

Several genes involved in the JAK-STAT pathway may act as prognostic markers in pancreatic cancer identified by microarray data analysis

Chun Pang, MD, Yuan Gu, MD, Yuechao Ding, MD, Chao Ma, MD, Wei Yv, MD, Qian Wang, MD, Bo Meng, MD^*

Abstract

Purpose: This study aimed to identify the underlying mechanisms in pancreatic cancer (PC) carcinogenesis and those as potential prognostic biomarkers, which can also be served as new therapeutic targets of PC.

Methods: Differentially expressed genes (DEGs) were identified between PC tumor tissues and adjacent normal tissue samples from a public GSE62452 dataset, followed by functional and pathway enrichment analysis. Then, protein–protein interaction (PPI) network was constructed and prognosis-related genes were screened based on genes in the PPI network, before which prognostic gene-related miRNA regulatory network was constructed. Functions of the prognostic gene in the network were enriched before which Kaplan–Meier plots were calculated for significant genes. Moreover, we predicted related drug molecules based on target genes in the miRNA regulatory network. Furthermore, another independent GSE60979 dataset was downloaded to validate the potentially significant genes.

Results: In the GSE62452 dataset, 1017 significant DEGs were identified. Twenty-six important prognostic-related genes were found using multivariate Cox regression analysis. Through pathway enrichment analysis and miRNA regulatory analysis, we found that the 5 genes, such as Interleukin 22 Receptor Subunit Alpha 1 (*IL22RA1*), BCL2 Like 1 (*BCL2L1*), *STAT1*, MYC Proto-Oncogene (*MYC*), and Signal Transducer And Activator Of Transcription 2 (*STAT2*), involved in the Jak-STAT signaling pathway were significantly associated with prognosis. Moreover, the expression change of these 5 genes was further validated using another microarray dataset. Additionally, we identified camptothecin as an effective drug for PC.

Conclusion: *IL22RA1, BCL2L1, STAT1, MYC*, and *STAT2* involved in the Jak-STAT signaling pathway may be significantly associated with prognosis of PC.

Abbreviations: BCL2L1 = BCL2 Like 1, DAVID = Database for Annotation, Visualization, and Integrated Discovery, DEGs = differentially expressed genes, FC = fold change, GEO = Gene Expression Omnibus, GO = Gene Ontology, IL22RA1 = Interleukin 22 Receptor Subunit Alpha 1, KEGG = Kyoto Encyclopedia of Genes and Genomes, MYC = MYC Proto-Oncogene, BHLH Transcription Factor, PC = pancreatic cancer, PPI = protein–protein interaction, STAT1 = Signal Transducer And Activator Of Transcription 1, STAT2 = Signal Transducer And Activator Of Transcription 2.

Keywords: differentially expressed genes, miRNA regulatory network, pancreatic cancer, prognostic biomarkers

1. Introduction

Pancreatic cancer (PC) is one of the most lethal malignancies worldwide with an estimated 53,670 new cases diagnosed and

This work was supported by the 2014 science and technology breakthrough project of Henan Provincial Science and Technology Department (No. 142300410279).

The authors have no conflicts of interest to disclose.

Department of Hepato-Biliary-Pancreatic, Zhengzhou University, Zhengzhou, Henan Province, China.

* Correspondence: Bo Meng, Department of Hepato-Billary-Pancreatic, Zhengzhou University, Dongming Road 127, Zhengzhou, Henan Province 450008, China (e-mail: Merry_B028@126.com).

Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Medicine (2018) 97:50(e13297)

Received: 2 January 2018 / Accepted: 25 October 2018 http://dx.doi.org/10.1097/MD.000000000013297 43,090 deaths in the United States in 2017.^[1] Although great progress has been made in the management of PC, the overall 5-year survival rate for patients with PC remains disma—approximately at 5% and the prognosis of PC is poor.^[2] The poor prognosis mainly results from delayed diagnosis, early metastasis, and aggressive local invasion.^[3] Therefore, it is of great clinical value to improve understanding of the underlying molecular and seek new biomarkers for more reliable and treatments for patients with PC.

Several elements, such as smoking and inherited mutations, have been identified as risk factors for this disease.^[4] However, the exact causes were still not clear. Recently, Mao et al^[5] showed that change of granulocyte adhesion pathway and alteration of Keratin 16 (*KRT16*) were involved in the pathogenesis of PC. A study revealed brain and muscle ARNT-like 1 (*BMAL1*) as an antioncogene in PC by activating the p53 tumor suppressor pathway.^[6] Additionally, the Notch pathway was shown to play a role in maintaining the cancer stem cell in PC.^[7] Most prognostic markers, such as tumor differentiation, lymph node status, and micrometastasis, are not preoperatively accessible. Prognostic genes can provide insights into the molecular mechanisms of tumor progression and have potential as biomarkers, which are informative regarding clinical outcomes.^[8] A recent study

Editor: Vishal Kothari.

indicated that overexpression of topoisomerase 2-alpha was in association with a poor prognosis in pancreatic adenocarcinoma.^[9] cyclin G2 expression inversely reflected cancer progression and was reported to be a possible independent prognostic marker in PC.^[10] Moreover, miRNA-196b was an independent prognostic biomarker in patients with PC.^[11] Multiple studies have confirmed that carcinoembryonic antigen and carbohydrate antigen 19-9 can be used for the diagnosis and follow-up of multiple diseases, including PC.^[12] However, these biomarkers are not sufficiently sensitive or specific for use in PC.^[13,14] Although tremendous efforts have been made to explore the pathogenesis of PC, there still lacks a overall understanding of underlying molecular events, which help reveal key genes and identify prognostic genes for PC. Moreover, the identification of novel PC-specific molecular biomarkers is crucial for early effective diagnosis and prognosis.

To develop a better molecular understanding and select prognostic biomarker candidates for PC, it is necessary to investigate the gene expression profiles in PC tumor tissues and nontumor tissues. In this study, differentially expressed genes (DEGs) were identified between PC tumor tissues and adjacent normal tissue samples from a public downloaded dataset, and comprehensive bioinformatics analysis was conducted. Here we aimed to identify the underlying mechanisms in PC carcinogenesis and those as potential prognostic biomarkers, which can also be served as new therapeutic targets of PC.

2. Materials and methods

2.1. Data collection and DEGs screening

Two sets of gene expression profiles under the accession number of GSE62452^[15] and GSE60979^[16] were downloaded from the Gene Expression Omnibus (GEO) repository at the National Center for Biotechnology Information^[17] (http://www.ncbi.nlm. nih.gov/geo/). The GSE62452 dataset contained 69 pancreatic tumor tissue samples and 61 adjacent normal samples; the GSE60979 dataset included 49 PC samples and 12 adjacent normal samples. Platforms used for gene profiling of GSE62452 and GSE60979 are GPL6244 (Affymetrix) and GPL14550 (Agilent), respectively. GSE62452 was used as a major analytical dataset for this analysis, while GSE60979 served as a validation dataset for verifying gene expression values following screening of important genes. This study just re-analyzed the microarray data downloaded from public database and performed bioinformatics analysis. No experiments were performed on humans or animals for this investigation. Thus, ethics approval or consent to participate was not applicable.

For the GSE62452 dataset, raw data in Affymetrix CEL files were downloaded from the GEO database, which were then preprocessed using the oligo package (Bioconductor) (http:// www.bioconductor.org/packages/oligo.html; version 1.40.2)^[18] in R3.1.3, including background correction and quantile normalization. For the GSE60979 dataset, we downloaded raw data provided as TXT format files. The probes were annotated to corresponding genes according to information from the annotation platform. If a gene can correspond to multiple probes, average expression value of the multiple probes was calculated as the expression value of the gene. Thereafter, the data were log₂ transformed using limma package^[19] (version 3.32.5; http://bioconductor.org/packages/release/bioc/html/ limma.html) in R3.1.3 to approximately follow the normal distribution, and then the data were normalized by the median normalization method.^[20]

Then, the limma package^[19] was used to screen the significant DEGs in the GSE62452 dataset, and the false discovery rate value <0.05 and $|\log_2$ fold change (FC)|>0.585 were selected as the threshold for selecting the DEGs.

2.2. Two-way hierarchical clustering analysis of DEGs

Hierarchical clustering is a powerful data mining technique that has been widely applied to search for groups (clusters) of genes with similar expression patterns or conditions from gene expression data.^[21] Two-way hierarchical clustering of both genes and samples can define patterns of genes that are expressed across many samples, producing both gene clusters and sample clusters.^[22] In this study, the expression values of the significant DEGs in each sample were extracted from the GSE62452 dataset, and 2-way hierarchical clustering analysis was performed using the pheatmap package^[23] in R3.1.3 (version 1.0.8; https://cran.r-project.org/package=pheatmap) based on the Euclidean distance.^[24] The result was represented by a heatmap.

2.3. Functional and pathway enrichment analysis of genes with differential expression

Database for Annotation, Visualization, and Integrated Discovery (DAVID) bioinformatics resource is an easy-to-use web tool for systematic and integrative analysis of large gene lists to facilitate the functional annotation and analysis.^[25] The DAVID 6.7 (https://david.ncifcrf.gov/) online search software was applied in this study to identify significantly associated Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of DEGs. The most significant enrichment of biological annotations is based on the hypergeometric distribution algorithm, as shown below. The threshold of over-represented GO terms and KEGG pathways of DEGs was set as P < .05. (The functional and pathway enrichment analysis methods used in the rest of this article are the same as those here.)

$$P = 1 - \sum_{i=0}^{x-1} \frac{\binom{M}{i} \binom{N-M}{K-i}}{\binom{N}{K}}$$

N represents the total number of genes in the whole genome, M represents the number of pathway genes, and K represents the number of DEGs. Fisher score represents the probability that at least x genes of the K DEGs belong to the pathway genes.

2.4. Construction of PPI network

With the advent of the postgenome era, protein research has become an extremely important subject. Proteins are the direct function executors of myriad life activities, and most biological processes involve the precise regulation of protein. Protein– protein interaction played an important role in protein function.^[26] Therefore, studying how proteins interact with each other to form an intermolecular regulatory network will not only help to understand various biological processes from the system point of view, but also can be widely used to explore the mechanism of disease.

In this analysis, protein–protein interaction (PPI) relationships were derived from 3 PPI databases, STRING^[27] (version: 10.0, http://string-db.org/), BioGRID^[28] (version: 3.4, https://wiki. thebiogrid.org/), and HPRD^[29] (release 9, http://www.hprd.org/). We took the union of PPI information from these 3 databases as

a background to get access to PPI relationships of DEGs. PPI network was constructed and visualized through Cytoscape $3.3^{[30]}$ (http://www.cytoscape.org/).

2.5. Screening of prognosis-related gene

Among the 69 PC samples in the main analysis dataset GSE62452, a total of 65 tumor samples were found to carry additional information on tumor prognosis. There into, death and survival samples were 49 and 16, with an average survival time of 20.203 ± 16.684 months. Univariate and multivariate Cox regression analyses of the survival package (version 2.41.3) (http://bioconductor.org/packages/survival/)^[31] in R3.1.3 language were performed to screen for genes that are significantly associated with prognosis. A *P* value < .05 based on the log-rank test was selected as the screening threshold.

2.6. Construction of prognostic gene-related miRNA regulatory networks

First, we used miR2Disease^[32] (http://watson.compbio.iupui. edu:8080/miR2Disease/index.jsp) database to search for miR-NAs that had direct associations with PC. Each entry in miR2Disease database (http://watson.compbio.iupui.edu:8080/ miR2Disease/index.jsp) includes detailed information on miRNA-disease relationships, such as disease name, miRNA ID, a expression pattern of miRNA in the disease state, miRNA-disease relationship, and references.^[32] In this study, we used "pancreatic cancer" as the name of the disease to search for miRNAs associated with the disease reported in the literature.

We then searched the target genes for directly associated miRNAs with the miRanda database^[33] (http://www.microrna. org/microrna/home.do). miRanda is the earliest miRNA target gene prediction software. The prognosis-related genes were mapped to the target genes regulated by miRNAs, and the miRNA regulatory network was constructed. The functions and pathways of the target genes regulated by miRNAs were enriched and analyzed. Furthermore, Kaplan–Meier plots^[34] were calculated for significant genes to assess the relationship between genes and prognosis.

2.7. Search for the target gene-related drug molecules in the regulatory network

In this study, Connectivity Map (CAMP, https://portals.broad institute.org/cmap/) was used in cancer drug discovery.^[35] Prognosis-related target genes of miRNAs were used to query the PC-related compounds. The drugs with |score| > 0.8 in this article were retained as small-molecular drugs with high correlation.

3. Results

3.1. Identification of DEGs

In the GSE62452 dataset, 1017 significant DEGs were identified between PC samples and control samples, of which 311 were down-regulated and 706 genes were up-regulated. A volcano plot of the DEGs was shown in Fig. 1. Additionally, a heat-map overview of the 2-way hierarchical clustering analysis of DEGs was shown in Fig. 1B. From the heat map, we found that the expression values of DEGs obtained can separate the different types of samples and the color was clear, indicating that the identified DEGs can be used to distinguish PC samples from control samples.

3.2. GO and KEGG pathway enrichment analysis of DEGs

We performed GO and pathway enrichment analysis of DEGs to investigate the involved functions, which revealed that 23 GO terms and 22 KEGG pathways were enriched by all the DEGs (Table 1 and Fig. 1). The most enriched GO terms were "cell adhesion" (GO:0007155) and "biological adhesion" (GO:0022610) in biological processes category (Table 1). On the other hand, the DEGs were significantly enriched in the pathways, such as "ECM-receptor interaction," "Focal adhesion," "Cytokine-cytokine receptor interaction," and "JAK (Janus tyrosine Kinase)-STAT (Signal Transducer and Activator of Transcription) signaling pathway."

3.3. PPI network construction

In total, 1663, 847, and 386 PPI pairs of DEGs were obtained in the STRING, BioGRID, and HPRD databases, respectively. A total of 2061 pairs of interactions (the union of those from 3 databases) are used to construct the PPI network, as shown in Fig. 2, which consisted of 462 nodes and 2061 edges (interactions). The nodes contained 110 down-regulated genes and 352 genes that were up-regulated.

3.4. Screening of prognostic-related genes from DEGs and construction of miRNA regulatory network

Based on the gene expression values of 462 nodes in the PPI network and prognosis information of samples, a total of 116 prognostic-related genes were identified using univariate cox regression analysis. Ultimately, 26 important prognostic-related genes were found using multivariate cox regression analysis (Table 2), such as BCL2 Like 1 (*BCL2L1*) and Interleukin 22 Receptor Subunit Alpha 1 (*IL22RA1*).

A total of 24 miRNAs were found to be associated with PC by searching in the miR2Disease database, and miRanda was used to search for target genes of these 24 miRNAs. The target genes were mapped to the important prognostic-related genes and 93 pairs of regulatory relationships were identified. Figure 3A shows the miRNA regulatory network constructed based on the 24 miRNAs and their target prognostic-related genes, which included 46 nodes, of which 24 miRNAs and 22 target prognostic-related genes (4 down-regulated and 18 up-regulated genes) were included, and 111 edges, of which 93 miRNA-gene interactions and 18 gene–gene interactions were included. The disease-related miRNAs and their target prognostic-related genes were listed in Table 3.

The 22 target prognostic-related genes in the miRNA regulatory network were significantly enriched in 4 KEGG pathways, hsa04630: Jak-STAT signaling pathway (P= 3.40E-04), hsa04512: ECM-receptor interaction (8.59E-04), hsa05200: pathways in cancer (0.005558), and hsa04510: focal adhesion (0.010277). In particular, the regulated target prognostic-related genes were most significantly involved in the Jak-STAT signaling pathway, with 5 genes involved: IL22RA1, BCL2L1, Signal Transducer And Activator Of Transcription 1 (STAT1), MYC Proto-Oncogene, BHLH Transcription Factor (MYC), and Signal Transducer And Activator Of Transcription 2 (STAT2) (Fig. 4A). We independently extracted the regulatory relationship between

Figure 1. Identification of DEGs and functional enrichment analysis. (A) Volcano plot of the DEGs. Red horizontal dotted line represents the threshold line of false discovery rate = 0.05; red vertical dashed line indicates the threshold line of $|\log_2 FC| > 0.585$. Red triangle represents significantly up-regulated gene, green inverted triangle represents significantly down-regulated gene, and black dot indicates non-DEG. (B) Heat map of DEGs. Red indicates up-regulation and green indicates down-regulation. In the above sample bar, the green represents adjacent normal samples and light purple indicates pancreatic cancer tumor tissue. Enriched Gene Ontology biology process terms (C) and Kyoto Encyclopedia of Genes and Genomes pathways (D) of DEGs. The abscissa represents the number of genes involved in the corresponding biological processes and pathways, and the ordinate indicates the biological process and the pathway. The color of the point from green to red indicates a significant change in the value of *P* from small to large, and the size of the point indicates ratio (ratio = number of genes involved in function or pathway/ number of background genes). DEGs = differentially expressed genes, FC = fold change.

these 5 genes from the miRNA regulatory network and constructed the Jak-STAT signaling pathway-related miRNA regulatory network (Fig. 3B), which included 14 miRNAs.

On the other hand, we performed Kaplan–Meier curves on the 5 prognostic-related genes involved in the Jak-STAT signaling pathway, dividing the expression of each gene in all samples into a high-expression group (expression above that in the sample with the median expression values) and low-expression group (expression less than that in the sample with the median expression values). The results (Fig. 3C) showed that high-expression group of *STAT1*, *STAT2*, and *IL22RA1* genes had better survival rate, and low-expression group of *BCL2L1* and *MYC* genes had better survival rate.

3.5. Screening of related small-molecule drugs

Several small-molecule drugs were found to have negative correlation with PC using the CMAP database, such as

camptothecin (correlation score = -0.947), butein (correlation score = -0.928), 8-azaguanine (correlation score = -0.921), and alsterpaullone (correlation score = -0.921). Two small-molecule drugs were found to have positive correlation with PC, containing (correlation score = -0.836) and vigabatrin (correlation score = 0.85).

3.6. Validation of the 5 prognostic-related genes involved in the Jak-STAT signaling pathway using GSE60979 dataset

In the dataset GSE62452, *IL22RA1* and *MYC* genes were significantly downregulated in PC tissue samples; *BCL2L1*, *STAT1*, and *STAT2* genes were significantly upregulated in cancer samples. As shown in Fig. 4B, we used another independent dataset GSE60979 to validate the expression characteristics of these 5 genes in different types of samples. As a result, we found that they presented differential expression

Table 1

Enriched GO terms and pathways of the identified differentially expressed genes.

GO 108 8.19171 5.42E G0:0007155: cell adhesion 108 8.19171 5.42E G0:00022010: biological adhesion 108 8.19171 5.64E G0:000101: seporate to wounding 73 7.5644767 1.41E G0:000051: skaletal system development 48 4.974093 5.16E G0:000054: wasal development 37 3.843197 7.42E G0:000054: wissal development 35 3.828943 0.0323 G0:000154: wissal development 35 3.828943 0.0323 G0:000156: visualidar tevelopment 35 3.828943 0.0323 G0:000156: visualidar tevelopment 25 2.590674 0.0017 G0:0002175: regulation of toxin/fuid levels 25 2.590674 0.0017 G0:0002175: regulation of toxin/fuid levels 23 2.38342 5.40E G0:000168: cell-substrate adhesion 21 2.178793 4.38E G0:000168: cell-substrate adhesion 21 2.178166 0.0311 G0:0001760: cell-matix adhesion 21 2.178166	Terms	Count	Ratio	Р
G0:007155: cell admission 108 8.19171 5.425- 5.425 G0:002210: biological admission 108 8.19171 6.06E- 5.425 G0:00210: biological admission 108 8.19171 6.06E- 5.425 G0:00210: biological admission 108 4.974093 5.16E- 5.425 G0:00101: Si: studiate development 31 3.434197 7.42E- 5.620042085 G0:00158: biod vessel development 35 3.686943 .0022 G0:00158: biod vessel development 28 2.910554 .0017 G0:00158: biod vessel development 28 2.91054 .0017 G0:0020158: ciudate structure organization 28 2.91054 .0017 G0:0020158: ciudate structure organization 28 2.90074 .0020 G0:0020158: ciudate development 23 2.3842 5.401- G0:0020158: ciudate development 28 2.90074 .0020 G0:0020169: ciudate development 28 2.90074 .0020 G0:002169: ciudate development 28 2.90074 .0020 G0:002169: ciudate development	GO			
G0.0028101: biological adhesion 108 8.19171 66.066 G0.0009811: seponse to organic substance 70 7.253866 .0416 G0.0010101: selicital system development 48 4.974033 15.162– G0.0010154: selicital system development 37 3.824197 7.425– G0.0010154: vasculature development 37 3.824993 3.0022 G0.0010154: vasculature development 35 3.62694.3 .0022 G0.001055: regulation of cell adhesion 25 2.590674 .0017 G0.000155: regulation of response to external stimulus 25 2.590674 .00259 G0.0001760: cell-matrix adhesion 23 2.38342 .6.40E- G0.0001760: cell-matrix adhesion 21 2.176166 .0.031 G0.0001760: cell-matr	G0:0007155: cell adhesion	108	8.19171	5.42E-18
G0:000811: regonse to vounding 73 7.564767 1.41E- G0:001003: regonse to orgins substance 70 7.253886 0.416 G0:001013: skeletal system development 48 4.974083 5.16E- G0:0001561: skeletal system development 35 3.626943 .00228 G0:0001562: skoatkurs development 35 3.626943 .00228 G0:0001562: skoatkurs development 35 3.626943 .00228 G0:0001562: skoatkurs development 25 2.590674 .0017 G0:0001562: sequaleton of end shesion 25 2.590674 .00259 G0:0001562: sequaleton of aborse to estemal stimulus 25 2.590674 .00259 G0:0001662: regulaton of nesponse to estemal stimulus 23 2.33342 -5.46E G0:0001662: response to poxica 21 2.176166 .0031 G0:0001666: response to poxica 21 2.176166 .0031 G0:0001666: response to poxica 21 2.176166 .0031 G0:0001666: response to hypoxica 20 2.072539 .00933 G0:0001666: respoxica </td <td>G0:0022610: biological adhesion</td> <td>108</td> <td>8.19171</td> <td>6.06E-18</td>	G0:0022610: biological adhesion	108	8.19171	6.06E-18
G0.001033: reports to organic substance 70 7.253866 .04163 G0.000150: reports to organic substance 40 4.145078 .0219 G0.000150: reports to development 37 .3324197 .7.42E G0.000150: reputation development 35 .3626943 .0.0023 G0.001056: reputation development 35 .3626943 .0.0023 G0.00150: regulation of cell athesion 25 .2500674 .0.0017 G0.000155: regulation of cell athesion 23 .238342 .0.021 G0.0001760: cell-substrate atomshoin 23 .238342 .0.021 G0.0001760: cell-substrate atomshoin 21 .2176166 .0.0031 G0.0001760: cell-substrate atomshoin 21 .2176166 .0.0031 G0.0001760: cell-matrix athesion 21 .2176166 .0.0031 G0.0001760: cell-substrate aton	GO:0009611: response to wounding	73	7.564767	1.41E-08
00.001501: skielati system development 48 474093 5.162- 05.000654: Informatory reportse 40 4.145078 0.219 05.0001540: Informatory reportse 40 4.145078 0.219 05.0001540: Uord healing 33 3.1658943 0.0022 05.0001560: Uord healing 33 3.16989 8.67E- 05.0001560: Explaint of all athesion 25 2.590674 0.0017 05.0002100: Explaint of all athesion 23 2.38342 5.46E- 05.0001560: Explaints of all athesion 23 2.38342 5.46E- 05.0001660: response to oxygen levels 23 2.38342 5.46E- 05.0001660: response to to oxygen levels 20 2.77973 4.945 05.0001660: response to typoxia 22 2.77973 4.945 05.0001660: response to typoxia 20 2.072539 0.0331 05.00001660: rotein maturation 21 2.176166 0.0311 05.00001660: rotein maturation 20 2.072539 0.0329 05.00001660: rotein atheatesion 20 2.072539 </td <td>GO:0010033: response to organic substance</td> <td>70</td> <td>7.253886</td> <td>.041627</td>	GO:0010033: response to organic substance	70	7.253886	.041627
GC.0006854: inflammating response 40 4145078 0.201 GC.0001568: blood vessel development 37 3.834197 7.42E- GC.0001568: blood vessel development 35 3.626943 .00321 GC.0040360: wound healing 33 3.419689 8.67E- GC.003155: regulation of cell achiesion 25 2.590674 .00320 GC.0003158: regulation of cell achiesion 23 2.38342 .0344 GC.0003158: regulation of response to external stimulus 25 2.590674 .00230 GC.0001589: cell-substrate adhesion 23 2.38342 .0344 GC.0001589: cell-substrate adhesion 22 2.279793 .04458 GC.0001680: cell-substrate adhesion 21 2.176166 .00311 GC.00017600: cell-matrix adhesion 21 2.176166 .00311 GC.00007596: blood cacgulation 20 2.072539 .00232 GC.00017660: response to hypoxia 22 2.072539 .00233 GC.00007596: blood cacgulation 20 2.072539 .00234 GC.00017680: protein maturation	GO:0001501: skeletal system development	48	4.974093	5.16E-06
CD:0001944: vasculture development 37 3.834197 7.42E- G0:001968: blood vassel development 35 3.626943 .0032 G0:004006: wound healing 33 3.419669 8.67E- G0:004006: gradial arbaison 25 2.590674 .0017 G0:003105: regulation of body fluid levels 25 2.590674 .0025 G0:003105: regulation of body fluid levels 23 2.38342 5.46E- G0:003105: cell-substrate adhesion 22 2.273793 4.38E- G0:0007166: response to expenial stimulus 21 2.176166 .00317 G0:0007166: response to expenial stimulus 20 2.273793 .438E- G0:0007166: response to hypoxia 22 2.273793 .438E- G0:0007596: blood coagulation 20 2.072539 .00331 G0:0007596: blood coagulation 20 2.072539 .00332 G0:0007596: reponse interaction 33 3.419689 2.2EE- hsad4512: EAH-secaptor interaction 34 3.52316 .022E+ hsad4502: coal adhesion 24	GO:0006954: inflammatory response	40	4.145078	.021978
G0.001568: biod vessel development 35 3.628943 .0022 G0.0042060: wurach healing 33 3.419689 8.67E- G0.0043062: extracellular structure organization 28 2.901554 .0012 G0.0030155: regulation of coll athesion 25 2.590674 .0026 G0.003175: regulation of coll websic 23 2.8342 .0344 G0.0017100: cell-matrix athesion 23 2.8342 .0344 G0.00017100: cell-matrix athesion 21 2.176166 .00315 G0.00017100: cell-matrix athesion 21 2.176166 .003116 G0.0001760: response to oxygen levels 20 2.072539 .00393 G0.0001760: response to propoia 20 2.072539 .00393 G0.00007566: biodo coagulation 20 2.072539 .00393 G0.00007569: bried coagulation 20 2.072539 .00393 G0.00007569: bried coagulation 33 .419689 2.26E Hsad4512: EDM-receptor interaction 34 .425356 .0222E G0.0007598: bried coagulation cascades 16	GO:0001944: vasculature development	37	3.834197	7.42E-04
GC0.0042060: wundt healing 33 3.419689 8.87E- GC0.0042060: wundt healing 28 2.901554 .00172 GC0.0030155: regulation of body fluid levels 25 2.590674 .00259 GC0.003155: regulation of body fluid levels 25 2.590674 .00259 GC0.003150: regulation of body fluid levels 23 2.88342 .0.044 GC0.001500: regulation of body fluid levels 22 2.279733 .4.38E- GC0.001666: response to oxygen levels 22 2.279733 .4.38E- GC0.001666: response to poyola 22 2.279733 .4.045 GC0.001666: response to poyola 22 2.279733 .4.045 GC0.001666: response to poyola 20 2.072539 .0.0331 GC0.001667: roegulation 20 2.072539 .0.0323 GC0.001667: roegulation 20 2.072539 .0.0323 GC0.0016759: hernostasis 20 2.072539 .0.0224 Read/610: complement and coagulation cascades 16 1.668031 1.19E- hsad/610: complement and coagulation cascades	GO:0001568: blood vessel development	35	3.626943	.003284
G0.0043062: extracellular structure organization 28 2.901554 .0017 G0.0030155: regulation of cell adhesion 25 2.590674 .0030 G0.0031783: regulation of coll adhesion 23 2.89424 .0020 G0.0031781: regulation of tooly fluid levels 23 2.88342 .03444 G0.0001760: cell-matrix adhesion 22 2.279733 .4.88E G0.0001760: cell-matrix adhesion 21 2.176166 .0031 G0.0001760: cell-matrix adhesion 21 2.176166 .0031 G0.0001760: response to poya 22 2.279733 .04956 G0.0001760: response to poya 22 2.279733 .04956 G0.0001760: response to poya 20 2.072539 .00331 G0.00050817: ceagulaton 20 2.072539 .00380 G0.00017690: biolod ceagulaton 20 2.072539 .00380 G0.00016485: protein processing 20 2.072539 .00380 G0.00016485: protein processing 21 2.176166 .00276 nsad4512: cEM+recegtor interaction 31	G0:0042060: wound healing	33	3.419689	8.67E-05
60:0030155: regulation of cell adhesion 25 2.590674 .0037 60:0050878: regulation of body fluid levels 25 2.590674 .0038 60:0031599: cell-substrate adhesion 23 2.38342 .5.40E- 60:0007160: cell-matrix adhesion 22 2.279793 .4.38E- 60:0007160: cell-matrix adhesion 22 2.279793 .4.38E- 60:0007166: response to bypoxia 22 2.279793 .0.495: 60:0001666: response to hypoxia 21 2.176166 .0.031: 60:00007589: extracellular matrix organization 21 2.176166 .0.031: 60:0007589: biode casquiation 20 2.072539 .0.0038 60:0007589: protein processing 20 2.072539 .0.038 5:00007589: protein processing 21 2.176166 .0.025 5:00007589: protein processing 21 <td>G0:0043062: extracellular structure organization</td> <td>28</td> <td>2.901554</td> <td>.001216</td>	G0:0043062: extracellular structure organization	28	2.901554	.001216
60:005078: regulation of hody fluid levels 25 2.590674 .00301 60:003158: cell-substrate adhesion 23 2.38342 .0344 60:0001589: cell-substrate adhesion 23 2.38342 .0344 60:0001666: response to external stimulus 23 2.38342 .0344 60:0007166: response to hypoxia 22 2.279793 .4385 60:0001566: response to hypoxia 21 2.176166 .03031 60:000756: biod cagulation 20 2.072539 .00933 60:0007589: hemostasis 20 2.072539 .00330 60:0007589: hemostasis 20 2.072539 .02324 60:0007599: hemostasis 20 2.072539 .02324 60:0007599: hemostasis 20 2.072539 .02324 60:0007591: conglenent and coagulation cascades 16 1.658031 1.19E- <	G0:0030155: regulation of cell adhesion	25	2.590674	.001791
G0:0032101: regulation of response to external stimulus 25 2.590674 0.259 G0:0031589: cell-substrate adhesion 23 2.38342 .0344 G0:0007160: cell-matrix adhesion 22 2.279733 .438E- G0:0001666: response to oxygen levels 23 2.279733 .04957 G0:0001666: response to oxygen levels 21 2.176166 .00311 G0:00051604: protein maturation 21 2.176166 .03911 G0:00051604: protein maturation 20 2.072539 .00933 G0:0007599: hemotasis 20 2.072539 .03804 G0:0007599: hemotasis 20 2.072539 .03804 KEG6	G0:0050878: regulation of body fluid levels	25	2.590674	.003056
G0:0031589: cell-substrate adhesion 23 2.38342 5.40E- G0:00710482: response to oxgen levels 23 2.38342 .0.344 G0:0007106: cell-matrix adhesion 22 2.279733 .4.38E- G0:0007106: protein matrix organization 21 2.176166 .0.0311 G0:0007506: blood coagulation 20 2.072539 .0.0933 G0:0007506: blood coagulation 20 2.072539 .0.0933 G0:0007506: blood coagulation 20 2.072539 .0.0233 G0:0007599: hemostasis 20 2.072539 .0.03360 G0:0007599: hemostasis 20 2.072539 .0.3800 KEG6	GO:0032101: regulation of response to external stimulus	25	2.590674	.025969
G0:0070462: response to oxygen levels 23 2.38342 .03444 G0:0007160: cell-matix adhesion 22 2.279733 .4.38E G0:0001666: response to hypoxia 22 2.279733 .04953 G0:0001666: response to hypoxia 22 2.279733 .04953 G0:0001560: response to hypoxia 21 2.176166 .00311 G0:0001560: biodo caguidation 20 2.072539 .00933 G0:0007595: biodo caguidation 20 2.072539 .00330 G0:0007595: biodo caguidation 20 2.072539 .00330 G0:001648: protein interaction 33 3.419689 2.2E= hsa04512: ECM-receptor interaction 33 3.419689 2.2E= hsa04610: complement and coaguidation cascades 16 1.656031 1.19E- hsa04500: cathways in cancer 34 3.523316 .00256 hsa04500: cathways in cancer 12 1.243533 .00898 hsa045115: b53 signaling pathway 7 0.725389 .01165 hsa04506: catherens junction 10 1.036269	GO:0031589: cell-substrate adhesion	23	2.38342	5.40E-05
G0:0007160: cell-matrix adhesion 22 2.279793 4.38E- G0:0001666: response to hypoxia 22 2.279793 0.04953 G0:0001666: response to hypoxia 21 2.176166 0.03911 G0:0007596: biood coegulation 20 2.072539 0.0933 G0:0007599: biood coegulation 20 2.072539 0.0933 G0:0007599: hemostasis 20 2.072539 0.0326 G0:000517: coagulation 33 3.419689 2.26E- hsa04512: ECM-receptor interaction 33 3.419689 2.26E- hsa04510: focal adhesion 44 4.559585 9.22E+ hsa04510: focal adhesion 9 0.932642 0.0477 hsa04520: adherensi junction 9 0.932642 0.0477 hsa045214: cell adhesion molecules 12 1.243523 0.0898 hsa045214: c	G0:0070482: response to oxygen levels	23	2.38342	.034495
G0:0001666: response to hypoxia 22 2.279793 .04953 G0:0030198: extracellular matrix organization 21 2.176166 .00311 G0:0051964: protein matrix organization 20 2.072539 .00933 G0:005017596: blood coagulation 20 2.072539 .00933 G0:005017597: hemostasis 20 2.072539 .00333 G0:0016488: protein processing 20 2.072539 .03300 G0:0016485: protein processing 20 2.072539 .03300 KEG	GO:0007160: cell-matrix adhesion	22	2.279793	4.38E-05
G0:0030198: extracellular matrix organization 21 2.176166 .00311 G0:0051604: protein maturation 20 2.072539 .00933 G0:0007598: hondo caguilation 20 2.072539 .00933 G0:0007599: hernostasis 20 2.072539 .02224 G0:0016485: protein processing 20 2.072539 .03800 KEG	GO:0001666: response to hypoxia	22	2.279793	.049552
G0:0051604: protein maturation 21 2.176166 .0391: G0:0007596: blood coagulation 20 2.072539 .00933 G0:00051604: protein maturation 20 2.072539 .00933 G0:000599: hemostasis 20 2.072539 .0222 G0:0016485: protein processing 20 2.072539 .0380 KEG	G0:0030198: extracellular matrix organization	21	2.176166	.003174
G0:0007596: blood cogulation 20 2.072539 .00933 G0:0050817: coagulation 20 2.072539 .00933 G0:0007599: hemostasis 20 2.072539 .02222 G0:0016485: protein processing 20 2.072539 .0380 KEG	G0:0051604: protein maturation	21	2.176166	.039124
G0:0050817: coagulation 20 2.072539 .00931 G0:0007599: hemostasis 20 2.072539 .0222 G0:0016485: protein processing 20 2.072539 .0380 KEGG - - - - hsa04510: focal adhesion 44 4.559585 9.22E- hsa04510: complement and coagulation cascades 16 1.658031 1.19E- hsa04520: pathways in cancer 34 3.523316 .00256 hsa04520: adherens junction 9 9.332642 .00477 hsa04520: adherens junction 21 2.43523 .00899 hsa04520: adherens junction 21 1.243523 .00899 hsa04511: p53 signaling pathway 7 0.725389 .0116 hsa04520: adipocytokine signaling pathway 8 0.829016 .01394 hsa04521: pancreatic cancer 6 0.621762 .01244 hsa0330: Ityl junction 10 1.036269 .02155 hsa04521: pancreatic cancer 6 0.621762 .02244 hsa043010: cell	G0:0007596: blood coagulation	20	2.072539	.009384
G0:0007599: hemostasis 20 2.072539 .02224 G0:0016485: protein processing 20 2.072539 .0330 KEG	G0:0050817: coagulation	20	2.072539	.009384
G0:0016485: protein processing 20 2.072539 .0380- KEG hsa04512: ECM-receptor interaction 33 3.419689 2.26E – hsa04610: complement and coagulation cascades 16 1.658031 1.19E – hsa04610: complement and coagulation cascades 16 1.658031 1.19E – hsa04610: complement and coagulation cascades 16 1.658031 1.0257 hsa04520: atherens junction 9 0.332642 .00477 hsa04500: cytokine-cytokine receptor interaction 21 2.176166 .00877 hsa04514: cell adhesion molecules 12 1.243523 .00899 hsa04520: atipocytokine signaling pathway 7 0.725389 .01167 hsa04520: atipocytokine signaling pathway 6 0.621762 .01944 hsa04520: atipocytokine signaling pathway 10 1.036269 .02247 hsa04521: pancreatic cancer 6 0.621762 .02444 hsa04520: atipocytokine signaling pathway 10 1.036269 .02315 hsa04270: vascular smooth muscle contraction 8 0.829016 .02444 hsa044310: Jak STAT signaling pathway 10 1.036269	GO:0007599: hemostasis	20	2.072539	.022256
KEGG 33 3.419689 2.26E– hsa04510: focal adhesion 44 4.559585 9.22E– hsa04610: complement and coagulation cascades 16 1.658031 1.19E– hsa04502: adherens junction 9 0.932642 .00477 hsa04502: cytokine -cytokine receptor interaction 21 2.176166 .00870 hsa045115: p53 signaling pathway 7 0.725389 .01166 hsa044502: adherens junction 8 0.829016 .01394 hsa044502: adherens junction 10 1.036269 .0214 hsa044502: adjocytokine signaling pathway 6 0.621762 .01944 hsa044502: adjocytokine signaling pathway 10 1.036269 .02132 hsa04410: cell cycle 9 0.932642 .02448 hsa04270: vascular smooth muscle contraction 8 0.829016 .02532 hsa04310: insulin signaling pathway 10 1.036269 .02312 hsa04110: cell cycle 9 0.932642 .02448 hsa04270: vascular smooth muscle contraction 8 0.829016 .02642 hsa04910: insulin signaling pathway 10 <td>GO:0016485: protein processing</td> <td>20</td> <td>2.072539</td> <td>.038044</td>	GO:0016485: protein processing	20	2.072539	.038044
hsa04512: ECM-receptor interaction 33 3.419689 2.26E- hsa04510: focal adhesion 44 4.559585 9.22E- hsa04610: complement and coagulation cascades 16 1.658031 1.19E- hsa05200: pathways in cancer 34 3.523316 .00254 hsa04520: adherens junction 9 0.932642 .00477 hsa04514: cell adhesion molecules 12 1.243523 .00899 hsa04514: cell adhesion molecules 7 0.725389 .01167 hsa04520: adherens junction 8 0.829016 .01394 hsa04514: cell adhesion molecules 10 1.036269 .02156 hsa04520: TGF-beta signaling pathway 6 0.621762 .01944 hsa04530: TGF-beta signaling pathway 10 1.036269 .02312 hsa04530: tight junction 10 1.036269 .02314 hsa04530: tight gathway 10 1.036269 .02314 hsa04210: vascular smooth muscle contraction 8 0.829016 .02447 hsa04270: vascular smooth muscle contraction 8 0.	KEGG			
hsa04510: focal adhesion 44 4.559585 9.22E– hsa04610: complement and coagulation cascades 16 1.658031 1.19E– hsa05200: pathways in cancer 34 3.523316 .00250 hsa04520: adherens junction 9 0.932642 .00477 hsa04514: cell adhesion molecules 12 1.243523 .00899 hsa04514: cell adhesion molecules 7 0.725389 .01166 hsa04350: TGF-beta signaling pathway 7 0.725389 .01167 hsa04350: tight junction 10 1.036269 .021762 .02247 hsa04320: adipocytokine signaling pathway 6 0.621762 .02247 .036269 .02315 hsa04320: tight junction 10 1.036269 .02315 .03642 .02482 hsa04320: cycle 9 0.32642 .02482 .02482 hsa0430: JAk-STAT signaling pathway 10 1.036269 .03627 hsa04310: vas	hsa04512: ECM-receptor interaction	33	3.419689	2.26E-18
hsa04610: complement and coagulation cascades 16 1.658031 1.19E– hsa05200: pathways in cancer 34 3.523316 .0025i hsa04520: adherens junction 9 0.932642 .0047i hsa04060: cytokine-cytokine receptor interaction 21 2.176166 .0087i hsa04514: cell adhesion molecules 12 1.243523 .0089i hsa04350: TGF-beta signaling pathway 7 0.725389 .0116i hsa04520: adipocytokine signaling pathway 8 0.829016 .01394i hsa04520: dipocytokine signaling pathway 6 0.621762 .0224i hsa04520: gating pathway 10 1.036269 .0224i hsa04520: gating pathway 10 1.036269 .0224i hsa04270: vascular smooth muscle contraction 8 0.829016 .02642 hsa0430: Jak-STAT signaling pathway 10 1.036269 .03057 hsa04310: Whr signaling pathway 8 0.829016 .02642 hsa04410: calcium signaling pathway 8 0.829016 .03057 hsa044270: vascular smooth muscle contraction 8 0.829016 .02642 h	hsa04510: focal adhesion	44	4.559585	9.22E-14
hsa05200: pathways in cancer 34 3.523316 .00254 hsa04520: adherens junction 9 0.332642 .00471 hsa04060: cytokine-cytokine receptor interaction 21 2.176166 .00894 hsa04514: cell adhesion molecules 12 1.243523 .00899 hsa04515: p53 signaling pathway 7 0.725389 .01166 hsa04350: TGF-beta signaling pathway 6 0.621762 .01394 hsa04530: tight junction 10 1.036269 .02155 hsa05212: pancreatic cancer 6 0.621762 .02241 hsa04320: relative signaling pathway 10 1.036269 .02155 hsa05212: pancreatic cancer 6 0.621762 .02241 hsa04270: vascular smooth muscle contraction 8 0.829016 .02642 hsa04630: Jak-STAT signaling pathway 10 1.036269 .030512 hsa04310: WAY signaling pathway 8 0.829016 .02642 hsa04310: WAY signaling pathway 8 0.829016 .030521 hsa044202: calcium signaling pathway 8 0.829016 .04115 hsa044310: WAY signaling pathway	hsa04610: complement and coagulation cascades	16	1.658031	1.19E-05
hsa04520: adherens junction 9 0.932642 .00474 hsa04060: cytokine–cytokine receptor interaction 21 2.176166 .00874 hsa04514: cell adhesion molecules 12 1.243523 .00899 hsa04115: p53 signaling pathway 7 0.725389 .01167 hsa04350: TGF-beta signaling pathway 8 0.829016 .01394 hsa04350: dipcytokine signaling pathway 6 0.621762 .01147 hsa04530: tight junction 10 1.036269 .02247 hsa04520: vascular smooth muscle contraction 8 0.829016 .02247 hsa04530: tight junction 10 1.036269 .02312 hsa04270: vascular smooth muscle contraction 8 0.829016 .02644 hsa0430: juk-STAT signaling pathway 10 1.036269 .03057 hsa04410: cell cycle 9 0.932642 .02644 hsa04910: insulin signaling pathway 8 0.829016 .03057 hsa04910: insulin signaling pathway 8 0.829016 .03627 hsa04010: MAPK signaling pathway 14 1.450777 .04192 hsa04020: calcium signaling path	hsa05200: pathways in cancer	34	3.523316	.002589
hsa04060: cytokine -cytokine receptor interaction 21 2.176166 .00874 hsa04514: cell adhesion molecules 12 1.243523 .00894 hsa04115: p53 signaling pathway 7 0.725389 .01162 hsa04350: TGF-beta signaling pathway 8 0.829016 .01339 hsa04920: adipocytokine signaling pathway 6 0.621762 .01940 hsa04530: tight junction 10 1.036269 .02156 hsa05212: pancreatic cancer 6 0.621762 .02247 hsa0320: PPAR signaling pathway 10 1.036269 .02156 hsa04270: vascular smooth muscle contraction 8 0.829016 .02474 hsa04310: Wht signaling pathway 10 1.036269 .02312 hsa04270: vascular smooth muscle contraction 8 0.829016 .02642 hsa04630: Jak-STAT signaling pathway 10 1.036269 .030521 hsa0410: Wht signaling pathway 8 0.829016 .04116 hsa0410: Wht signaling pathway 8 0.829016 .04126 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium	hsa04520: adherens junction	9	0.932642	.004759
hsa04514: cell adhesion molecules 12 1.243523 .00899 hsa04115: p53 signaling pathway 7 0.725389 .0116 hsa04350: TGF-beta signaling pathway 8 0.829016 .0139 hsa0420: adipocytokine signaling pathway 6 0.621762 .01940 hsa04530: tight junction 10 1.036269 .02156 hsa03212: pancreatic cancer 6 0.621762 .02247 hsa0320: PPAR signaling pathway 10 1.036269 .02312 hsa04110: cell cycle 9 0.932642 .02484 hsa04270: vascular smooth muscle contraction 8 0.829016 .02648 hsa0430: insulin signaling pathway 10 1.036269 .03057 hsa04310: Wnt signaling pathway 10 1.036269 .03057 hsa04310: Wnt signaling pathway 8 0.829016 .04017 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04010: MAPK signaling pathway 9 0.932642 .04256 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9	hsa04060: cytokine-cytokine receptor interaction	21	2.176166	.00878
hsa04115: p53 signaling pathway 7 0.725389 .01167 hsa04350: TGF-beta signaling pathway 8 0.829016 .01394 hsa04920: adipocytokine signaling pathway 6 0.621762 .01944 hsa04530: tight junction 10 1.036269 .02155 hsa0320: PPAR signaling pathway 6 0.621762 .02247 hsa03320: PPAR signaling pathway 10 1.036269 .02312 hsa04110: cell cycle 9 0.932642 .02484 hsa0430: Jak-STAT signaling pathway 10 1.036269 .03051 hsa0430: Jak-STAT signaling pathway 10 1.036269 .03051 hsa04310: Wnt signaling pathway 8 0.829016 .03627 hsa04310: Wnt signaling pathway 8 0.829016 .04119 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04062: chemokine signaling pathway 7 </td <td>hsa04514: cell adhesion molecules</td> <td>12</td> <td>1.243523</td> <td>.008993</td>	hsa04514: cell adhesion molecules	12	1.243523	.008993
hsa04350: TGF-beta signaling pathway 8 0.829016 .0139- hsa04920: adipocytokine signaling pathway 6 0.621762 .0194 hsa04530: tight junction 10 1.036269 .0215 hsa05212: pancreatic cancer 6 0.621762 .0224 hsa03320: PPAR signaling pathway 10 1.036269 .02312 hsa04110: cell cycle 9 0.932642 .0248 hsa04270: vascular smooth muscle contraction 8 0.829016 .02642 hsa0430: Jak-STAT signaling pathway 10 1.036269 .03051 hsa04310: Wnt signaling pathway 10 1.036269 .03051 hsa04310: Wnt signaling pathway 8 0.829016 .03627 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04062: chemokine signaling pathway 7 0.725389	hsa04115: p53 signaling pathway	7	0.725389	.011626
hsa04920: adipocytokine signaling pathway 6 0.621762 .01944 hsa04530: tight junction 10 1.036269 .02159 hsa05212: pancreatic cancer 6 0.621762 .02244 hsa03320: PPAR signaling pathway 10 1.036269 .02312 hsa04110: cell cycle 9 0.932642 .02484 hsa04270: vascular smooth muscle contraction 8 0.829016 .02644 hsa04630: Jak-STAT signaling pathway 10 1.036269 .03057 hsa04910: insulin signaling pathway 10 1.036269 .03057 hsa04310: Wnt signaling pathway 8 0.829016 .03627 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04010: MAPK signaling pathway 9 0.932642 .04256 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04062: chemokine signaling pathway 7 0.725389 .04875	hsa04350: TGF-beta signaling pathway	8	0.829016	.013947
hsa04530: tight junction 10 1.036269 .0215 hsa05212: pancreatic cancer 6 0.621762 .0224 hsa03320: PPAR signaling pathway 10 1.036269 .02312 hsa04110: cell cycle 9 0.932642 .0248 hsa04270: vascular smooth muscle contraction 8 0.829016 .02648 hsa0430: Jak-STAT signaling pathway 10 1.036269 .03057 hsa04910: insulin signaling pathway 8 0.829016 .03627 hsa04310: Wnt signaling pathway 8 0.829016 .04119 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04062: chemokine signaling pathway 7 0.725389 .04875	hsa04920: adipocytokine signaling pathway	6	0.621762	.019409
hsa05212: pancreatic cancer 6 0.621762 .0224 hsa03320: PPAR signaling pathway 10 1.036269 .0231 hsa04110: cell cycle 9 0.932642 .0248 hsa04270: vascular smooth muscle contraction 8 0.829016 .02648 hsa04630: Jak-STAT signaling pathway 10 1.036269 .03057 hsa04910: insulin signaling pathway 8 0.829016 .03627 hsa04310: Wnt signaling pathway 8 0.829016 .04119 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04010: MAPK signaling pathway 9 0.932642 .04256 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04062: chemokine signaling pathway 7 0.725389 .04875	hsa04530: tight junction	10	1.036269	.021598
hsa03320: PPAR signaling pathway 10 1.036269 .02312 hsa04110: cell cycle 9 0.932642 .0248 hsa04270: vascular smooth muscle contraction 8 0.829016 .02648 hsa04630: Jak-STAT signaling pathway 10 1.036269 .03057 hsa04910: insulin signaling pathway 8 0.829016 .03627 hsa04310: Wnt signaling pathway 8 0.829016 .04119 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa040144: endocytosis 9 0.932642 .04412 hsa04062: chemokine signaling pathway 7 0.725389 .04879	hsa05212: pancreatic cancer	6	0.621762	.022479
hsa04110: cell cycle 9 0.932642 .0248 hsa04270: vascular smooth muscle contraction 8 0.829016 .02644 hsa04630: Jak-STAT signaling pathway 10 1.036269 .03057 hsa04910: insulin signaling pathway 8 0.829016 .03627 hsa04310: Wnt signaling pathway 8 0.829016 .04119 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa040144: endocytosis 9 0.932642 .04413 hsa04062: chemokine signaling pathway 7 0.725389 .04879	hsa03320: PPAR signaling pathway	10	1.036269	.023125
hsa04270: vascular smooth muscle contraction 8 0.829016 .02644 hsa04630: Jak-STAT signaling pathway 10 1.036269 .0305 hsa04910: insulin signaling pathway 8 0.829016 .03627 hsa04310: Wnt signaling pathway 8 0.829016 .04119 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa040144: endocytosis 9 0.932642 .04413 hsa04062: chemokine signaling pathway 7 0.725389 .04879	hsa04110: cell cycle	9	0.932642	.02484
hsa04630: Jak-STAT signaling pathway 10 1.036269 .0305 hsa04910: insulin signaling pathway 8 0.829016 .03627 hsa04310: Wnt signaling pathway 8 0.829016 .04119 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04114: endocytosis 9 0.932642 .04413 hsa04062: chemokine signaling pathway 7 0.725389 .04879	hsa04270: vascular smooth muscle contraction	8	0.829016	.026484
hsa04910: insulin signaling pathway 8 0.829016 .03621 hsa04310: Wnt signaling pathway 8 0.829016 .04119 hsa04010: MAPK signaling pathway 14 1.450777 .04199 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa040144: endocytosis 9 0.932642 .04413 hsa04062: chemokine signaling pathway 7 0.725389 .04879	hsa04630: Jak-STAT signaling pathway	10	1.036269	.030518
hsa04310: Wnt signaling pathway 8 0.829016 .0411 hsa04010: MAPK signaling pathway 14 1.450777 .0419 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa040144: endocytosis 9 0.932642 .04413 hsa04062: chemokine signaling pathway 7 0.725389 .04879	hsa04910: insulin signaling pathway	8	0.829016	.036271
hsa04010: MAPK signaling pathway 14 1.450777 .0419 hsa04020: calcium signaling pathway 9 0.932642 .04256 hsa04114: endocytosis 9 0.932642 .04413 hsa04062: chemokine signaling pathway 7 0.725389 .04875	hsa04310: Wnt signaling pathway	8	0.829016	.041193
hsa04020: calcium signaling pathway 9 0.932642 .04250 hsa04144: endocytosis 9 0.932642 .04412 hsa04062: chemokine signaling pathway 7 0.725389 .04879	hsa04010: MAPK signaling pathway	14	1.450777	.041991
hsa04144: endocytosis 9 0.932642 .04413 hsa04062: chemokine signaling pathway 7 0.725389 .04879	hsa04020: calcium signaling pathway	9	0.932642	.042566
hsa04062: chemokine signaling pathway 7 0.725389 .04879	hsa04144: endocytosis	9	0.932642	.04413
	hsa04062: chemokine signaling pathway	7	0.725389	.048796

GO = Gene Ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes.

in the PC tumor samples, and their change directions were exactly the same as those in the GSE62452 dataset.

4. Discussion

Determining differences in gene expression in PC tissues compared with controls is essential to a better knowledge of key moleculars involved in the occurrence and development of PC that may help find a more effective treatment and effective markers for PC patients. In the present study, 26 prognostic seed genes were identified as key prognostic genes. Through pathway enrichment analysis and miRNA regulatory analysis, we found that the 5 genes, *IL22RA1*, *BCL2L1*, *STAT1*, *MYC*, and *STAT2*, involved in the Jak-STAT signaling pathway were significantly associated with prognosis. Moreover, the expression change of these 5 genes was further validated using another microarray dataset. In addition, we identified camptothecin as an effective drug for PC.

Jak-STAT signaling pathway is one of the signal transduction cascades for development and homeostasis in animals.^[36] Dysregulation of the JAK-STAT pathway affected regulation of cell growth, proliferation, apoptosis, and multiple other processes.^[37] Previous study indicated that the JAK-STAT pathway was involved in the anticancer agent-mediated gene transcription in PC cell lines.^[38] Thoennissen et al^[39] demonstrated that cucurbitacin B induced the apoptosis of PC cells by

Figure 2. Protein-protein interaction network. Red triangle represents up-regulated gene, and the green inverted triangle represents down-regulated gene.

inhibition of the JAK-STAT pathway. In this study, we found that the JAK-STAT pathway was significantly enriched by the target prognostic genes in the miRNA regulatory network. In this context, it is surmised that dysregulation of the JAK-STAT pathway may be significantly associated with the development and progression of PC.

Moreover, we found 5 prognostic genes, *IL22RA1*, *BCL2L1*, *STAT1*, *MYC*, and *STAT2*, involved in the Jak-STAT signaling pathway. Jak-STAT signaling pathway has 3 components: receptor, JAK kinase and STAT factor JAK belongs to a family of nonreceptor protein tyrosine kinases, which is composed of 4 proteins, JAK1, JAK2, JAK3, and TYK2 (nonreceptor Protein Tyrosine Kinase-2). STATs act as transcriptional factors that are phosphorylated on tyrosine residues.^[40] In combination with the position of 5 genes involved in the pathway (Fig. 4A), *IL22RA1* is located in the stage of tyrosine kinase-related receptors, which is responsible for the binding of cytokines in the pathway, and the

binding of cytokines to the corresponding receptors leads to dimerization of the receptor molecules. STAT1 and STAT2 are involved in the dimerization of the receptor molecule. BCL2L1 and MYC are involved in the effect phase and then participate in the regulation of apoptosis and cell cycle. In this study, these 5 genes were identified as key prognostic genes for PC. A recent study have demonstrated that IL22RA1/STAT3 signaling promotes stemness and tumorigenicity in PC.^[41] Sun et al^[42] showed that differential expression of STAT1 was shown to predict the progression and prognosis of PC. In another study, BCL2L1 was also demonstrated to be differentially expressed in PC samples and normal-appearing tissue samples.^[43] Additionally, the findings of Farrell et al^[44] indicated that MYC regulated ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma, contributing to poor survival and chemoresistance. Thus, it is noteworthy that IL22RA1, BCL2L1, STAT1, MYC, and STAT2 may play critical roles in the

_		

Multivariate	cox regression	analysis of	prognostic-asso	ciated genes.
manuvanuco	oox regreession	unuiyoio or	prognostio usse	Jointed geneo

multivariate cox regression analysis of prognostic-associated genes.						
Coef	Hazard ratio	Р	Gene	Coef	Hazard ratio	Р
-5.7572	0.00316	.000346	ITGB8	3.09222	2.02595	.013461
-7.0776	0.0008438	.00214	CYB5A	5.48462	2.95662	.016358
4.48711	8.863862	.00469	FBX032	2.27489	9.72689	.020213
-0.4361	0.646555	.006695	EPHX1	-3.6478	0.02605	.024596
-0.4619	0.63012	.007107	ASPM	-3.0234	0.04863	.03171
0.18932	1.20842	.007994	ITGB4	-2.6132	0.0733	.034613
-2.6359	0.07166	.00808	MUC17	-0.7288	0.482486	.0349
-1.7997	0.1653447	.00849	STIL	-2.4477	0.0864923	.03567
0.18921	1.20829	.008713	CCNA2	-4.4667	0.01149	.03737
0.1735	1.1894591	.009267	ATAD2	5.11749	1.9162	.04646
0.03401	1.03459	.009855	MBOAT2	-2.7957	0.061071	.04758
-3.475	0.030962	.00996	TPX2	3.33835	2.1727016	.04899
3.69361	4.18956	.01329	CD9	-3.4134	0.03293	.04973
	Coef -5.7572 -7.0776 4.48711 -0.4361 -0.4619 0.18932 -2.6359 -1.7997 0.18921 0.1735 0.03401 -3.475 3.69361	Coef Hazard ratio -5.7572 0.00316 -7.0776 0.0008438 4.48711 8.863862 -0.4361 0.646555 -0.4619 0.63012 0.18932 1.20842 -2.6359 0.07166 -1.7997 0.1653447 0.18921 1.20829 0.1735 1.1894591 0.03401 1.03459 -3.475 0.030962 3.69361 4.18956	Coef Hazard ratio P -5.7572 0.00316 .000346 -7.0776 0.0008438 .00214 4.48711 8.863862 .00469 -0.4361 0.646555 .006695 -0.4619 0.63012 .007107 0.18932 1.20842 .007994 -2.6359 0.07166 .00808 -1.7997 0.1653447 .00849 0.18921 1.20829 .008713 0.1735 1.1894591 .009267 0.03401 1.03459 .009855 -3.475 0.030962 .00996 3.69361 4.18956 .01329	Coef Hazard ratio P Gene -5.7572 0.00316 .000346 ITGB8 -7.0776 0.0008438 .00214 CYB5A 4.48711 8.863862 .00469 FBX032 -0.4361 0.646555 .006695 EPHX1 -0.4619 0.63012 .007107 ASPM 0.18932 1.20842 .007994 ITGB4 -2.6359 0.07166 .00808 MUC17 -1.7997 0.1653447 .00849 STIL 0.18921 1.20829 .008713 CCNA2 0.1735 1.1894591 .009267 ATAD2 0.03401 1.03459 .009855 MBOAT2 -3.475 0.030962 .00996 TPX2 3.69361 4.18956 .01329 CD9	Coef Hazard ratio P Gene Coef -5.7572 0.00316 .000346 ITGB8 3.09222 -7.0776 0.0008438 .00214 CYB5A 5.48462 4.48711 8.863862 .00469 FBX032 2.27489 -0.4361 0.646555 .006695 EPHX1 -3.6478 -0.4619 0.63012 .007107 ASPM -3.0234 0.18932 1.20842 .007994 ITGB4 -2.6132 -2.6359 0.07166 .00808 MUC17 -0.7288 -1.7997 0.1653447 .00849 STIL -2.4477 0.18921 1.20829 .008713 CCNA2 -4.4667 0.1735 1.1894591 .009267 ATAD2 5.11749 0.03401 1.03459 .009855 MB0AT2 -2.7957 -3.475 0.030962 .00996 TPX2 3.33835 3.69361 4.18956 .01329 CD9 -3.4134	Coef Hazard ratio P Gene Coef Hazard ratio -5.7572 0.00316 .000346 ITGB8 3.09222 2.02595 -7.0776 0.0008438 .00214 CYB5A 5.48462 2.95662 4.487111 8.863862 .00469 FBX032 2.27489 9.72689 -0.4361 0.646555 .006695 EPHX1 -3.6478 0.02605 -0.4619 0.63012 .007107 ASPM -3.0234 0.04863 0.18932 1.20842 .007994 ITGB4 -2.6132 0.0733 -2.6359 0.07166 .00808 MUC17 -0.7288 0.482486 -1.7997 0.1653447 .00849 STIL -2.4477 0.0864923 0.18921 1.20829 .008713 CCNA2 -4.4667 0.01149 0.1735 1.1894591 .009267 ATAD2 5.11749 1.9162 0.03401 1.03459 .009855 MBOAT2 -2.7957 0.061071 -3.475

Figure 3. miRNA regulatory networks and Kaplan–Meier curves of 5 genes involved in Jak-STAT signaling pathways. (A) miRNA regulatory network constructed based on the 24 pancreatic cancer-related miRNAs and their target prognostic-related genes. The red triangle represents up-regulated gene, the green inverted triangle represents down-regulated gene, and the white diamond represents the pancreatic cancer-related miRNA. The edge of arrow indicates that the miRNA-gene interaction and the linkage without arrow indicates gene-gene interaction. (B) Jak-STAT signaling pathway-related miRNA regulatory network. The red triangle represents up-regulated gene, the green inverted triangle represents down-regulated gene, the white diamond represents the pancreatic cancer-related miRNA regulatory network. The red triangle represents up-regulated gene, the green inverted triangle represents down-regulated gene, the white diamond represents the pancreatic cancer-related miRNA, and the circular node represents the Jak-STAT signaling pathway. The edge with arrow indicates linkage between gene and the pathway. (C) The Kaplan–Meier curves of the 5 genes involved in the Jak-STAT signaling pathway. The red curve shows high-expression group and the black curve shows low-expression group.

pathogenesis of PC and may be correlated with the prognosis of PC. Furthermore, we used another dataset to validate the expression change of these 5 genes and we found that their change directions were exactly the same as those in the GSE62452 dataset. Nevertheless, further investigation is required to evaluate the clinical utility of these genes.

In addition, through the screening of drug molecules, we found the potential antitumor activity of camptothecin to PC.

Camptothecin is a natural inhibitor of DNA topoisomerase I for clinical use.^[45] It has become a hot research topic in anticancer drugs after paclitaxel. Inhibition of DNA topoisomerase I blocks DNA replication and affects cancer cells.^[46] Evidence has indicated efficacy of camptothecin in many cancers, such as colon cancer,^[47] gastrointestinal cancer, and bladder cancer.^[48] Considering the predictive role of this drug-targeting prognostic genes of PC, PC-specific genes, it is highly

Table 3

Disease-related miRNAs and their target prognostic-related genes.

Disease miRNA	No. of targeted DEGs	Targeted prognostic DEGs		
hsa-miR-130b	4	CCNA2, ITGB8, LAMB3, LAMC2		
hsa-miR-141	3	ITGB8, LAMC2, SFRP4		
hsa-miR-143	6	CYB5A, ITGB8, MBOAT2, MKI67, SFRP4, STAT2		
hsa-miR-145	5	CCNA2, IL22RA1, ITGB8, MKI67, MYC		
hsa-miR-146a	6	LAMB3, LAMC2, MUC17, STAT1, STAT2, STIL		
hsa-miR-148a	3	CCNA2, SFRP4, STAT1		
hsa-miR-148b	2	CCNA2, SFRP4		
hsa-miR-150	3	CCNA2, LAMC2, STAT1		
hsa-miR-155	3	CYB5A, SFRP4, STAT1		
hsa-miR-18a	2	MBOAT2, MKI67		
hsa-miR-196a	2	ALDH1A1, ATAD2		
hsa-miR-196b	2	ALDH1A1, ATAD2		
hsa-miR-203	10	ATAD2, CCNA2, CTSS, IL22RA1, ITGB8, LAMC2, MBOAT2, MKI67, SFRP4, STAT1		
hsa-miR-205	2	MBOAT2, STAT1		
hsa-miR-217	2	ATAD2, FBX032		
hsa-miR-221	4	ALDH1A1, ITGB8, MKI67, STAT2		
hsa-miR-222	2	ALDH1A1, STAT2		
hsa-miR-223	8	ALDH1A1, ATAD2, CYB5A, LAMC2, MBOAT2, MYC, STAT1, STAT2		
hsa-miR-224	5	ASPM, CCNA2, IL22RA1, MKI67, STIL		
hsa-miR-29c	4	CCNA2, IL22RA1, LAMC2, TPX2		
hsa-miR-31	5	BCL2L1, ITGB8, MBOAT2, MYC, STAT2		
hsa-miR-375	2	LAMC2, SFRP4		
hsa-miR-93	7	ATAD2, CTSS, ITGB4, ITGB8, LAMC2, MUC17, SFRP4		
hsa-miR-96	1	SFRP4		

DEGs = differentially expressed genes.

A

likely that camptothecin produces antitumor activity in PC cells.

In conclusion, we suggested that the JAK-STAT pathway may be significantly associated with the development and progression of PC. Besides, several key genes (*IL22RA1*, *BCL2L1*, *STAT1*, *STAT2*, and *MYC*) may be associated with the prognosis of PC. While our study provides insight into some prognostic genes, the functions of these key genes need to be validated by further experimental investigations in future.

Author contributions

Conceptualization: Bo Meng.

- Data curation: Chun Pang, Yuan Gu, Yuechao Ding, Chao Ma, Wei Yv.
- Formal analysis: Chun Pang, Yuan Gu, Yuechao Ding, Chao Ma, Qian Wang.

Methodology: Chao Ma, Bo Meng.

Project administration: Bo Meng.

Software: Chun Pang, Yuan Gu, Qian Wang.

Supervision: Bo Meng.

Validation: Chun Pang, Yuan Gu, Yuechao Ding, Chao Ma, Wei Yv, Qian Wang, Bo Meng.

Visualization: Chun Pang, Bo Meng.

Writing - original draft: Chun Pang, Wei Yv.

Writing – review & editing: Bo Meng.

References

- Chiaravalli M, Reni M, O'Reilly EM. Pancreatic ductal adenocarcinoma: state-of-the-art 2017 and new therapeutic strategies. Cancer Treat Rev 2017;60:32–43.
- [2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7–30.
- [3] Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer. Lancet 2016;388:73–85.
- [4] Kolodecik T, Shugrue C, Ashat M, et al. Risk factors for pancreatic cancer: underlying mechanisms and potential targets. Front Physiol 2014;4:415.
- [5] Mao Y, Shen J, Lu Y, et al. RNA sequencing analyses reveal novel differentially expressed genes and pathways in pancreatic cancer. Oncotarget 2017;8:42537–47.
- [6] Kim K, Jutooru I, Chadalapaka G, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 2013;32:1616.
- [7] Abel EV, Kim EJ, Wu J, et al. The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PLoS ONE 2014;9:e91983.
- [8] Yang Y, Han L, Yuan Y, et al. Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun 2014;5:3231.
- [9] Zhou Z, Liu S, Zhang M, et al. Overexpression of topoisomerase 2-alpha confers a poor prognosis in pancreatic adenocarcinoma identified by coexpression analysis. Dig Dis Sci 2017;62:2790–800.
- [10] Hasegawa S, Nagano H, Konno M, et al. Cyclin G2: a novel independent prognostic marker in pancreatic cancer. Oncol Lett 2015;10:2986–90.
- [11] Kanno S, Nosho K, Ishigami K, et al. MicroRNA-196b is an independent prognostic biomarker in patients with pancreatic cancer. Carcinogenesis 2017;38:425–31.
- [12] Ozkan H, Kaya M, Cengiz A. Comparison of tumor marker CA 242 with CA 19-9 and carcinoembryonic antigen (CEA) in pancreatic cancer. Hepatogastroenterology 2003;50:1669–74.
- [13] Zhu L, Xue HD, Liu W, et al. Enhancing pancreatic mass with normal serum CA19-9: key MDCT features to characterize pancreatic neuroendocrine tumours from its mimics. Radiol Med 2017;122:337–44.
- [14] Swords DS, Firpo MA, Scaife CL, et al. Biomarkers in pancreatic adenocarcinoma: current perspectives. Onco Targets Ther 2016;9:7459–67.
- [15] Yang S, He P, Wang J, et al. A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2. Cancer Res 2016;76:3838–50.

- [16] Sandhu V, Bowitz Lothe I, Labori KJ, et al. Molecular signatures of mRNAs and miRNAs as prognostic biomarkers in pancreatobiliary and intestinal types of periampullary adenocarcinomas. Mol Oncol 2015;9:758–71.
- [17] Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for highthroughput functional genomic data. Nucleic Acids Res 2008;37:D885–90.
- [18] Parrish RS, Spencer HJIII. Effect of normalization on significance testing for oligonucleotide microarrays. J Biopharm Stat 2004;14:575–89.
- [19] Smyth GK. Limma: Linear Models for Microarray Data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. 2005; Springer, New York, NY:397–420.
- [20] Zyprych-Walczak J, Szabelska A, Handschuh L, et al. The impact of normalization methods on RNA-Seq data analysis. Biomed Res Int 2015;2015:621690.
- [21] Bouguettaya A, Yu Q, Liu X, et al. Efficient agglomerative hierarchical clustering. Expert Syst Appl 2015;42:2785–97.
- [22] Tang C, Zhang L, Zhang A, et al. Interrelated two-way clustering: an unsupervised approach for gene expression data analysis. Paper presented at: Bioinformatics and Bioengineering Conference, 2001. Proceedings of the IEEE 2nd International Symposium on 2001; Washington: IEEE Computer Society:41–48.
- [23] Xavier RN, Morgan HW, McDonald IR, et al. Effect of long-term starvation on the survival, recovery, and carbon utilization profiles of a bovine *Escherichia coli* O157:H7 isolate from New Zealand. Appl Environ Microbiol 2014;80:4383–90.
- [24] Danielsson P-E. Euclidean distance mapping. Comput Vis Graph Image Process 1980;14:227–48.
- [25] Huang DW, Sherman BT, Tan Q, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007;35:W169–75.
- [26] Keskin O, Tuncbag N, Gursoy A. Predicting protein–protein interactions from the molecular to the proteome level. Chem Rev 2016;116:4884–909.
- [27] Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: proteinprotein interaction networks, integrated over the tree of life. Nucleic Acids Res 2014;43:D447–52.
- [28] Chatr-aryamontri A, Oughtred R, Boucher L, et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res 2017;45:D369–79.
- [29] Keshava Prasad T, Goel R, Kandasamy K, et al. Human protein reference database—2009 update. Nucleic Acids Res 2008;37:D767–72.
- [30] Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–504.
- [31] Wang P, Wang Y, Hang B, et al. A novel gene expression-based prognostic scoring system to predict survival in gastric cancer. Oncotarget 2016;7:55343–51.
- [32] Jiang Q, Wang Y, Hao Y, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 2008;37:D98–104.
- [33] Moreno-Moya JM, Vilella F, Simón C. MicroRNA: key gene expression regulators. Fertil Steril 2014;101:1516–23.
- [34] Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753–6.
- [35] Flynn C, Zheng S, Yan L, et al. Connectivity map analysis of nonsensemediated decay–positive BMPR2-related hereditary pulmonary arterial hypertension provides insights into disease penetrance. Am J Respir Cell Mol Biol 2012;47:20–7.
- [36] Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol 2007;178:2623–9.
- [37] Thomas S, Snowden J, Zeidler M, et al. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer 2015;113:365–71.
- [38] Doi T, Ishikawa T, Okayama T, et al. The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines. Oncol Rep 2017;37:1545–54.
- [39] Thoennissen NH, Iwanski GB, Doan NB, et al. Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Res 2009;69:5876–84.
- [40] Becerra-Díaz M, Valderrama-Carvajal H, Terrazas LI. Signal transducers and activators of transcription (STAT) family members in helminth infections. Int J Biol Sci 2011;7:1371–81.
- [41] He W, Wu J, Shi J, et al. IL-22RA1/STAT3 signaling promotes stemness and tumorigenicity in pancreatic cancer. Cancer Res 2018;78:3293–305.
- [42] Sun Y, Yang S, Sun N, et al. Differential expression of STAT1 and p21 proteins predicts pancreatic cancer progression and prognosis. Pancreas 2014;43:619–23.

- [43] Huang YJ, Frazier ML, Zhang N, et al. Reverse-phase protein array analysis to identify biomarker proteins in human pancreatic cancer. Dig Dis Sci 2014;59:968–75.
- [44] Farrell AS, Joly MM, Allen-Petersen BL, et al. MYC regulates ductalneuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nat Commun 2017;8:1728.
- [45] Bertozzi D, Marinello J, Manzo SG, et al. The natural inhibitor of DNA topoisomerase I, camptothecin, modulates HIF-1α activity by changing miR expression patterns in human cancer cells. Mol Cancer Ther 2014;13:239–48.
- [46] Zhang XX, Gan L, Gan Y. Effects of breast cancer resistance protein inhibitors and pharmaceutical excipients on decreasing gastrointestinal toxicity of camptothecin analogs. Acta Pharmacol Sin 2008;29:1391–8.
- [47] Thakral NK, Ray AR, Bar-Shalom D, et al. Soluplus-solubilized citrated camptothecin—a potential drug delivery strategy in colon cancer. AAPS PharmSciTech 2012;13:59–66.
- [48] Ulivi P, Zoli W, Fabbri F, et al. Cellular basis of antiproliferative and antitumor activity of the novel camptothecin derivative, gimatecan, in bladder carcinoma models. Neoplasia 2005;7: 152-61.