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Abstract

Background: The COVID-19 outbreak, an event of global concern, has provided scientists the opportunity to use mathematical
modeling to run simulations and test theories about the pandemic.

Objective: The aim of this study was to propose a full-scale individual-based model of the COVID-19 outbreak in Lombardy,
Italy, to test various scenarios pertaining to the pandemic and achieve novel performance metrics.

Methods: The model was designed to simulate all 10 million inhabitants of Lombardy person by person via a simple agent-based
approach using a commercial computer. In order to obtain performance data, a collision detection model was developed to enable
cluster nodes in small cells that can be processed fully in parallel. Within this collision detection model, an epidemic model based
mostly on experimental findings about COVID-19 was developed.

Results: The model was used to explain the behavior of the COVID-19 outbreak in Lombardy. Different parameters were used
to simulate various scenarios relating to social distancing and lockdown. According to the model, these simple actions were
enough to control the virus. The model also explained the decline in cases in the spring and simulated a hypothetical vaccination
scenario, confirming, for example, the herd immunity threshold computed in previous works.

Conclusions: The model made it possible to test the impact of people’s daily actions (eg, maintaining social distance) on the
epidemic and to investigate interactions among agents within a social network. It also provided insight on the impact of a
hypothetical vaccine.

(JMIRx Med 2021;2(3):e24630) doi: 10.2196/24630
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Introduction

The first case of COVID-19 was detected in China [1], but one
of the most serious outbreaks occurred in Italy at the end of
January 2020 [2]. This epidemic witnessed a change in risk
management: the use of mathematical modeling [3]. As
mathematical modeling is complex [4], there are many
approaches to solving these problems. One such approach is
agent-based modeling [5], which in epidemiology has been used
widely in the past. However, due to its computational
limitations, approaches based on differential equations like SIR
(susceptible-infected-recovered) models have often been
preferred [6]. In particular, SIR models are typically mediated
by ordinary differential equations (ODEs) [7] and have been
used to model general populations worldwide [8,9], as well as
the entire Italian population in particular [10]. However, ODE
models often require many free parameters to be computed, and
they cannot usually be derived directly from experimental data
because these parameters are abstract quantities. Hence, the
most common approach to ODE models in epidemiology is to
fit all the free abstract parameters to experimental time series
that will be explained by the model. However, it is difficult to
test and quantify alternative scenarios with this approach since
the parameters are very abstract.

To solve these problems, the latest advances in computer science
and engineering, as well as the COVID-19 outbreak itself, have
led to the use of agent-based models for simulating small
community epidemic behaviors since in agent-scale simulations.
The parameters, all of which involve the individual, are usually
experimentally constrained and determined. Previous work by
Gharakhanlou and Hooshangi [11] explored the COVID-19
outbreak using an agent-based model of approximately 750,000
inhabitants in the city of Urmia, Iran, with the movement of
agents approximated by their location. Similarly, Son et al [12]
used a transmission model with a subsampled population of

9000 people living in Daegu, South Korea. There are small-scale
models as well, as shown by Cuevas [13]. Also worthy of
mention is the model developed by the University of Palermo
[14], which was based on the work of Muggeo [15].

The aim of this study was to present a qualitative, full-scale
agent-based model with the ability to reproduce the COVID-19
dynamics of Lombardy, Italy, modeling its outbreak and decline
in cases, including as much real and open-access data as
possible. Lombardy’s population of 10.06 million makes this
model very large scale compared to previous works.
Secondarily, the study aimed to investigate several alternative
scenarios in order to assess their impact at the time. Finally, a
social interaction model, used in epidemiological simulations,
was employed, per graph theory [16], to study the agents’
interactions as a social network [17]. The results were used to
draw several conclusions about the impact of people’s habits
during the COVID-19 outbreak.

Methods

The Model Structure
The key objective was to create a 3-layer model (Figure 1). The
first layer was an agent-based particle model for Lombardy.
Every agent is an inhabitant of the region, making this model
a full-scale model of Lombardy. Therefore, we have 10.06
million agents who move according to the random walk theory
[18]. The random walk behavior must be intended as an
approximation of the actual motion of people during the day;
this approximation was introduced to reduce the amount of
information required to run the model and is widely used in
many fields of science (eg, ideal gas theory) [18]. The large
number of agents simulated is part of the novelty of this study
because (to the best of the author’s knowledge) it is the first to
attempt to simulate such a large population individual by
individual for this purpose.

Figure 1. The 3-layer structure of the model. The first layer, environment and agents, represents the motion of the inhabitants. The second layer
represents social interaction between people in terms of collision detection. The third layer represents the virus dynamic in terms of epidemic behavior.
S: susceptible, I: infected, R: recovered, D: deceased.

A collision detection algorithm was built within the agent-based
model to detect whether 2 particles have a distance less than a
fixed value. However, the large scale reached by the model

required an ad hoc algorithm for this purpose; this challenging
problem was solved via a square cells algorithm that permits
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the code to run in parallel (thereby decreasing the computational
complexity of the task).

An epidemic model was built within the collision detection
model, that is, a susceptible-infected-recovered-deceased (SIRD)
model [19]. The model was filled with many experimental
findings on COVID-19, and some fitting parameters were tuned
on experimental findings. The whole analysis used as much
open-access research as possible; moreover, the entire project
was fully open source and is available on GitHub [20].

The model comprised three different layers:

1. The environment and agents model allows for the use of
real data in agent movement, creating the first difference
between the proposed model and ODE-based models [6]
since this kind of model often only uses a few equations to
describe large populations, which makes it difficult to take
into account ensemble observations on single agents. On
the other hand, the proposed model is suitable for a large
number of agents, differentiating from previous
contributions in this field [11,12].

2. The collision detection model, via 2-km–sided square cells,
allows the code to run in parallel, making it possible to
compute the epidemic spread of a population of 10 million
people agent by agent.

3. The agent-based epidemic model, based on the Markovian
process [19], makes it possible to use the experimental
probability of infection measured directly from experimental
data. This allows the model to be suitable for evaluating
alternative scenarios in contrast to ODE-based models [6],
which usually must be tuned to fit the time series observed.

The Agents Model
The agents model simulates the behavior of each inhabitant of
Lombardy using the approximation of random walks [18]. The
displacement of the particles follows the density of inhabitants
in Lombardy (ie, publicly available data). Even if more accurate
data on people displacement and movement could be used,
privacy concerns may not permit the open-source and
open-access distribution of this data. Per the random walk
approach, every particle moves with a random vector at every
step. The model runs at 6 frames per day, which is a good frame
rate considering that the scale time for epidemic phenomena is
usually months; however, this can be improved as discussed in
the Conclusions section. The random walk approach can appear
unrealistic, but this hypothesis has been shown to be appropriate
to model very large-scale systems (eg, gas thermodynamics
[21]). In addition to random walks, a weak velocity field with

a dependence of 1/r2 was added, where r is the distance between
2 particles, as in a gravitational field, in order to aggregate the
particles. The drift speed of the particles is constant and selected
with a Weibull distribution [22] with a scale parameter of 6 and
a shape parameter of 1.5. The particles’ speeds were adjusted
through a multiplicative constant in order to make the average
path length of a particle in a day about 43 km, as suggested in
a report by UnipolSai Assicurazioni [23].

The Environment Model
The setting of the simulation is Lombardy, making the
environment model a closed 2D box with a boundary shape

following Lombardy’s borders. In order to keep the particles
inside the region, a bouncing condition was introduced at the
border, so that a particle that tries to cross the border bounces
backward. This condition is very popular in gas thermodynamics
[18]. The initial conditions of the particles in terms of position
are distributed following the actual density of the population of
Lombardy, extracted from UnipolSai Assicurazioni [23] via
image analysis [24]; this is then intended as an approximation
of the real data.

Collision Detection
Starting with the assumption that the algorithm has been
designed to run on a commercial computer in parallel (the one
used in the study has AMD 3900X 12-cores and 64 GB of RAM)
and within reasonable time (about 20 minutes of calculation for
14 days of simulation), the collision detection algorithm played
a central role in the implementation of the algorithm. In order
to find all points with a distance less than a constant in a set of

N points, a complexity order of N2 is generally needed. In our

model N≈107, the complexity order was 1014, which is a large
number.

Next, Lombardy was subdivided into a grid, 20 km in dimension.
Collision detection was applied to every cell of the grid, and
every cell was assigned to a separate parallel job to run the
computation in parallel through the cells. This multiscale
processing allowed for the speeding up of the code, reducing
the RAM used simultaneously in computation, which made
possible a simulation with 10 million particles at the same time.
This approach neglects all the connections across the borders
of the cells, but this is beyond the aims of this study.

The creation of this algorithm was a challenging aspect of this
study. The idea was to use matrix optimization in order to speed
up the computation. The territory was subdivided into
20-km–long cells, and the cells in every frame were completely
independent, with the supposition that, on average, every cell
contains m people. In order to compute the distance between

all nodes in the network, we had to compute the order of N2

pairwise distances.

With this scheme, we had to only compute the order of m2

distances for each block multiplied by the number of blocks
(which is about N/m) that is an order of Nm. Considering m
small in comparison with N, it can be said that the scheme has
a complexity near the order of N (for large N and small m).
However, determining in which cell a person is located was
also challenging because of the large size of the population. For
these reasons, a simple grid scheme was used to locate nodes
inside the cells. We used the following idea—supposing a
segment from 0 km to LC=2 km with Nc=4 cells:

1. From 0 km to 0.5 km
2. From 0.5 km to 1 km
3. From 1 km to 1.5 km
4. From 1.5 km to 2 km

If, for example, the point p=0.6 km needed to be located, the
formula used to calculate this would be idp=ceil(Ncp/Lc). The
result is 2, indicating the second cell. Applying this formula for
the x-axis and y-axis allows the algorithm to locate people in
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the cells. Although this algorithm may appear to be simple, it
requires few calculations to be computed, which can make a
substantial difference when a large number of agents is
concerned.

The Epidemic Model
The epidemic model is an SIRD model [3]. Most of the models
available up to now are called population models [25]. A
population model is a model where every node is modeled by
a set of differential equations; it models a subpopulation of a
region. The number of people modeled by a single node can
range from hundreds to millions. In our model, every node is a
single person. The model is not an ODE model, but a stochastic
agent-based model. Every node has four states:

1. Susceptible: a node that has not already contracted the
disease. It can be become infected with a probability pI for
each contact with an infected node;

2. Infected: a node that is infected, which can then infect
susceptible nodes. After E days, this node will change its
state to recovered or to deceased, with a probability pD to
die and 1–pD to recover;

3. Recovered: a node that has recovered from the disease and
cannot contract it or infect susceptible nodes anymore;

4. Deceased: a node that has died and hence cannot infect
other nodes.

Validation
The proposed model was compared with a classical SIRD model
[26] fitted with a parameter exploration scheme on outbreak
data (Figure 2). As seen in Figure 2, the results are comparable
in terms of the rooted mean square error of the data: the SIRD
model had an error of 150 for the infected, 71 for the recovered,
and 18 for the deceased; and the proposed model exhibited an
error of 535 for the infected, 58 for the recovered, and 34 for
the deceased. This indicates that our model has comparable
performance with the SIRD model (outperforming in the
recovered), but it is not ODE mediated and is thus suitable for
testing alternative scenarios. Moreover, in this paper, since most
of the parameters are realistic, the model can be run for a general
epidemic upon collecting the few parameters required (which
in this case were all open access) and fitting the two parameters
left. However, the model can be made more precise by adding
additional realistic data, which most of the time are not fully
open access; this, however, is out of the scope of this study.

Figure 2. Comparison between data on the outbreak, the proposed model, and a classical susceptible-infected-recovered-deceased (SIRD) model [26].

Results

All simulations are available in .avi format on GitHub [20], as
well the MATLAB code, for reproducibility.

The Lombardy Outbreak
The first scenario was the Lombardy outbreak of March 2020
[2]. Our simulation began on February 29, 2020, and terminated
on March 14, 2020. The main realistic parameters were
pI=1/40,500 (extracted from Bhatia and Klausner [27]) and
pD=0.3 (estimated from Worldometer [28], which has also been
cited by Dhillon et al [29]).

The fitted parameters have a collision radius of 1 km. This can
appear very large compared to the 1-m distance suggested by

the World Health Organization [30]; however, when taken into
account that there are 6 frames per day, then 1 km is the radius
of the interaction of a person who remains in the same place for
4 hours and the duration of the disease (in days) E=7 (the
Centers for Disease Control and Prevention suggests E<10 [31]).

The results of the simulations can be seen in Figure 3. The model
was able to explain the experimental data until approximately
March 9, 2020. On this day, the Decree of the President of the
Council of Ministers (DPCM) implemented measures to contain
the COVID-19 outbreak [32], which included the beginning of
the lockdown in Italy. This discrepancy between the data and
the model was the result of the collective effort of the Italian
populace to protect itself against SARS-CoV-2. Therefore, the
simulation serves to provide a warning about what could have
happened.
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Figure 3. COVID-19 outbreak simulation. Top-left: population density. Top-right: log10 of the infected percentage per cell. Bottom, from left to right:
infected number, recovered number, deceased number, and recovered ratio (recovered/deaths). The solid line is the model simulation, the dotted line is
extracted data from the Ministry of Health/Civil Protection Department [33] for Lombardy, and the vertical dotted blue line marks the date March 9,
2020 [32].

Impact of People’s Habits
The second scenario was inspired by Chu et al [34], who showed
that maintaining a 2-m distance between people halved the risk
of contracting COVID-19. Thus, we aimed to simulate this kind
of social distancing by halving pI in the model. The results
(Figure 4) showed that COVID-19 (in this scenario) was not
contagious enough to spread as in the experimental data. This
simulation demonstrated the striking role of a simple action like
social distancing in fighting COVID-19 and highlighted the

difference between a virus under control and a disease of
epidemic proportions. This simple fact has already been
observed in experimental findings in Germany [35], where a
synthetic method was used to estimate the spread of the
contagion without the use of masks.

We also performed a lockdown simulation, reducing the daily
average kilometers traveled by a node from 43 km to 5 km and
reducing the interaction distance from 1 km to 100 m. The
results of this simulation can be seen in Figure 5. According to
the model, these simple actions were enough to control the virus.

JMIRx Med 2021 | vol. 2 | iss. 3 | e24630 | p. 5https://med.jmirx.org/2021/3/e24630
(page number not for citation purposes)

GiacopelliJMIRx Med

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Social distancing simulation. Top-left: population density. Top-right: log10 of the infected percentage per cell. Bottom, from left to right:
infected number, recovered number, deceased number, and recovered ratio (recovered/deaths). The solid line is the model simulation, the dotted line is
extracted data from the Ministry of Health/Civil Protection Department [33] for Lombardy, and the vertical dotted blue line marks the date March 9,
2020 [32].

Figure 5. Lockdown simulation. Top-left: population density. Top-right: log10 of the infected percentage per cell. Bottom, from left to right: infected
number, recovered number, deceased number, and recovered ratio (recovered/deaths). The solid line is the model simulation, the dotted line is extracted
data from the Ministry of Health/Civil Protection Department [33] for Lombardy, and the vertical dotted blue line marks the date March 9, 2020 [32].

Network Topology
The impact of topology in an epidemic model is a popular topic
[30,36] in the debate on social networks. Thus, we performed
a test: 1000 particles were chosen and then tracked across all
simulations to find the total number of connections (ie, contact
between particles) made within the whole population. In graph
theory, the number of connections of a node is called a degree
[16]. This test allowed us to determine the degree distribution
and the daily degree distribution (average degree per day) of
this small group of people across time. However, only the final

result is presented (the full simulation is available on GitHub
[20]). The first scenario was the COVID-19 outbreak scenario
(Figure 6).

It can be seen that the distribution has an evident left tail (in
contrast with the right tail of the Barabási-Albert models [17]).
This was probably due to the simulation time of 14 days (in
contrast with human social networks, which usually take years
to be built). The lockdown scenario was also interesting. In this
scenario, we observed a decline in connectivity from thousands
of average connections per day to hundreds (Figure 7). This
shows the importance of lockdowns in COVID-19 containment.
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Figure 6. COVID-19 outbreak simulation connectivity. Top-left: population density. Top-right: log10 of the group percentage per cell. Bottom-left:
degree distribution of the test group. Bottom-right: daily degree distribution of the test group.

Figure 7. Lockdown simulation connectivity. Top-left: population density. Top-right: log10 of the group percentage per cell. Bottom-left: degree
distribution of the test group. Bottom-right: daily degree distribution of the test group.

A Decline-in-Cases Scenario
This scenario took into account the period between May 31,
2020, and June 14, 2020. During this period, Italy concluded
its lockdown, and the number of active cases was decreasing.
For this simulation, the kilometers per day was set arbitrarily
to 15 km because of the lack of additional information on
mobility during this period. The probability of contracting the
contagion was halved to account for social distancing. The

radius of interaction and the duration of the disease were tuned
to reproduce the experimental data. The value for the radius of
interaction was 300 m and disease duration was 5 weeks (E=35).
This value (which is higher in comparison to that of the
outbreak) could be influenced by a clinical protocol more
accurately and by the queue created by the large number of
infected people, which could slow down the tests required to
declare recovery. The qualitative fitting can be seen in Figure
8.
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Figure 8. Simulation of a decline in cases. Top-left: population density. Top-right: log10 of the infected percentage per cell. Bottom, from left to right:
infected number, recovered number, deceased number, and recovered ratio (recovered/deaths). The solid line is the model simulation and the dotted
line is extracted data from the Decree of the President of the Council of Ministers [32] for Lombardy.

The Vaccine Scenario
Using the previous scenario of a decline in cases, we tested the
impact of vaccinating 70% of the population, similar to the 62%
suggested by Park and Kim [37]. The agent-based models are

suitable for testing strategies like vaccination at the individual
level. The result of the simulation was a strong decrease in
infections, which was unexpected in a simulation of 14 days.
The results are shown in Figure 9.

Figure 9. Simulation of vaccination. Top-left: population density. Top-right: log10 of the infected percentage per cell. Bottom, from left to right: infected
number, recovered number, deceased number, and recovered ratio.

Discussion

Principal Findings
This model demonstrated the importance of people’s actions in
an epidemic setting. Indeed, the behavior of the virus was
indicative of our own habits [17]. The agent-based model
proposed here has shown great flexibility in simulating
alternative scenarios; in contrast, although ODE models [6] are

faster than the proposed model, they are not suitable for this
task.

Limitations
The model proposed is more computationally expensive than
ODE models, which require the calculation of few differential
equations to simulate large populations. In general, such
algorithms are also faster than agent-based models. The
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proposed model, however, allows for the interpretation of
complex parameters.

Comparison With Prior Work
This study has explained the behavior of the COVID-19
outbreak in Lombardy and has validated the herd immunity
threshold obtained with different techniques [37], even if the
62% proposed by Park and Kim [37] is less than the 70%
proposed in this study. This contribution also provides a new
methodology in social network analysis, where the graph
theoretical approach is substituted by agents. It also paves the
way to more realistic epidemic models, where hypothetical

scenarios can be tested directly on the agents, without any ODE
mediation.

Conclusions
This work provides a novel, efficient, and low-demanding (in
terms of computational resources) population model. Many
features remain to be introduced in the model, like an
age-dependent virus model, the ability to introduce an age
parameter in the model or a more precise spatial simulation
based on big data, and the ability to simulate the habits of the
population. In conclusion, future work could be done to increase
the number of frames per day, thereby improving the
performance of the agents.
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