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Abstract

Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular
nucleus of the hypothalamus (PVN) contains neuroendocrine neurons that control the release of hormones, including
vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release
neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and
responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular
consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While
anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to
parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of
fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express
oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2) expressing
PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV). We also
demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem
cardiac vagal neurons (CVNs), neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and
sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results
provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this
critical autonomic connection.
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Introduction

Recent work has shown that vasopressin neurons in the

paraventricular nucleus of the hypothalamus (PVN) are critical

for the cardiovascular responses to challenges such as stress and

dehydration, and are involved in the maintenance and/or

generation of cardiovascular diseases, including hypertension [1],

[2–5]. However the PVN is a highly heterogeneous nucleus.

Whereas vasopressin (AVP) neurons in the PVN are sympathoex-

citatory, and activation of vasopressin receptors inhibits cardioin-

hibitory parasympathetic cardiac vagal neurons (CVNs) [6], recent

work has shown activation of oxytocin receptors can be

cardioprotective and reduces the adverse cardiovascular conse-

quences of anxiety and stress [7], [8], [9].

Yet how oxytocin can affect heart rate and cardiac function is

unknown. CVNs generate parasympathetic activity to the heart

and are responsible for maintaining a normal heart rate by

suppressing the cardioacceleratory influences of sympathetic

activity and the high intrinsic firing rate of cardiac pacemaker

cells in the sino-atrial node [10]. While anatomical work has

shown the presence of peptides, including oxytocin, in the

projections from the PVN to parasympathetic nuclei [11],

electrophysiological studies to date have only demonstrated release

of glutamate and activation of fast ligand gated receptors in these

pathways [12,13]. In this study we test if photoactivation of

channelrhodopsin-2 (ChR2) expressing PVN fibers in the brain-

stem releases oxytocin and activates oxytocin receptors using

sniffer CHO cells that are engineered to be highly sensitive to

oxytocin by co-expression of oxytocin receptors and the Ca2+

indicator R-GECO. We also test the hypothesis that stimulation of

the pathway from the PVN to CVNs activates oxytocin receptors

and elicits functional changes in synaptic plasticity within this

excitatory cardioprotective pathway.
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Materials and Methods

Ethical approval
All efforts were made to minimize the number of animals used

and to avoid any possible discomfort. All animal procedures were

performed in compliance with the institutional guidelines at The

George Washington University (Washington DC, USA) and are in

accordance with the recommendations of the Panel on Euthanasia

of the American Veterinary Medical Association and the National

Institutes of Health publication Guide for the Care and Use of

Laboratory Animals. The GWU Institutional Animal Care and

Use Committee (IACUC) specifically approved this study.

Lentiviral vector production
Lentiviral plasmids pLenti-Syn-hChR2(H134R)-EYFP-WPRE,

packaging plasmid pCMV-DR8.74 and envelope plasmid

pMD2.G were all kindly donated by K. Deisseroth (Stanford

University, Stanford, CA, USA). Lentiviral particles with VSVg

pseudotype were produced according to customary protocols as

described before [12]. All used batches of virus had a titer between

26108 and 26109 transducing units (TU) per ml.

Stereotactic injections, cardiac labelling and
immunohistochemistry

Neonatal (P5, 5–8 gms) Sprague Dawley rats, of either sex, were

anesthetized by hypothermia and mounted in a stereotactic

apparatus with a neonatal adapter (Stoelting, Wood Dale, IL,

USA). The viral vector (50–75 nl) was injected into the PVN, after

which the pipette was left in place for 10 minutes, then the incision

was closed and the animal was allowed to recover. Animals that

had injections outside the boundaries of the PVN were excluded

from further analysis.To label CVNs for electrophysiology, a right

thoracotomy was performed and 20 ml of X-rhodamine-5-(and 6)-

isothiocyanate (XRITC; Invitrogen, Eugene, OR) was injected

into the pericardial sac at the base of the heart, as described

previously [14,15].

To examine the co-localization of ChR2-EYFP and oxytocin in

PVN fibers within the dorsal motor nucleus of the vagus (DMNV)

slices (200 microns thick) were soaked in 10% formalin for one

hour and were processed for oxytocin and EYFP immunohisto-

chemistry using the following primary antibodies (overnight

incubation at 22–24uC): rabbit anti-oxytocin antibody (1:15000

dilution; T-4084, Bachem, Torrance, CA) and mouse anti-GFP/

EYFP (1:500 dilution; ab38689, Abcam, Cambridge, MA). As

secondary antibodies we used goat anti rabbit Alexa Fluor 405 and

chicken anti-mouse Alexa Fluor 488 (all 1:200 dilution and 4 h

incubation at 22–24uC; Life Technologies, Carlsbad, CA).

Sniffer CHO cells and Ca2+ imaging
CHO cells were transfected with pcDNA3.1+ containing

human OXTr cloned in at EcoRI (59) and XhoI (39) (plasmid

obtained from Missouri S&T cDNA Resource Center; www.cdna.

org) using lipofectamine and stable over-expression was achieved

by genetcin (500 mg/ml) selection. OXTr-expressing CHO-cells

were then plated and transiently transfected to also express the red

fluorescent genetically encoded Ca2+ indicator (R-GECO; plasmid

kindly donated by Robert Campbell, University of Alberta,

Canada; Addgene plasmid 32444) [16] with Fugene 6. To

examine the selectivity, affinity and responsiveness of these

OXTr-expressing CHO cells we examined the dose-response

relationship of these sniffer cells to both oxytocin and vasopressin.

To study the activation of oxytocin receptors upon stimulation of

PVN fibers in the DMNV sniffer cells were pipetted onto the

dorsal vagal complex of brain stem slices of animals previously

Figure 1. Imaging oxytocin and oxytocin receptor activation.
(A) Co-localization of ChR2-EYFP and oxytocin in brainstem fibers within
the DMNV is shown (scale bar represents 28 microns). 55.7+3.7% of
ChR2-EYFP PVN fibers in the DMNV are positive for oxytocin. (B) Both
the oxytocin and vasopressin dose-response relationships of sniffer
CHO cells expressing an oxytocin receptor and a R-GECO Ca2+ indicator
were characterized. These oxytocin receptor expressing CHO cells are
considerably more sensitive and responsive to oxytocin than vasopres-
sin with a half maximal response (EC-50) for oxytocin of 1.5 nM, and an
EC-50 for vasopressin of 12.1 nM. Responses to oxytocin were
considerably more robust than that for vasopressin; at the concentra-
tion (1 mM) at which oxytocin maximally activates these cells,
vasopressin evoked a blunted response of only 24+5% of the oxytocin
response. Sniffer CHO cells deposited on slices with ChR2 PVN fibers
(green) in dorsal motor nucleus of the vagus (DMNV) (C) detect
optogenetic oxytocin receptor activation in brainstem DMNV tissue in
close apposition to PVN fibers, (3-D reconstruction top down view (left)
and side view (right)). D, Repeated stimulations (5 min apart) of ChR2
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injected with Chr2-EYFP-expressing lentivirus in the PVN. Only

sniffer CHO cells within boundaries of the dorsal motor nucleus of

the vagus (DMNV) were analyzed and these cells were 7.560.5

microns distant from the closest ChR2 containing PVN fiber.

Imaging was performed on a confocal microscope system

consisting of an upright Zeiss Axio Examiner Z1 microscope,

with a W Plan Apocromat 20x/1.0 objective, equipped with Carl

Zeiss 710 confocal hardware. Z-series spectral image sets were

used to produce two channel image sets representing ChR2-EYFP

fibers and sniffer cells, by applying off-line a linear spectral un-

mixing protocol. For Ca2+ imaging upon photo-excitation of the

ChR2 fibers, images measured 1286128 pixels taken at 2.3 zoom

factor and bi-directional scanning. Thus the pixel measured

1.44 mm, providing sufficient cellular and temporal resolution.

Images were obtained every 76 msec.

Slice preparation, electrophysiology and drugs
Rats (5–7 weeks old and 150–250 gms) were anesthetized with

isoflurane, sacrificed, and transcardially perfused with ice-cold

glycerol-based aCSF (252 mM glycerol, 1.6 mM KCl, 1.2 mM

NaH2PO4, 1.2 mM MgCl2, 1.2 mM CaCl2, 18 mM NaHCO3,

11 mM glucose, perfused with 95% O2 and 5% CO2, pH = 7.4).

The brain was carefully removed and brainstem slices (300 mm)

were obtained using a compresstome (VF- 300; Precisionary

Instruments Inc. Greenville, NC, USA) (all in the glycerol-based

aCSF), and forebrain slices containing the PVN were cut (150 mm

for injection site verification). Slices were allowed to recover at

32uC for 15 minutes in NMDG-based aCSF (110 mM NMDG,

2.5 mM KCl, 1.2 mM NaH2PO4, 25 mM NaHCO3, 25 mM

glucose, 0.5 mM CaCl2 and 10 mM MgSO4; pH titrated with

concentrated HCl to 7.3–7.4, perfused with 95% O2 and 5%

CO2,), before being transferred to 22–24uC aCSF (125 mM NaCl,

3 mM KCl, 2 mM CaCl2, 26 mM NaHCO3, 5 mM glucose, and

5 mM HEPES, perfused with 95% O2 and 5% CO2, pH = 7.4) in

which experiments were performed. Identified CVNs in DMNV

were imaged with differential interference contrast optics, infrared

illumination, and infrared-sensitive video detection cameras to

gain better spatial resolution. A 473 nm blue CrystaLaser (Reno,
NV, USA), attached to the microscope was used for selective
photostimulation of ChR2. Patch pipettes (2.5–4.5 MOhm) con-

tained 135 mM K gluconic acid, 10 mM HEPES, 10 mM EGTA,

1 mM CaCl2, 1 mM MgCl2 and 2 mM Na-ATP, pH = 7.3.

Synaptic activity from identified CVNs was recorded at 280 mV.

Voltage-clamp whole-cell recordings were made with an Axopatch

200B and pClamp 9 software (Axon Instruments, Union City, CA,

USA). Control recordings were performed in the presences of

strychnine (1 mM) and gabazine (25 mM). D-2-amino-5-phospho-

novalerate (AP-5; 50 mM), 6-cyano-7-nitroquinoxaline-2,3-dione

(CNQX; 50 mM), (d(CH2)5
1,Tyr(Me)2,Thr4,Orn8,des-Gly-NH2

9)-

Vasotocin (OTA; 10 mM; Bachem BioSciences, Torrance CA,

USA) and (Thr4,Gly7)-Oxytocin (TGOT; 0.5 mM; Bachem

BioSciences, Torrance CA, USA) were added to the perfusate as

indicated. Non-selective stimulation of synapses surrounding

CVNs was performed by placing a stimulus isolator (A.M.P.I.,

Jerusalem, Israel) 200–400 mm lateral to the recorded CVN.

Electrical stimuli of 1-ms duration were used stimulus at an

intensity that was 1.5 times of the minimum intensity that evoked a

response in CVNs.

Analysis and statistics
Synaptic events and peak amplitudes were analyzed using

Clampfit 10.1 (Axon Instruments) and MiniAnalysis (Synaptosoft

version 4.3.1) software. All data are represented by mean 6 SEM.

For analysis of paired-pulse response (PPR) and five times 3 ms

stimulation, we excluded failures from analysis as there was no

difference between failure rates in control and OTA conditions.

EPSC frequency in the prolonged bursting stimulation experi-

ments were normalized to the frequency of EPSCs during the first

5 s of each experiment. The Ca2+ responses were binned in 0.5 s

periods in the graph and in 1 s periods for statistical analysis.

Results were tested for statistical significance using Student’s

paired t tests. For examining the OTA effect on five pulses

stimulation we used a repeated measures two-way analysis

ANOVA, and for Ca2+ imaging and time course of the facilitation

following bursting stimulations one-way ANOVA with repeated

measures analysis (GraphPad Prism 5 software).

Results

As shown in figure 1A, 55.7+3.7% of ChR2-EYFP PVN fibers

in the DMNV are positive for oxytocin. CHO cells that express

both oxytocin receptors and the red fluorescent Ca2+ indicator R-

GECO were utilized as sniffer cells for the synaptic release of

oxytocin. As shown in the dose-response relationship in figure 1B,

these oxytocin receptor expressing CHO cells are considerably

more sensitive and responsive to oxytocin than vasopressin. The

half maximal response (EC-50) of the CHO cells for oxytocin

occurred at a concentration of 1.5 nM, whereas the EC-50 for

vasopressin was 12.1 nM. In addition, responses to oxytocin were

considerably more robust than that for vasopressin; at the

concentration (1 mM) at which oxytocin maximally activates these

cells, vasopressin evoked a blunted response of only 24+5% of the

oxytocin response. Sniffer CHO cells were deposited onto the

surface of brain stem slices, specifically on the dorsal vagal

complex, containing both ChR2 expressing PVN fibers and CVNs

in the DMNV (Figure 1C). Optogenetic stimulation of PVN fibers

evoked large, reproducible, and transient increases in Ca2+

(average increase was 13.360.04% from baseline during first

second; p = 0.0001; n = 9 cells) within the sniffer CHO cells

(Figure 1D). The photostimulation-elicited increase in Ca2+ in the

sniffer CHO cells upon PVN fiber activation was abolished by

application of the oxytocin receptor antagonist OTA (control:

21.060.05%; OTA (10 mM): 4.660.02%; n = 7 cells; Figure 1E).

To determine the physiological role of the oxytocin receptor

activation, if any, we photoactivated PVN fibers while recording

post-synaptic synaptic currents in CVNs. Single pulse optogenetic

stimulation (3 ms, 1 Hz) of PVN fibers in brain stem slices

(Figure 2A) resulted in excitatory post-synaptic currents (EPSCs) in

CVNs with a short latency (5.360.46 ms; n = 14). This single

evoked response was reversibly abolished by the glutamate

receptor antagonists AP-5 and CNQX (Figure 2A).

We used the paired-pulse response (PPR; calculated as

amplitude of the response to the second stimulation/amplitude

of the response to the first stimulation) paradigm to assess short-

term plasticity of the PVN to CVN projection [17]. We observed

paired-pulse facilitation of the response at stimulation frequencies

of 0.5 Hz and 10 Hz (3 ms pulses), with average PPRs of

1.1960.05 (n = 10) and 1.4560.12 (n = 7), respectively. At both

stimulation frequencies the second response was significantly

larger (p = 0.004 and p = 0.049, respectively) than the first. To

axons in DMNV increased Ca2+. Representative traces of one sniffer CHO
cell, top, and averages of repeated stimulations in 9 CHO cells, * p,
0.0001, bottom. E, Oxytocin antagonist OTA blocks Ca2+ response,
representative trace of one cell, top, and average control increase in 7
cells (; * p,0.0001), bottom.
doi:10.1371/journal.pone.0112138.g001
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investigate whether oxytocin receptor activation influences this

short-term synaptic plasticity of PVN to CVN projections, we

examined the generation of paired pulse facilitation after

application of the oxytocin receptor antagonist OTA (10 mM).

OTA abolished paired-pulse facilitation, significantly reducing it

from 1.4560.12 to 1.1060.10 (n = 7; p = 0.021; Figure 2B, C). In

the presence of OTA the amplitude of the second response was not

significantly different from the first (p = 0.787). OTA did not alter

the amplitude of the response to the first stimulation (control:

57.568.41 pA; OTA: 63.4612.27 pA; p = 0.453) or change the

failure rate of the first or second response (failure rate control: first

stimulation 9.065.0%, second stimulation 10.065.1%; failure rate

OTA: first stimulation 7.264.2%, second stimulation

11.065.2%). Extending the stimulation protocol to five 3 ms

pulses at a frequency of 10 Hz further increased the facilitation of

glutamatergic neurotransmission from PVN fibers to CVNs

(Figure 2D and E). The oxytocin receptor antagonist OTA

significantly decreased this facilitation and reduced the amplitudes

of sequential responses (when comparing the second through the

fifth stimulation to the initial response, p = 0.014; n = 8, Figure 2D

and E).

Figure 2. PVN monosynaptic glutamatergic projections to CVNs. A, Schematic of approach, left. Right, postsynaptic responses were
completely blocked by antagonists for NMDA (AP-5; 50 mM) and AMPA/kainate receptors (CNQX; 50 mM). B, Paired-pulse facilitation (10 Hz) of
glutamatergic neurotransmission from PVN to CVNs (first trace) abolished by oxytocin antagonist OTA (10 mM; middle trace) and partly restored upon
wash out (right trace) C, Average data of OTA abolished paired-pulse facilitation (n = 7). * p = 0.021. D, Five consecutive stimulations (10 Hz;) with
increasing amplitudes (black trace). OTA reduced the amplitude (red trace). Traces are normalized to amplitude of first response. E, Average data of
the five stimulation paradigm (* p = 0.014)).
doi:10.1371/journal.pone.0112138.g002
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To test if prolonged activation of PVN fibers would evoke long-

lasting facilitation of glutamatergic synaptic events that continue

beyond the period of stimulation we stimulated PVN terminals for

5 s and examined long-lasting alterations in the spontaneous

EPSC event frequency. Prolonged stimulation of PVN terminals

for 5 s (3 ms pulses, 10 Hz) caused sustained increase in the

frequency of glutamatergic EPSCs both during and after

stimulation (Figure 3). On average the EPSC frequency was

increased 3.9 times during stimulation compared to prior

(p = 0.002; n = 9) and remained significantly increased after

cessation of PVN fiber stimulation until at least 5 seconds post

stimulation (p,0.05). OTA significantly reduced, but did not

abolish, the PVN fiber evoked facilitation of EPSC frequency

during stimulation (18% decrease from 4.060.6 to 3.360.5;

p = 0.015; n = 9; Fig. 3B), and this inhibition persisted for at least

5 s after stimulation (16% decrease from 2.360.40 to 1.960.3;

p = 0.012; n = 9; Fig. 3B). This stimulation protocol did not reveal

any postsynaptic fast ligand-gated responses other than those

mediated by glutamate, since all optogenetically evoked post-

synaptic currents were abolished in the presence of AP-5 and

CNQX.

The observed oxytocin receptor mediated facilitation of the

glutamatergic neurotransmission can be a unique property of PVN

terminals that surround CVNs or it can be a general characteristic

of glutamatergic neurotransmission to CVNs. To distinguish

between these possibilities, a bipolar stimulation electrode was

used to deliver paired-pulse activation of ubiquitous glutamatergic

EPSCs in CVNs. The oxytocin receptor agonist TGOT (0.5 mM)

did not alter the PPR with non-selective activation of glutamater-

gic inputs to CVNs (PPR control: 1.1060.14; PPR TGOT

1.0760.16; n = 7; p = 0.883) or the amplitude of the first response

(control: 218.8640.7 pA; TGOT 187.5653.4 pA; n = 7;

p = 0.462). These results indicate that the oxytocin receptor

mediated facilitation of glutamatergic neurotransmission to

cardioprotective CVNs was specific to the pathway originating

from the PVN.

Discussion

Our findings demonstrate that photostimulation of hypotha-

lamic PVN fibers in brainstem parasympathetic nuclei activates

oxytocin receptors, likely by co-release of oxytocin with glutamate,

that facilitates excitation of cardioprotective CVNs. This neuro-

peptide-mediated synaptic plasticity is specific for this pathway

and elicits increases in paired-pulse facilitation and long lasting

spontaneous glutamatergic neurotransmission. As CVNs are

intrinsically silent [18], facilitation of the major excitatory input

to CVNs would likely play an important role in maintaining and

increasing the firing of these neurons responsible for generating

parasympathetic activity to the heart. Together, our data identifies

a hypothalamic pathway capable of eliciting oxytocin receptor-

mediated facilitation of CVNs, and suggests mechanisms that

could facilitate or mimic activation of this pathway and receptors,

which could be novel targets to mitigate the deleterious

cardiovascular risks associated with stress and anxiety.

Although the PVN is well known as an important site for

sympathetic cardiovascular regulation that include projections to

pre-sympathetic neurons in the rostral ventrolateral medulla and

pre-ganglionic neurons in the upper spinal cord [19–21], the

hypothesis that different neurons in the PVN play a role in

parasympathetic control of heart rate is contentious, in spite of

evidence from neuroanatomical data that the PVN also sends

dense axonal projections to parasympathetic nuclei in the

brainstem [22–25]. In addition to the classic effects of oxytocin

on uterine contraction and milk ejection, recent work indicates

oxytocin is present in both males and females and has an

important role in both behavior and cardiovascular homeostasis

and parasympathetic cardiac activity, particularly during anxiety

and stress [26]. In human volunteers in unstressed conditions

intranasal administration of oxytocin significantly increases

parasympathetic and decreases sympathetic cardiac control [27].

Oxytocin administration, in both men and women, increases trust,

generosity, and willingness to cooperate [28]. In animal models of

social stressors, oxytocin has been shown to be protective against

behavioral and cardiac dysfunction. For example social isolation,

which increases heart rate, diminishes HR variability and vagal

regulation of the heart, was prevented with oxytocin administra-

tion [7], [8]. However whereas oxytocin reduces anxiety and the

behavioral responses to stress, vasopressin increases anxiety and

aggression, and enhances the responses to stressors [28], [29]. In

the amygdala, a nucleus important in fear behavior and anxiety,

vasopressin and oxytocin modulate the excitability of neurons in

opposite ways via modulation of excitatory synaptic inputs to these

neurons, providing a neurophysiologic mechanism for their

opposing effects of these peptides on autonomic fear responses

[30].

The results in this study identify one pathway in which oxytocin

receptors are endogenously activated and act as an important

neuromodulator of synaptic function. Optogenetic stimulation of

PVN axons activates oxytocin receptors in sniffer oxytocin-

sensitive CHO cells, and furthermore, oxytocin receptor activation

is responsible for the facilitation of the EPSCs with paired-pulse

and prolonged high frequency stimulations. This direct oxytocin

receptor mediated modulation in the neurotransmission to CVNs

Figure 3. EPSCs during and after train stimulation. A, Upper
trace: original recording with a 5 s train of stimuli (10 Hz,). Lower traces
are details of Pre, 10 Hz Stimulation, Post and Recovery conditions of
same recording. B, Group data of EPSCs. EPSC are increased during
stimulation until at least 5 s post stimulation (* p,0.05 compared to
Control 5 s prior). Oxytocin antagonist OTA reduces the EPSC frequency
during and 5 s post stimulation (#, 5 s 10 Hz stim Control vs. OTA,
p = 0.015; 5 s post Control vs OTA, p = 0.012).
doi:10.1371/journal.pone.0112138.g003
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from the hypothalamic PVN nucleus is selective for this synaptic

connection, and does not occur upon non-selective activation of

glutamatergic synapses to CVNs. While the sniffer CHO cells are

,8 fold more sensitive and responsive to oxytocin than

vasopressin, and both the responses in the sniffer CHO cells and

paired pulse facilitation in cardiac vagal neurons are abolished

with an oxytocin receptor antagonist, we cannot completely rule

out the possibility that vasopressin, instead of or with oxytocin, is

released from PVN fibers and activates oxytocin receptors.

The pre- and/or post-synaptic sites of action of oxytocin

receptor activation in this pathway are still unknown. It has been

shown that oxytocin facilitates AMPA-receptor subtype glutama-

tergic neurotransmission to lamina II neurons in the spinal cord

[31]. The oxytocin receptor agonist TGOT increased the

frequency of spontaneous and miniature EPSCs, indicating a

presynaptic site of modulation by oxytocin in the spinal cord.

Furthermore, oxytocin increases LTP in olfactory bulb and

hippocampus and mediates glutamatergic plasticity in the medial

prefrontal cortex [32–34]. In hippocampal slices oxytocin receptor

activation contributes to local translation of protein kinase Mf
[33]. In another study oxytocin caused glutamatergic EPSC

amplitude depression in the medial prefrontal cortex, likely

mediated by the endocannabinoid retrograde signalling pathway

[34]. This activity-dependent depression was turned into facilita-

tion of glutamate EPSCs by oxytocin, possibly via postsynaptic

activation of the oxytocin receptor. Similarly there are two possible

sites of action of oxytocin that cause the facilitation effect that we

observe. The first possibility is presynaptic activation of oxytocin

receptors, which can be coupled to Gq/11 class proteins and can

raise presynaptic Ca2+ levels through activation of the phospho-

lipase C/inositol triphosphate pathway. However, several other

intracellular pathways and G-proteins can be activated upon

oxytocin binding to its receptor [35]. A second possibility is that

post-synaptic oxytocin receptor activation triggers the release of a

retrograde signalling molecule from the post-synaptic site [36], a

mechanism that has been described for some oxytocin synapses

[34].

In conclusion our data provide direct evidence that oxytocin

receptors are activated, most likely by endogenous release of

oxytocin in the synaptic pathway from the PVN to CVNs, and the

activation of oxytocin receptors mediates paired-pulse facilitation

and prolonged high frequency activation within this glutamatergic

neurotransmission to CVNs. Restoration of parasympathetic

activity to the heart has recently emerged as a promising new

therapeutic approach to inhibit the progression of cardiovascular

diseases, including heart failure and risk of sudden cardiac death.

Re-establishment of cardiac vagal activity prevents arrhythmias,

decreases risk of sudden death, and protects against ischemia/

reperfusion injury [37], [38–44], [45], [46].

This pathway offers a mechanistic foundation for the potential

beneficial effects of endogenous oxytocin release in augmenting

cardioprotective parasympathetic cardiac activity.
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