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Objective. Oxidized cholesterol derivatives are compounds with proven atherogenic and mutagenic effects. However, little is known
about the effect of oxidized plant sterol derivatives (oxyphytosterols), whose structure is similar to the one of oxycholesterols. Our
previous studies indicate that they have a similar profile of action, e.g., both exacerbate disorder of lipid metabolism and oxidative
stress in experimental animals. The aim of the present study was to assess the effect of epoxycholesterol and epoxyphytosterols
(mainly sitosterol) on the severity of nitrosative stress and the concentration of selected proinflammatory cytokines in blood and
liver tissue of rats on a low-cholesterol diet. Material and Methods. Forty-five male Wistar rats were fed with feed containing
5α,6α-epoxyphytosterols (ES group, n: 15), 5α,6α-epoxycholesterol (ECh group, n: 15), and oxysterol-free feed (C group, n: 15)
for 90 days (daily dose of oxysterols: 10mg/kg). At the end of the experiment, nitrotyrosine, TNF-α, IL-1β, IL-6, and lipid
metabolism parameters were determined in blood serum. Furthermore, nitrotyrosine, TNF-α, cholesterol, and triglyceride
content were determined in liver homogenates. Results. Serum nitrotyrosine, IL-1β, and TNF-α concentrations as well as TNF-α
content in the liver were significantly higher in both groups exposed to oxysterols (ECh and ES groups) as compared to the C
group. The serum IL-6 level and nitrotyrosine content in the liver were significantly higher in the ECh group, as compared to
the C and ES groups. There was evidence to support the dyslipidemic effect of studied compounds. Conclusions. The results
indicate that oxidized plant sterols have a similar toxicity profile to that of oxycholesterols, including nitrosative stress
induction, proinflammatory effect, and impaired lipid metabolism.
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1. Introduction

Oxysterols have been implicated in the underlying mecha-
nisms of inflammation-mediated diseases, such as athero-
sclerosis, neurodegenerative disorders, and cancer [1–4].
Through upregulation of NADPH oxidase (NOX) family
enzymes [2], which are the main source of cellular reactive
oxygen species (ROS) [5], oxysterols may cause extensive
ROS generation, causing oxidative and nitrosative stress.
Reactive nitrogen species act together with ROS causing cel-
lular damage. Nitrotyrosine is one of the nitrosative stress
markers. The cytokine system plays the crucial role in trig-
gering nitrosative stress [6].

Apart from endogenous production, oxycholesterols may
also be sourced from nutrition, in particular from
cholesterol-rich foods undergoing long-term thermal pro-
cessing and exposed to gamma irradiation or long-term
storage [7].

Thus, the aim of the research was to assess the effect of
5α,6α-epoxyphytosterols and 5α,6α-epoxycholesterol on
nitrosative stress and cytokine system in experimental
animals.

2. Material and Methods

2.1. Animals. The protocol was approved by the Bioethical
Committee for Animal Experimentation of the Medical Uni-
versity of Silesia in Katowice, Poland (approval no. 27/2007,
dated April 17, 2007). All animals received humane care in
compliance with the 8th edition of the Guide for the Care
and Use of Laboratory Animals published by the National
Institutes of Health [8].

Male Wistar rats, with the body weight of 130-180 g at
baseline, were sourced from the Center for Experimental
Medicine, Medical University of Silesia, in Katowice. During
the experiment, the rats were kept on wood shaving bedding
in standard single rodent cages, at the temperature of 20-
25°C, with artificial lighting (a 12h/12 h day/night cycle).
The feed was administered once a day, and tap water was
available ad libitum. Prior to the commencement of the
experiment, the animals were kept in the conditions
described above for an acclimation period of 2 weeks to
ensure reproducible results.

The rats were divided into 3 groups (15 animals each), to
receive the following:

(i) Feed containing 5α,6α-epoxyphytosterol acetate at
100mg per 1 kg of feed (ES group)

(ii) Feed containing 5α,6α-epoxycholesterol acetate at
100mg per 1 kg of feed (ECh group)

(iii) Oxysterol-free feed (controls, C group)

Daily estimated sterol dose was 10mg per 1 kg of animal
body weight (assuming the feed intake equal to 10% of ani-
mal body weight). Labofeed B (Wytwórnia Pasz, Kcynia,
Poland), a standard laboratory maintenance feed for rodents,
was used during the study. The feed was administered for 90
days. The animals were weighted before and after the exper-

iment. After 3 months, the rats were anaesthetised with the
mixture of ketamine (50mg/kg), droperidol (1mg/kg), and
fentanyl (0.1mg/kg) administered i.m. and euthanized by
cardiac exsanguination and cervical dislocation.

2.2. Synthesis of 5α,6α-Epoxycholesterol and 5α,6α-
Epoxyphytosterol Acetate. 5α,6α-Epoxycholesterol acetate
and 5α,6α-epoxyphytosterol acetate were synthetized from
cholesterol and sitosterol (Sigma-Aldrich, USA), respec-
tively, by acetylation and subsequent oxidation with m-
chlorperoxybenzoic acid (Sigma-Aldrich, USA) as described
by McCarthy [9]. Next, the oxidation mixture was purified
by column chromatography on silica gel using chloroform-
acetone (4 : 1, v/v) as a mobile phase. Fractions containing
pure ester were controlled by TLC technique (silica gel plates,
solvent as above), pooled, and dried under vacuum. As per
manufacturer’s data sheet, sitosterol contains about 90% β-
sitosterol and ca. 10% other phytosterols and phytostanols.
Thus, its oxidation products were termed 5α,6α-
epoxyphytosterols.

2.3. Blood Sample Collection. Blood samples were collected
into serum clot activator tubes (Sarstedt, S-Monovette).
Directly after centrifugation (900g for 10min. at 4°C), serum
samples were separated and stored at –70°C, until biochemi-
cal analyses were performed [10–12].

2.4. Liver Homogenate Preparation.After the rats were eutha-
nized, their livers were quickly excised, weighed, and homo-
genised in cooled (4°C) PBS at 1 : 10. The prepared 10%
homogenates were frozen at -70°C for further analyses.

Full homogenates were used for lipid determination,
whereas the supernatant obtained with centrifugation
(10min., 20 000 rpm, 4°C) of defrosted homogenates was
used for nitrotyrosine and TNF-alpha determinations.

The total cholesterol, triglycerides, nitrotyrosine, and
TNF-α concentrations were assayed both in serum samples
and liver homogenates. Additionally, we determined serum
IL-1, IL-6, and LDL- and HDL-cholesterol levels.

2.5. Biochemical Analyses

2.5.1. Serum Lipid Determination. Total cholesterol and tri-
glyceride concentrations were assayed in serum samples
using a standard enzymatic method (Emapol, Poland).
HDL-cholesterol was determined using an enzymatic
method after precipitation of other lipoproteins with phos-
photungstic acid (Emapol, Poland). For the LDL-
cholesterol assay, a Quantolip LDL kit (Technoclone, Aus-
tria) was used. Total phospholipids in serum were assayed
with the use of an enzymatic method (DiaSys GmbH, Ger-
many). All analyses were performed using the EM280 bio-
chemical analyzer (Emapol, Poland). Interassay and intra-
assay coefficients of variation (CV) were below 3% and 5%,
respectively, for all parameters.

2.5.2. Cholesterol and Triglycerides in Liver Homogenates.
Tissue lipids were extracted by mixing 1 volume of 10% liver
homogenate prepared in phosphate-buffered solution (PBS),
with 9 volumes of isopropyl alcohol. After 24 hours, the
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supernatant was separated from the protein precipitate by
centrifugation, and 1mL of the clear supernatant was col-
lected to two glass tubes.

In order to determine the cholesterol concentration, the
solvent was dried under reduced pressure and the dry residue
was dissolved in 0.1mL of Triton X-100-methoxyethanol
(2 : 8, v/v) mixture. After, 1mL of cholesterol reagent
(Human, Germany) was added, the samples were incubated
in a water bath at 37°C for 30 minutes with continuous shak-
ing, and the absorbance was measured at 510 nm against a
blank. The calibration solution was cholesterol dissolved in
the Triton X-100-methoxyethanol (2 : 8, v/v) mixture.

To determine triglyceride concentrations, the dry residue
in the second tube was dissolved in 1mL of Triton X100-
methoxyethanol mixture (2 : 8, v/v) and the determination
was performed on the Technicon RA-XT analyzer according
to the standard serum processing procedure.

All results were expressed as mg/g (wet matter basis).

2.5.3. Determination of Inflammatory Cytokines. The con-
centration of TNF-α, IL-6, and IL-1β in rat serum and
TNF-α in rat liver homogenates was determined by ELISA
using Diaclone kits (France): rat TNF-α EliPair, cat. no.
872.010.010; murine IL-6 EliPair, cat. no. 861.020.010; and
rat IL-1β ELISA kit, cat. no. 670.040.192 according to the
manufacturer’s instructions. The absorbance was measured
using the PowerWave XS microplate reader (BioTek, USA),
and data was processed using the KC Junior software bundle
(BioTek, USA). The within-run coefficient of variation for
the TNF-α, IL-1β, and IL-6 determination was 5.2%, 7.1%,
and 4.8%, respectively.

The results of TNF-α concentration in liver homogenates
were expressed as pg/mg total protein determined using the
Lowry method [13]. Serum TNF-α, IL-1β, and IL-6 results
were expressed as pg/mL.

2.5.4. Determination of Nitrotyrosine. Nitrotyrosine concen-
tration was determined by ELISA using our own rabbit
anti-nitrotyrosine polyclonal antibodies (Immunogen:
peroxynitrite-modified keyhole limpet hemocyanin), which
were coated on an ELISA plate after purification by affinity
chromatography within the column with peroxynitrite-
treated bovine serum albumin (BSA). After a 2-hour incuba-
tion with the specimens, the plate was washed and biotin-
labelled murine anti-nitrotyrosine monoclonal antibody
(Cayman Chemicals Company, cat. no. 10006966) was
added. The dilution of the working solution was 1 : 1000.
After another incubation with peroxidase-labelled streptavi-
din (DakoCytomation, Denmark), the 3,3′,5,5′-Tetra-
methylbenzidine (TMB) Liquid Substrate System for ELISA
(TMB Supersenstive, Sigma-Aldrich, USA) was added. After
20-30 minutes, 0.5M sulphuric acid solution was added as a
stop solution. The absorbance was measured using the Power
Wave XS microplate reader (BioTek, USA), and data was
processed using the KC Junior software bundle (BioTek,
USA). Peroxynitrite-treated rabbit serum albumin (RSA)
was used as a standard. The nitrotyrosine content was deter-
mined using spectrophotometry based on the molar absorp-
tion coefficient of 4300M−1 cm−1 [14]. Peroxynitrite was

obtained as the product of the H2O2, NaNO2, and HCl reac-
tion with subsequent addition of NaOH solution [15]. The
ELISA calibration curve was within the nitrated RSA concen-
tration range of 0-1000 nmol/L, while the within-run coeffi-
cient of variation was 4.6%. The serum nitrotyrosine results
were expressed in nmol/L; liver nitrotyrosine results were
expressed in nmol/g protein.

2.6. Statistical Analyses. Statistical analyses were performed
using STATISTICA 13 PL (Tibco Inc., Palo Alto, CA,
USA), StataSE 12.0 (StataCorp LP, TX, U.S.), and R software
(CRAN). The p value below 0.05 was considered significant
for all comparisons. All tests were two-tailed. Imputations
were not done for missing data. Nominal and ordinal data
were expressed as percentages, while interval data were
expressed as themean value ± standard deviation if normally
distributed, or as median/interquartile range if the distribu-
tion was skewed or nonnormal. Distribution of variables
was evaluated by the Shapiro-Wilk test, and homogeneity
of variances was assessed using Levene’s test. One-way para-
metric ANOVA with the Tukey post hoc test was used for all
comparisons.

3. Results

For rats exposed to epoxysterols and low-cholesterol feed,
there was no effect of dietary intake on serum total choles-
terol and LDL- and HDL-cholesterol levels. There was no sig-
nificant between-group difference in the levels of the above
markers. However, triglyceride concentrations were signifi-
cantly higher in the ECh group than in controls. Serum total
phospholipid levels were significantly lower in the ECh group
than in controls. Furthermore, there was a significant differ-
ence between ECh and ES groups in total phospholipid levels
(Table 1).

Liver homogenate analysis demonstrated significant dif-
ferences in total cholesterol levels between the ES and C
groups (p < 0:05). There were no significant between-group
differences in triglyceride levels in liver homogenates
(Table 2).

The analysis of serum inflammatory cytokine (IL-1β, IL-
6, and TNF-α) levels demonstrated that exposure to epoxys-
terols induces their biosynthesis. A significant increase from
baseline in serum IL-1β and TNF-α levels was shown in both
ECh and ES groups. The IL-6 levels were significantly higher
in the ECh group as compared to the ES group and controls.
Furthermore, the evidence of increased liver production of
TNF-α was demonstrated in both groups exposed to oxyster-
ols (Table 3).

Serum nitrotyrosine levels were significantly higher in
both oxysterol-exposed groups (ECh and ES) than in con-
trols (C). However, only the ECh group had significantly
higher nitrotyrosine levels in liver homogenate (Table 4).

4. Discussion

There is ample evidence to support extensive and multidirec-
tional effect of oxycholesterol biological activity, whereas
their mechanism of action has not been fully understood to
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date. However, experimental studies in animals exposed to
oxycholesterol-enriched feed provide contradictory data on
the potential effect of oxycholesterols on the development
of atherosclerosis [16–18], although most studies confirm
atherogenic effect of oxidized cholesterol derivatives, in par-
ticular cholestantriol.

On the other hand, there are significantly fewer studies
on the effect of oxyphytosterols on lipid metabolism and
development of atherosclerosis in animals. The effect of oxi-
dized phytosterols on lipid metabolism in experimental ani-
mals suggests that it is possible to regulate triglyceride and
cholesterol concentrations on multiple levels, e.g., by regulat-
ing the endogenous lipid synthesis, mediating gastrointesti-
nal lipid absorption, or altering lipid catabolism. For
instance, the ability of 5-campestenone to activate β-oxida-
tion pathway enzymes and simultaneously inhibit the enzy-
matic mediators of fatty acid synthesis, by activating the

PPAR-α receptor and other mechanisms, has been demon-
strated [19, 20]. It was capable of lowering serum triglyceride
levels in rodent serum [21] and liver [19], which we did not
confirm in our study. Bang et al. compared the effect of oxy-
phytosterols obtained by thermal oxidation of phytosterols
and oxysterols (oxidized cholesterol derivatives) on serum
and liver triglyceride levels in mice, finding a similar effect
of both compounds on the above parameters. He demon-
strated a reduction of the serum triglyceride level with no
change of its liver content [21]. Similarly, hypolipidemic
effect of 24-ethylcholest-4-en-3-one on experimental animals
has also been reported [22]. Furthermore, meta-analyses
concerning the effects of nonoxidized plant sterols and
stanols on the lipid concentrations in human blood indi-
cate their potential for lowering serum triglyceride levels
[23, 24]. Considering the above, it is unclear whether the
ability to reduce triglyceride levels is a common

Table 1: Serum lipid levels (mean value ± standard deviation ðSDÞ) in rats exposed to 5α,6α-epoxycholesterol (ECh group) and 5α,6α-
epoxyphytosterols (ES group) vs. controls (C group).

ECh group ES group C group p

Total cholesterol (mg/dL) 51:6 ± 7:6 52:8 ± 7:5 47:1 ± 6:3 NS

Triglycerides (mg/dL) 58:3 ± 12:4 52:7 ± 10:0 44:9 ± 10:7 <0.01
Phospholipids (mg/dL) 78:6 ± 9:3∗ 88:5 ± 10:1 89:3 ± 9:2 <0.01
HDL-cholesterol (mg/dL) 22:2 ± 3:6 25:1 ± 4:3 25:0 ± 2:8 NS

HDL-cholesterol (%TCh) 44:0 ± 9:9 48:6 ± 12 53:5 ± 6:8 NS

LDL-cholesterol (mg/dL) 17:7 ± 7:9 17:2 ± 9:6 13:2 ± 5:3 NS

%TCh: total cholesterol; ∗p < 0:05 vs. ES group; NS: nonsignificant.

Table 2: Total cholesterol and triglyceride levels (mean value ± standard deviation ðSDÞ) in liver homogenates of rats exposed to 5α,6α-
epoxycholesterol (ECh group) and 5α,6α-epoxyphytosterols (ES group) vs. controls (C group).

ECh group ES group C group p

Total cholesterol (mg/g tissue) 2:46 ± 0:21 2:58 ± 0:33∗ 2:32 ± 0:17 <0.05
Triglycerides (mg/g tissue) 22:7 ± 3:0 20:6 ± 3:7 21:2 ± 3:2 NS
∗p < 0:05 vs. controls (C); NS: nonsignificant.

Table 3: Inflammatory cytokine (TNF-α, IL-1β, and IL-6) levels (mean value ± standard deviation ðSDÞ) in serum and liver homogenates of
rats exposed to 5α,6α-epoxycholesterol (ECh group) and 5α,6α-epoxyphytosterols (ES group) vs. controls (C group).

ECh group ES group C group p

Serum TNF-α (pg/mL) 43:3 ± 10:6 36:4 ± 9:5 22:8 ± 5 <0.001
Serum IL-1β (pg/mL) 4:9 ± 2:7 4:4 ± 2 1:1 ± 1:4 <0.001
Serum IL-6 (pg/mL) 40:4 ± 9:5 26:9 ± 9:1 20:5 ± 6:1 <0.001
Liver TNF-α (pg/mg protein) 284:1 ± 45:2 288:2 ± 33:1 208:1 ± 23:3 <0.001

Table 4: Nitrotyrosine levels in serum and liver homogenates of rats exposed to 5α,6α-epoxycholesterol (ECh group) and 5α,6α-
epoxyphytosterols (ES group) vs. controls (C group). The values were expressed as the mean ± standard deviation ðSDÞ.

ECh group ES group C group p

Serum nitrotyrosine (nmol/L) 60:5 ± 13:4 47:7 ± 11:5 34:3 ± 8:4 <0.001
Liver nitrotyrosine (nmol/g protein) 119:3 ± 24:1 94:9 ± 21:0 98:4 ± 8:4 <0.01
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characteristic shared by all oxidized and nonoxidized ste-
rols or whether it results from contamination of sterol-
and stanol-enriched food products with sterol and stanol
oxidation products.

In our experiment, we observed different effects of oxy-
sterols: in the ECh group, the serum triglyceride levels
increased alongside decreased serum phospholipid levels,
with no difference in triglyceride content in the liver. The
liver cholesterol content was significantly higher only in the
ES group. The observed changes can be partially explained
by the dietary induction of acute phase reaction, which may
be one of the causes for the increased production of
triglyceride-rich lipoproteins in the liver and their elimina-
tion from plasma [25]. The concomitant decrease in serum
phospholipid levels may additionally promote the develop-
ment of atherosclerosis. Being relatively phospholipid-rich,
lipoproteins such as the HDL are good cholesterol acceptors
and the decrease in HDL phospholipid content may inhibit
the reverse cholesterol transport from peripheral tissues back
to the liver. A decreased phospholipid/cholesterol ratio was
found in plasma lipoproteins, erythrocyte membranes, hepa-
tocytes, and endothelial cells as a typical metabolic abnor-
mality in atherosclerosis [26].

The excessive hepatic accumulation of cholesterol may
also be explained by the effect of hyperhomocysteinemia on
its endogenous biosynthesis, that is, an increased expression
of HMG-CoA reductase in hepatocytes, activation of the
mevalonate pathway, and resultant excessive cholesterol syn-
thesis [27]. Additional exposure of animals to oxycholester-
ols or oxyphytosterols may exacerbate endothelial
dysfunction, increasing homocysteinemia, which addition-
ally intensifies the cholesterol biosynthesis in the liver.

The analysis of the effect of oxyphytosterols on the devel-
opment of atherosclerosis in Apo E knockout mice [28] did
not show any differences in serum and aortic tissue choles-
terol levels between the group exposed to oxysterols and the
group receiving only animal fat-rich feed. Additionally, in
the group of mice fed with oxysterols, oxidative stress mea-
sured with 8-iso-prostaglandin F2α (8-iso-PGF2α) concen-
tration was significantly increased.

Chronic inflammation of the arterial wall mediated by
cytokines, oxidative-modified lipoproteins, and other
endothelium-damaging factors is one of the most impor-
tant mechanisms accelerating the development of athero-
sclerosis. The majority of proinflammatory cytokines
show pleiotropic effects, affecting various cells, including
those involved in the development of atherosclerosis and
chronic systemic inflammatory response seen in atheroscle-
rosis [29, 30]. Local cytokine production is responsible for
extracellular matrix overproduction, growth and prolifera-
tion of vascular wall cells, recruitment of vascular luminal
cells, endothelial dysfunction, and other processes, which
ultimately determine the development of atherosclerosis
and its progression rate [30].

The studies of animal models of atherosclerosis demon-
strated a marked increase of IL-6 synthesis in response to die-
tary cholesterol intake [31–33]. Although the data on the
effect of oxysterols on cytokine biosynthesis is quite fragmen-
ted, it seems to support the oxysterol capability to induce

inflammation by causing imbalance between anti-
inflammatory and proinflammatory cytokines [34, 35].

The analysis of IL-6 concentrations determined in our
experiment indicates that its biosynthesis is mediated by
exogenous oxycholesterols, whereas the effect was only sig-
nificant in the ECh group. However, the elevated IL-6 levels
in the ECh group did not affect the C-reactive protein
(CRP) levels (unpublished data).

The tumor necrosis factor α (TNF-α) is a pleiotropic pro-
inflammatory cytokine produced by various cell types, e.g.,
macrophages, leukocytes, vascular endothelial cells, adipo-
cytes, smooth muscle cells, and cardiomyocytes [25, 36]. It
affects the local immune activation by increasing the produc-
tion of IL-1 and IL-6, thus stimulating endothelial cells to
synthesize and release various adhesion molecules (ICAM-
1, VCAM-1, and P- and E-selectins). Furthermore, it shows
a procoagulant effect and, alongside IL-1 and IL-6, an antifi-
brinolytic effect [36]. Furthermore, TNF-α stimulates macro-
phages to release metalloproteinases, which leads to
accelerated degradation and destabilization of the fibrous
cover of atherosclerotic plaques, triggering dyslipidemia,
insulin resistance, and endothelial dysfunction.

The analysis of changes in serum TNF-α levels in rats
during exposure to epoxycholesterols and epoxyphytosterols
indicates that it is one of the key variables to differentiate
between the groups, as it increased significantly in both
ECh and ES groups unlike in controls. Similarly, we observed
a significant increase in TNF-α production in the liver in ani-
mals exposed to oxidized sterols (ECh and ES groups). In the
light of the published data, the observed changes in TNF-α
expression confirm the development of systemic and local
inflammation (liver). It has been demonstrated that the diet
activates a number of signalling pathways involved in lipid
metabolism (SREBP-1) and inflammatory response
(PPARγ), as well as TNF-α, INFγ, TGFβ1, and PDGF gene
expression in Apo E/Leiden 3 transgenic mice fed with
cholesterol-rich feed [37]. In line with the above, Ferre et al.
demonstrated an increased expression of the IL-1α gene in
the liver and decreased expression of TNF-α receptors
(TNF-α receptor subfamily member 6) in Apo E-/- mice
[38]. It was also shown that by activating liver X-receptor
(LXR), 22(R)-hydroxycholesterol significantly increases
TNF-α mRNA expression and TNF-α protein production
in cytosol of human hepatocytes [39].

The increase in TNF-α production observed in animals
exposed to oxysterols may be one of the factors, which exac-
erbate dyslipidemia, i.e., the increase in serum triglyceride
levels in the ECh group and increase in liver cholesterol con-
tent. Its mechanism involves increased hepatic fatty acid bio-
synthesis by TNF-α and their release from the adipose tissue
as well as impaired clearance of triglyceride-rich lipoproteins
(mainly VLDL) from plasma [25]. The TNF-α stimulates
lipolysis in adipose tissue by activating JNK and p44/42
kinases via increased expression of hormone-sensitive lipase
(HSL) and adipose triglyceride lipase (ATGL), without alter-
ing their core activity or perlipin expression [25, 40, 41].
Another mechanism of TNF-α action seen in rodents
involves inhibiting the expression of G protein-coupled
receptors (GPCRs) present on the surface of adipocytes,
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which in turn inhibits the antilipolytic effect of adenosine
[42]. The associated increase in plasma-free fatty acid con-
centrations is considered one of the major contributors of
insulin resistance and disorders of carbohydrate metabolism
as well as hypertriglyceridemia and metabolic syndrome.

Increased liver biosynthesis of fatty acids mediated by
TNF-α and other proinflammatory cytokines (e.g., IL-1 and
IL-6) manifests as increased endogenous triglyceride-rich
lipoprotein levels (mainly VLDL). Its mechanism involves
upregulated hepatic synthesis of citrate, an allosteric carbox-
ylase activator of Acetyl-CoA (acetyl-coenzyme A), which is
the key enzyme in the fatty acid synthesis pathway [43].

The effect of TNF-α on cholesterol metabolism, on the
other hand, differs significantly between primates and rodents.
In rodents, a slow increase in serum cholesterol levels and its
liver biosynthesis is observed (as shown in our experiment),
whereas in humans and other primates, either no effect of
TNF-α on plasma levels of total cholesterol and LDL-
cholesterol or their reduced plasma levels have been seen.
On the other hand, the mechanisms leading to increased
TNF-α-mediated cholesterol levels in rodents include
increased activity of HMG-CoA reductase and decreased
activity of squalene monooxygenase in the liver [44, 45].

The proatherogenic effect of IL-1 includes T- and B-cell
stimulation, increased proliferation and differentiation of
neutrophils and monocytes, stimulating the expression of
adhesive molecules (ICAM-1, VCAM-1), increased vascular
endothelial permeability, stimulation of smooth muscle pro-
liferation, and extracellular matrix synthesis [46]. The studies
in animal models of atherosclerosis demonstrated an
increased expression of IL-1α and IL-1β mRNAs in the aor-
tas of animals fed with cholesterol. Similarly, their expression
in the arterial wall was detectable in immunohistochemical
studies [47]. The in vitro exposure of human macrophages
or HUVEC cells to oxycholesterols led to an increased IL-
1β production [48]. It is likely that a similar effect may also
occur during the in vivo exposure to oxysterols, as seen in
our experimental studies, where exposure to both epoxycho-
lesterols and epoxyphytosterols resulted in a marked increase
in serum IL-1β concentration, which was more pronounced
in the ECh than ES group. The 3-nitrotyrosine, a product
of interaction of tyrosine residues with peroxynitrite, plays
a special role in oxidative stress-mediated protein damage.
The formation of peroxynitrite, a highly reactive molecule,
has been demonstrated in a number of chronic inflammatory
conditions and cases of perfusion-reperfusion injury. The
cells capable of releasing peroxynitrite include vascular endo-
thelial cells, monocytes/macrophages, and neutrophils [49].
Peroxynitrite modifies both extracellular (e.g., plasma) and
intracellular (e.g., antioxidant enzymes) proteins, especially
the superoxide dismutase (SOD) [50]. Increased protein
nitration, e.g., plasminogen or tPA, correlates with impaired
coagulation and fibrinolysis, e.g., in diabetic patients [51],
whereas an increased nitrotyrosine level may be an indepen-
dent cardiovascular risk factor [52]. Immunohistochemical
studies confirmed the presence of 3-nitrotyrosine residues
in the vascular wall in atherosclerosis [53]. Other proteins
particularly susceptible to in vivo nitration and chlorination
are apolipoproteins, especially Apo A1, present in HDL par-

ticles [54]. It has been demonstrated that their exposure to
peroxynitrite (also referred to as nitrosative stress) changes
the properties of HDL leading to the loss of its antioxidant
effect and capability of reverse cholesterol transport. An
increased myeloperoxidase activity is an additional factor,
which intensifies HDL nitration [54, 55].

The studies assessing changes in nitrated protein levels in
animal models of atherosclerosis or hypercholesterolemia are
very scarce and include mainly the results of nitrotyrosine
determination in plasma and organ proteins of transgenic
mice (Apo E-/-; iNOS-/-, or Apo E-/-). The iNOS gene defi-
ciency very significantly inhibited the synthesis of nitrated
proteins and slowed the progression of atherosclerosis [56].
Rat exposure to feed containing 2% of cholesterol led to an
increase in serum 3-nitrotyrosine levels by over 100%, com-
pared to animals receiving standard feed [57]. Similarly,
experimentally induced hypercholesterolemia resulted in
increased 3-nitrotyrosine synthesis in brains of rabbits [58].
Our experiment demonstrated that animal exposure to
5α,6α-epoxycholesterol or epoxyphytosterols in low-
cholesterol feed leads to an increased 3-nitrotyrosine synthe-
sis (increased serum nitrated proteins). Nevertheless, the 3-
nitrotyrosine content in the liver tissue was significantly ele-
vated only in the ECh group.

Comparing the results of most experimental animal studies
with the oxysterol-associated risk in humans, it should be noted
that the daily dietary intake of oxidized cholesterol derivatives
by experimental animals in our experiment and in other studies
reached 10mg/kg body weight [59], which would translate into
a daily intake of about 175-700mg of oxysterols and represents
at least 100% of the average daily cholesterol intake in an adult.
Therefore, it is highly unlikely that a diet of amodern individual
can comply with these assumptions. Another issue is interspe-
cies differences between experimental animals (usually rabbits,
rodents, or birds) and humans.

The limitations of the current study include a small sam-
ple size and the inability to monitor the dynamics of changes
in the studied parameters, as the inflammatory response
changes rapidly throughout the exposure to the studied com-
pounds. Similarly, our results warrant further studies on the
effect of other phytosterols and cholesterol derivatives in ani-
mal models.

5. Conclusion

Rat exposure to 5α,6α-epoxycholesterols or epoxyphytoster-
ols increases nitrosative stress (increased production of 3-
nitrotyrosine) and proinflammatory cytokine synthesis
(TNF-α, IL-1β, and IL-6). This leads to secondary disorder
of lipid metabolism in animals.
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