival
probabilities (Figures 4B–D). The nomogram risk score
system greatly improved the prognostic risk signature model.
The AUC values of the nomogram risk score for 1-, 2-, 3-, 4-, and
5- year survival were 0.8087 (95%CI, 0.7327–0.8847; p < 0.0001),
0.7904 (95%CI, 0.7242–0.8566; p < 0.0001), 0.7627 (95%CI,
0.6991–0.8262; p < 0.0001), 0.7696 (95%CI, 0.7091–0.8301; p <
0.0001), and 0.8072 (95%CI, 0.7457–0.8688; p < 0.0001),
respectively (Figure 4E).

Subgroup Analysis
Subgroup analysis upon age, gender, International Staging System
(ISS), cytogenetic abnormality in the training cohort, and upon
therapeutic strategies in both the training cohort and the
validation cohort GSE9782 was performed to evaluate the
accuracy and stability of the risk score for different patients. The
risk score presented stable predictive efficiency in all age and
gender (p < 0.05, Figures 5A–D). Furthermore, higher risk score
was correlated with poorer OS in patients with cytogenetic
abnormalities (p = 7e−04, Figure 5E), while no significant
survival difference was observed in patients without cytogenetic
abnormalities (p = 0.05931, Figure 5F). ISS I- and ISS III-stage
MM patients with high risk score had significantly shorted OS
than those with low risk score (p = 0.00442 and 0.00652,
respectively; Figures 5G, H), while no significant difference was
observed in ISS II stage (p = 0.1365; Figure 5I). In addition,
subgroup analysis for therapeutic regimens verified the robustness
of the prognostic risk signature in different treatment choices,
including total therapy 2 (TT2, a combination treatment with
thalidomide, p = 0.00026, Figure 5J), TT3 (a combination
Frontiers in Oncology | www.frontiersin.org 7
treatment with the addition of bortezomib, p = 0.00434,
Figure 5K), dexamethasone (DEX, p = 0.02434, Figure 5L), and
PS341 (a kind of proteasome inhibitor, p = 0.00113, Figure 5M),
which demonstrated that the prognostic risk score meets
individualized therapeutic needs of MM patients.

Correlation Between the Prognostic Risk
Score and Clinical Characteristics
We then analyzed the correlation between the risk score and the
clinicopathological features of MM patients in the GSE24080
cohort (Table 2). We observed significantly increased risk scores
regarding advanced ISS stage (p = 0.013). Moreover, MM
patients with cytogenetic abnormalities were observed to have
higher risk scores than those cytogenetically normal (p < 0.0001).
Subsequently, we analyzed the relationship between the
expression of the four prognostic risk signature genes and
clinical features (Supplementary Table S2). We observed that
high expression of YTHDF2 and HNRNPA2B1 were associated
with advanced ISS stage. The higher expression of HNRNPA2B1
was correlated with higher BMPC ratio. Additionally, MM
patients with cytogenetic abnormalities were observed to have
higher HNRNPC expression and lower ZC3H13 expression.

Differential Expression Analysis and
Functional Enrichment Analysis
In the training cohort, we conducted the differential expression
analysis between high- and low-risk groups. A total of 156
upregulated and 90 downregulated genes were identified to be
significantly associated with the risk score (Supplementary Table
S3 and Supplementary Figure S4). Then, the functional
enrichment analysis observed that immune-related biological
processes and malignant hallmarks were enriched (Figures 5A–
D). The upregulated genes showed significantly enriched GO
terms, including response to interleukin-6, mitotic cell cycle
phase transitions, and KEGG terms, including transcriptional
misregulation in cancer, p53 signaling pathway, and cell cycle
(Figures 6A, B). GO terms, including response to chemokine,
regulation of inflammatory response, and leukocyte proliferation,
and KEGG terms, including nuclear factor (NF)-kappa B signaling
pathway, hematopoietic cell lineage, and cytokine–cytokine
receptor interaction, were significantly enriched in
downregulated genes (Figures 6C, D). Furthermore, GSEA
found significantly enriched terms related to tumorigenesis and
drug resistance in high-risk group (Supplementary Table S4),
including spliceosome (NES = 2.354, p < 0.0001, FDR < 0.0001,
Figure 6E) and proteasome (NES = 1.881, p = 0.025, FDR = 0.039,
Figure 6F) in KEGG gene set; MYC targets (NES = 2.304, p <
0.0001, FDR < 0.0001, Figure 6G), E2F targets (NES = 1.794, p =
0.019, FDR = 0.029, Figure 6H), and unfold protein response
(NES = 1.785, p = 0.024, FDR = 0.023, Figure 6I) in HALLMARK
gene set; ribonucleoprotein complex biogenesis (NES = 2.337, p <
0.0001, FDR = 0.001, Figure 6J), spliceosomal complex assembly
(NES = 2.324, p = 0.002, FDR = 0.006, Figure 6K), and ribosome
biogenesis (NES = 2.219, p < 0.0001, FDR = 0.010, Figure 6L) in
GOBP gene set.
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TABLE 1 | Univariate and multivariate analyses of OS using the Cox proportional hazard regression model.

Variables Univariate analysis Multivariate analysis

HR (95%CI) p-value Beta SE Wald HR (95%CI) p-value

Age, years 0.953 (0.593–1.531) 0.842
Gender 1.103 (0.733–1.660) 0.638
Race 1.145 (0.639–2.052) 0.649
LDH (U/L) 2.564 (1.685–3.903) <0.0001 0.713 0.22 10.548 2.040 (1.327–3.137) 0.001
ALB (g/L) 0.533 (0.339–0.838) 0.006 −0.2073 0.2487 −0.83 0.812 (0.499–1.323) 0.403
HGB (g/dL) 0.546 (0.310–0.961) 0.036 0.01 0.3133 0.03 1.015 (0.549–1.875) 0.963
ISS stage 2.531 (1.705–3.759) <0.0001 0.625 0.219 8.162 1.869 (1.217–2.869) 0.004
BMPC 2.118 (1.404–3.197) <0.0001 0.471 0.227 4.318 1.601 (1.027–2.497) 0.038
Cytogenetic abnormalities 2.662 (1.788–3.961) <0.0001 0.598 0.211 8.016 1.819 (1.202–2.753) 0.005
Bone lesions 2.246 (1.374–3.670) 0.001 0.843 0.255 10.97 2.323 (1.411–3.826) 0.001
Risk score 2.381 (1.599–3.546) <0.0001 0.656 0.21 9.807 1.928 (1.278–2.907) 0.002
Frontiers in Oncology | www.fron
tiersin.org
 8
 Novembe
r 2021 | Volume 11 | Article
The bold values indicate statistically different (P<0.05).
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FIGURE 4 | Establishment and assessment of the nomogram. (A) Nomogram predicting 1-, 3-, and 5-year survival for MM patients in the training cohort based on
the risk score and other clinical parameters. (B–D) Calibration plot of the nomogram for 1-year (B), 2-year (C), and 3-year (D) OS in the training cohort. (E) ROC
curve in the GSE24080 for the nomogram risk score system.
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Association of the Risk Score With the
Immune Microenvironment
Given that considerable immune-related terms were
substantially enriched in DEGs based on the risk score, we
speculated that the risk score was correlated with immune
infiltration level. To verify our hypothesis, we assessed the
immune infiltration level by the ESTIMATE algorithm. Then,
MM patients were divided into high- and low-score groups
according to the median value. Kaplan–Meier survival analysis
revealed that MM patients with higher immune score and lower
tumor purity had longer OS (p = 0.01673 and 0.00896,
respectively, Figures 7A–C). Patients with high risk score in
Frontiers in Oncology | www.frontiersin.org 9
the training cohort (Figures 7D–F) and validation cohort
(Figures 7G–I) had lower immune score and higher tumor
purity, which indicated poorer prognosis. Furthermore, the
implementation of ssGSEA was used for identifying the
alteration of immune cell population upon the risk score. We
observed that 16 of 28 immune cell subsets were significantly
decreased in the high-risk group (Figure 7J). Antitumor immune
cells, such as effector memory CD8 T cell, natural killer cell,
natural killer T cell, type 1 T helper cell, and type 17 helper cell,
were substantially reduced. However, immunosuppressive cells,
including MDSC, regulatory T cell, and immature dendritic cell
were also decreased in patients with high risk score.
A B D

E F G

I

H

J K
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C

FIGURE 5 | The overall survival probability in high- and low-risk MM patients grouped by clinicopathological features and therapeutic regimens. Kaplan–Meier
survival analysis of MM patients from GSE24080 stratified by (A, B) age ≤65 and >65, (C, D) female and male, (E, F) with and without cytogenetic abnormalities,
(G–I) ISS stage I/II/III, and (J, K) total therapy 2 (TT2) and TT3 regimen. Kaplan–Meier survival analysis of MM patients from GSE9782 stratified by (L, M)
dexamethasone (DEX) treatment and proteasome inhibitor (PI) treatment.
November 2021 | Volume 11 | Article 731957

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. m6A RNA Methylation in Multiple Myeloma
Next, we studied the expression of HLA system and immune
checkpoints, including CD274 (PD-L1), PDCD1LG2, VTCN1
(v-set domain-containing T cell activation inhibitor), CD276,
and IDO1 (indoleamine 2,3-dioxygenase 1) (37), which were
found on the surfaces of cells to help the recognition of immune
system and involved in the immune activation and inhibition.
We observed that the HLA family, including HLA-DMA, HLA-
DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-
DPB2, HLA-DQA1, HLA-DQB1, HLD-DRA, HLA-DRB1,
HLA-DRB6, and HLA-E, showed significant decrease in high-
risk group (Figure 8A). Immune checkpoint markers, including
CD274 and VTCN1, were significantly downregulated in
patients with high risk score (Figure 8B).
DISCUSSION

N6-methyladenosine RNA modification, the most remarkable
epitranscriptomic modification, has been widely considered to
be involved in tumorigenesis and immune regulation, while its role
inMM progression and bonemarrow immunemicroenvironment
is little known yet. In this study, we conducted the comprehensive
bioinformatics analysis to explore the significance of m6A RNA
methylation regulators in MM. We identified the aberrant
expression status of m6A RNA methylation regulators in MM:
Frontiers in Oncology | www.frontiersin.org 10
RBMX and HNRNPC were significantly upregulated, while
METTL3, METTL14, METTL16, ZC3H13, KIAA1429, FTO,
and IGF2BP3 were significantly downregulated in MM patients
compared to normal plasm samples. Furthermore, our results
elucidated that the overexpression of HNRNPA2B1, HNRNPC,
and YTHDF2, and the downregulation of ZC3H13 were
negatively associated with the overall survival. Based on these
four genes, a prognostic risk signature model was established via
LASSO Cox regression analysis. Kaplan–Meier survival analysis
showed that MM patients in the high-risk group had significantly
shorter OS than patients in low-risk group. Two validation cohorts
confirmed the predictive efficiency of the m6A risk score by ROC
curve analysis. In addition, univariate and multivariate Cox
regression analyses manifested that the risk score was an
independent prognostic factor. To determine the clinical
feasibility of the prognostic risk signature in MM, we assessed
the correlation between the risk score and significant clinical
characteristics. Subgroup survival analysis upon age, gender, ISS
stage, cytogenetic abnormality, and different therapeutic strategies
showed that the risk score was precise and robust for the
individualized medical demands of MM patients. Additionally,
we found that advanced ISS stage and the existence of cytogenetic
abnormalities were positively associated with the risk score.

Consistent with published articles, HNRNPC can serve as an
oncogene, which is overexpressed in various cancers. HNRNPC
TABLE 2 | The correlation of prognostic risk signature and clinical characteristics.

Variables Number Risk score, mean(SD) p-value

Age, years 0.364
<65 236 7.0106 (0.36658)
≥65 77 6.9681 (0.32058)

Gender 0.967
Female 118 7.0012 (0.34289)
Male 195 6.9995 (0.36424)

Race 0.419
White 270 6.9936 (0.35399)
Others 43 7.0409 (0.36849)

LDH (U/L) 0.755
<150 156 6.9938 (0.31829)
≥150 157 7.0064 (0.39043)

ALB (g/L) 0.086
<3.5 57 7.0732 (0.33478)
≥3.5 256 6.9838 (0.35890)

HGB (g/dl) 0.133
<9.0 26 7.1005 (0.34428)
≥9.0 287 6.9910 (0.35600)

ISS stage 0.013
I 194 6.9602 (0.34356)
II 59 7.0173 (0.39841)
III 60 7.1123 (0.33001)

BMPC 0.209
<46% 157 6.9749 (0.33608)
≥46% 156 7.0255 (0.37394)

Cytogenetic abnormalities <0.0001
Yes 117 7.0913 (0.35062)
No 196 6.9456 (0.34847)

Bone lesions 0.616
Yes 210 7.0072 (0.37301)
No 103 6.9857 (0.31907)
November 2021 | Volume 11 | Article
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knockdown arrested the proliferation of breast cancer cell lines via
activating the antitumor cascade of interferon response initiated by
the cytoplasmic RNA sensors retinoic acid-inducible gene I (RIG-I)
(38). ZC3H13 is involved in the assembly of m6Amethyltransferase
complex. In colorectal cancer, ZC3H13 acting as a tumor
suppressor could suppress cancel cells proliferation and invasion
via inactivating Ras-ERK signaling pathway (39). YTHDF2, as a
member of m6A “reader,” can selectively recognize and bind to
m6A-containing RNA to initiate its degradation. The
overexpression of YTHDF2 in hepatocellular carcinoma (HCC)
promoted stemness and metastasis via increasing OCT4 translation
(40). In glioblastoma (GBM) stem cells, YTHDF2 was preferentially
Frontiers in Oncology | www.frontiersin.org 11
expressed, and it enhanced GBM growth via YTHDF2-MYC-
IGFBP3 axis (41). HNRNPA2B1 was highly expressed in multiple
types of cancer. HNRNPA2B1-deficient breast cancer cells showed
inhibited growth and increased apoptosis rate via dampening the
phosphorylation of STAT3 (42). Currently, Jiang et al. found that
overexpression of HNRNPA2B1 promoted tumor growth and
inhibited apoptosis via stabilizing ILF3 and AKT3 mRNA
transcripts in MM (26). However, our results are inconsistent
with a few studies. We found that METTL3 and FTO were
significantly downregulated in MM patients, while the expression
level of ALKBH5 was similar to normal plasm cells. Xu et al.
revealed that FTO was upregulated in MM, especially
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FIGURE 6 | Gene ontology and KEGG pathway enrichment analysis of DEGs in GSE24080 dataset grouped by risk score level. (A–D) Bubble diagrams show the
significantly enriched gene ontology biological process (GOBP) and KEGG pathway terms of upregulated DEGs (A, B) and downregulated DEGs (C, D). (E–L) GSEA
results of KEGG gene set (E, F), HALLMARK gene set (G–I) and GOBP gene set (J–L). NES, normalized enrichment score; FDR, false discovery rate.
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extramedullary myeloma patients. The overexpression of FTO
facilitated cancer progression by stabilizing heat shock
transcription factor 1 (HSF1) in a YTHDF2-dependent way (25).
In contrast, Bach et al. emphasized the overexpression of METTL3
inMMwhile no significant differences in the expression of FTO and
ALKBH5 (23). The various and specific functions of m6A regulators
in different caner types implied that the network of RNA
methylation modification is overwhelmingly complicated.
Divergences among these studies are probably associated with
sampling error, different clinicopathological features, tumor
Frontiers in Oncology | www.frontiersin.org 12
heterogeneity, subclones, and different detection methods.
Therefore, what remains to be established is the detailed function
of each member in the elaborate m6A methylation network in
mediatingMMprogression and relativemechanisms by whichm6A
modification alters gene expression at the posttranscriptional level.

Then, to figure out the underlying mechanisms of the risk
score, we conducted the differential expression analysis between
high- and low-risk groups. Enrichment analysis including
overrepresentation analysis (ORA) and GSEA was subsequently
conducted. The ORA results showed that oncogenesis-related
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FIGURE 7 | Relationship between immune infiltration level and m6A prognostic risk score. (A–C) Kaplan–Meier survival analysis upon stromal score (A), immune
score (B), and tumor purity (C) in GSE24080. (D–F) The distribution of stromal score (D), immune score (E), and tumor purity (F) upon different risk score in
GSE24080. (G–I) The distribution of stromal score (D), immune score (E), and tumor purity (F) upon different risk score of the validation cohort GSE9782.
(J) Twenty-eight immune-related gene sets were performed for ssGSEA. Seventeen immune cell gene sets were significantly different between patients with high and
low risk score. Red star represents higher enrichment score; blue star represents lower enrichment score compared to high-risk MM patients. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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terms, including mitotic cell cycle phase transition, transcriptional
misregulation in cancer, and cell cycle were significantly enriched
in upregulated DEG, while immune-related terms, such as
response to chemokine, regulation of leukocyte activation,
regulation of inflammatory response, regulation of immune
effector process, leukocyte proliferation, and migration, were
substantially enriched in downregulated DEGs. GSEA results
Frontiers in Oncology | www.frontiersin.org 13
indicated that pathways correlated with tumorigenesis and
proteasome inhibitor resistance (MYC targets, unfold protein
response, and proteasome) were positively correlated with the
high risk score. Since considerable immune-related processes were
enriched in downregulated DEGs, we assumed that the m6A risk
signature was correlated with the immunosuppressive
microenvironment. Thus, we evaluated the immune infiltration
A

B

FIGURE 8 | The distribution HLA family genes and immune checkpoint markers between the high- and low-risk MM patients. (A) Boxplot of HLA family genes.
(B) Boxplot of immune checkpoint markers. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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level by ESTIMATE algorithm and ssGSEA. As expected, patients
in the high-risk group had lower immune score. Sixteen of 28
immune cell subsets, including antitumor immune cells (effector
memory CD8 T cell, natural killer cell, natural killer T cell, type 1
T helper cell, and type 17 helper cell) and protumor immune cells
(MDSC, regulatory T cell and immature dendritic cell), were
significantly reduced in the high-risk group. Moreover, the
expression of HLA genes, as cell surface markers for the
recognition of immune system, were generally decreased in MM
patients with high risk score. Inhibitory immune checkpoint
molecules, involved in the immune evasion, PD-L1, and
VTCN1, were also significantly downregulated in patients with
high risk score. Taken together, we found that the risk score is
correlated with the immunosuppressive bone marrow
microenvironment from cellular level to molecular level.

The heterogeneity of the tumor immune microenvironment
can result in diverse dimensions, such as prognosis and
therapeutic response to immunotherapies. However, the
underlying mechanism by which tumor cells “reprogrammed”
immune microenvironment into the culprit for oncogenesis and
drug resistance remains unclear. It was not until 2017 that m6A
RNA modification was first elucidated to be involved in the
regulation of mammal immune system. METTL3/METTL14-
deficient T cells failed to maintain homeostasis and remained in
the naive state through IL-7/STAT5/COCS pathway (43). Su
et al. reported that forced expression of FTO contributed to the
elevated expression of immune checkpoint genes such as PD-L1,
PD-L2, and leukocyte immunoglobulin-like receptor subfamily
B4 (LILRB4) via inhibiting YTHDF2-dependent degradation in
AML cell lines (44). Deletion of the demethylase ALKBH5
inhibited the recruitment of immunosuppressive cells (Treg
and MDSC) through targeting the key enzyme of lactate
transport MCT4/SLC16A3 and decreasing the extracellular
lactate concentration, which subsequently resulted in the
sensitization of anti-PD-1 therapy in melanoma cells (45).
Zhang et al. comprehensively evaluated the m6A modification
in gastric cancer and established the m6Ascore to quantify m6A
modification patterns for individual patients. They observed that
low m6Ascore was characterized by the immune activation with
increased efficacy of immune checkpoint blockade treatment,
while high m6Ascore was characterized by stroma activation
(46). Jin et al. constructed an eight-gene m6A risk signature
model in adrenocortical carcinoma to evaluate the prognosis and
tumor immune microenvironment (47). Our study also revealed
that the m6A-based risk score can accurately predict survival
outcomes and evaluate the immune infiltration level.

However, our study does have some limitations. First, the
majority of patients included in our study were white; the
prognostic value of m6A-related genes remains to be further
verified in Asian and African cohorts. Second, given that our
results are based on the mRNA expression data, the expression at
protein level should be further clarified. Third, some important
clinical information, including R-ISS stage, mSMART risk
stratification, somatic mutation, and copy number variation,
was not available in the GEO database, by which in-depth
analysis was inaccessible. Fourth, since the lack of significant
Frontiers in Oncology | www.frontiersin.org 14
clinicopathological information in two validation cohorts, the
extrapolation of our nomogram result was not further validated.
Thus, experiment verification and clinical investigation with
innovative design and orchestrated implement are needed to
translate these descriptive results into clinical benefits.

In conclusion, the fourm6A regulators (ZC3H13,HNRNPA2B1,
HNRNPC, and ZC3H13)-based prognostic risk score can accurately
and stably predict the survival of MM patients; and the risk score is
tightly associated with the impaired immune infiltration level, which
complements current predictionmodels. Them6A-based prognostic
risk score enhances our cognition of immune infiltration and
addresses the indispensable role of RNA methylation to cause the
heterogeneous tumor microenvironment. Further research is
required to understand the overwhelmingly complex immune
regulation network in bone marrow microenvironment.
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