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In the present work, the concentrations of Ab11-x and Ab17-x peptides (x¼ 40 or 42), which result from the combined cleavages
of b-amyloid precursor protein (AbPP) by b’/a or a/c-secretases, respectively, were assessed in cerebrospinal fluid (CSF)
samples from patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI). Specific multiplexed assays were set up
using new anti-40 and anti-42 monoclonal antibodies (mAbs) for the capture of these N-truncated Ab peptides and anti-11 or anti-
17 mAbs for their detection. The specificity, sensitivity and reproducibility of such assays were assessed using synthetic
peptides and human cell models. Ab11-x and Ab17-x were then measured in CSF samples from patients with AD (n¼ 23), MCI
(n¼ 23) and controls with normal cognition (n¼ 21). Ab11-x levels were significantly lower in patients with MCI than in controls.
Compared with the combined quantification of Ab1-42, total Tau (T-Tau) and phosphorylated Tau (P-Tau; AlzBio3, Innogenetics),
the association of Ab11-40, Ab17-40 and T-Tau improved the discrimination between MCI and controls. Furthermore, when
patients with MCI were classified into two subgroups (MCI p1.5 or X2 based on their CDR-SB (Cognitive Dementia Rating–Sum
of Boxes) score), the CSF Ab17-40/Ab11-40 ratio was significantly higher in patients with CDR-SB p1.5 than in controls, whereas
neither Ab1-42, T-Tau nor P-Tau allowed the detection of this subpopulation. These results need to be confirmed in a larger
clinical prospective cohort.
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Introduction

Alzheimer’s disease (AD) is the most common form of
dementia and is characterized by loss of memory and
progressive cognitive impairment. The major histopathologi-
cal hallmarks of AD are extracellular senile plaques, which
mainly consist of b-amyloid peptides (Ab),1 and intracellular
neurofibrillary tangles, which are mostly composed of
hyperphosphorylated microtubule-associated Tau protein.2,3

Accumulation of Ab peptide aggregates could lead to
hippocampal synaptic dysfunction,4 thereby explaining the
AD memory deficits. Episodic memory loss is generally
considered as the core requirement for the diagnosis of mild
cognitive impairment (MCI).5,6 Early and reliable AD diagnosis
at the stage of MCI would improve AD prognosis and provide
the means to examine the putative efficacy of newly designed
drugs as disease modifiers. Today, the combined measure-
ment of total Tau (T-Tau), phosphorylated Tau (P-Tau) and
Ab1-42 in cerebrospinal fluid (CSF) allows the best biochem-
ical characterization of the patients’ clinical status, even from
a prognostic point of view.7–12 However, despite their good
diagnostic performance, we clearly need complementary
biomarkers to differentiate between AD and non-AD dis-
orders,13–15 particularly at early stages (MCI).

In normal conditions, the b-amyloid precursor protein
(AbPP) mainly undergoes a nonamyloidogenic cleavage

by a-secretase activity that precludes Ab generation.16 Con-

versely, in the amyloidogenic pathway, AbPP is sequentially

cleaved by the b-secretase BACE1 and by the g-secretase

proteolytic complex to produce various Ab peptides, including

the full-length (fl) species Ab1-40 and Ab1-42.16,17 Besides

flAb peptides, many N- and C-terminally truncated variants

have also been identified and isolated from cell supernatants,

animal models and brain extracts from patients with AD,18–22

and they could have escaped immunodetection in the CSF

because of technical limitations. This is not anecdotal as

within this plethoric Ab-linked peptidome, several Ab trun-

cated variants could have physiopathological and diagnostic

relevance. For instance, N-truncated peptides at residue 11 of

flAb (Ab11-x) results from BACE1-mediated b’-cleavage23

and might be seen as an indicator of b-secretase-associated

AbPP processing that could happen in pathological condi-

tions.24 Ab17-x variants result from a-secretase activity and

could also be revelatory of a pathological situation, because

a-secretase activity is apparently downregulated in AD.25–28

Here, to evaluate Ab11-x and Ab17-x levels in complex
fluids, including human CSF, we describe new specific
multiplexed assays based on the capture of the different Ab
peptides by new specific anti-C-terminal (Cter) monoclonal
antibodies (mAbs; 6H7 anti-40 antibody and 12E8 anti-42
antibody) and their detection by very specific anti-N-terminal
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mAbs (7H1 anti-11 antibody and 8H5 anti-17 antibody) that
were previously obtained and characterized.24 We then
assessed the ability of these assays to monitor CSF Ab11-x
and Ab17-x levels at very early AD stages and show that,
unlike the currently used assays, the Ab17-40/Ab11-40 ratio
allows discriminating between patients with very early MCI
and controls. Although the number of patients was limited, our
study indicates that additional N-truncated Ab-related frag-
ments could be used as biomarkers of AD pathology onset.

Materials and methods

Peptide synthesis. The immunogenic peptide C-KKKGS-
Ab33-42 used for the production of the anti-42 antibody included
the 10 C-terminal amino acids of human Ab starting at residue
#33 (33GLMVGGVVIA42, referred to as Ab33–42). The immu-
nogenic peptide C-KKKGS-PADRE-Ab31-40 used for anti-40
antibody production comprised the 10 C-terminal amino acids of
human Ab starting at residue #31 (31IIGLMVGGVV40, referred
to as Ab31–40). The PADRE sequence (pan HLA-DR epitope;
sequence: aK(X)VAAWTLKAAa, where X¼ L-cyclohexylala-
nine and a¼D-amino acid) can bind to C57BL/6 mouse
MHC-II molecules (H-2b haplotype) and elicit the T helper type
2 response.29,30 Additional details on their synthesis, purification
and integrity analysis are described in Supplementary
Information. Both peptides were coupled via their N-terminal
cysteine residue to maleimide-activated mcBSA (#77607 Pierce
Conjugation Kit, Rockford, IL, USA) for immunization.

Generation of antibody-producing hybridoma clones.
Experimental protocols requiring the use of mice were
reviewed by the Institutional Animal Ethics Committee
(Sysdiag HT-Mab facility, Montpellier, France). The detailed
description of the immunization protocol, hybridoma produc-
tion with the Sp2/0Ag14 myeloma cell line and mAb
purification are in Supplementary Information. Clone selection
(specific reactivity toward the relevant biotinylated peptide and
absence of reactivity against the other biotinylated peptide)
was done by sandwich enzyme-linked immunosorbent assay
based on the capture of N-terminally biotinylated Ab1-40 or
Ab1-42 (AnaSpec, Fremont, CA, USA) on streptavidin-coated
plaques and their detection by hybridoma supernatants and
goat anti-Fc antibodies (Sigma, St Louis, MO, USA). Specific
anti-40 (6H7 clone) and anti-42 (12E8 clone) antibodies were
selected, amplified and purified on protein A Sepharose
columns (GE Healthcare, Piscataway, NJ, USA).

X-MAP assays. All Ab peptides were purchased from
AnaSpec as lyophilized powder, solubilized in dimethyl
sulphoxide (2 mg ml� 1) and conserved at � 20 1C. Standard
aliquots (2mg ml� 1 in dimethyl sulphoxide) were prepared
and stored at � 20 1C. For test reproducibility, a new aliquot
was used for each experiment and was not kept after
standard reconstitution in Dulbecco’s modified Eagle’s
medium/1% foetal calf serum.

Different multiplexed Cter assays, which allow the capture
of peptides via their C-terminus, were designed to measure
the concentration of truncated Ab peptides. Carboxylated
magnetic beads from different microsphere numbers were
chemically coupled with anti-40 6H7, anti-42 12E8 or IRR

(irrelevant) antibodies and coupling evaluated with phycoer-
ythrin-coupled goat anti-mouse IgGs (Jackson Immuno-
research, Suffolk, UK). For truncated peptide detection, the
anti-11 7H1 and anti-17 8H5 mAbs24 were used as detection
antibodies after biotinylation (EZ-link Micro Biotinylation Kit,
Pierce). Two different Cter sandwich assays were designed,
based on the same bead combination (the 6H7/12E8/IRR
triplex), to detect either 11-x or 17-x species (x¼ 40 or 42)
depending on the used detection antibody.

CSF Ab1-42, T-Tau and P-Tau concentrations were
measured with the AlzBio3 multiplex assay (Innotest, Inno-
genetics, Gent, Belgium).

CSF samples. Human CSF samples from age-matched
patients with AD (n¼ 23) or MCI (n¼ 23) and donors with
normal cognition (controls, n¼ 21) were provided by Pre-
cisionMed (San Diego, CA, USA31). The clinical protocol,
consent forms and CSF registry were approved by the
Western Institutional Review Board located in Washington,
USA. Subjects with Mini-Mental State Examination (MMSE)
score 413 to o28 signed the approved written informed
consent and agreed to blood sampling by venipuncture
(o90 ml blood) and CSF collection (o25 ml) by lumbar
puncture every 6 months. The age at enrolment was 450
years and previous (within 2 years) brain scans excluded
other pathologies as cause of dementia/memory disorder.
Exclusion criteria were (1) evidence of multi-infarct dementia
and drug intoxication, thyroid disease, pernicious anaemia,
tertiary syphilis, chronic infections of the nervous system,
normal pressure hydrocephalus, Huntington’s disease,
Creutzfeldt–Jakob disease, brain tumours, polypharmacy
and Korsakoff’s syndrome; (2) life expectancy o3 years; and
(3) any contraindication to lumbar puncture, including antic-
oagulant therapy and subjects taking aspirin, aspirin-contain-
ing products or non-steroidal anti-inflammatory products,
within 1 week from lumbar puncture. The probable AD
classification was based on the NINCDS-ADRDA criteria:32

MMSE X13 and p26; deficit in two or more areas of
cognition; no consciousness disturbance; onset between 40
and 90 years, generally after the age of 65; and absence of
systemic disorders or other brain disease that could account
for the cognitive impairment. MCI was diagnosed based on:
MMSE X21 and p28; no dementia; memory complaint;
preserved general cognitive function; intact daily living
activities; problems with two or less of the following activities:
phone calls, meal preparation, handling money, completing
chores; abnormal memory function documented by scores
below the education-adjusted cutoff at the logical Memory II
subscale (delayed paragraph recall) from the Wechsler
Memory Scale–Revised (maximum score¼ 25). The ADAS-
Cog33 and Cognitive Dementia Rating–Global Score (CDR-
GS34,35) scores were calculated for each participant. MMSE,
ADAS-Cog and CDR sum of boxes (CDR-SB36) significantly
discriminated the different groups with no gender-linked
differences (Table 1a). Patients with MCI were divided as
indicated in the validated interpretative guideline for the
CDR-SB score,37 with a lower cutoff (1.5 instead of 2) for the
detection of very early cognitive impairment. MCI patients
with CDR-SB p1.5 (MCI p1.5 group, n¼ 9) correspond to
patients with ‘questionable impairment’ and the MCI X2
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group (n¼ 14) to patients with ‘very mild dementia’
(Table 1b). Lumbar puncture, cognitive tests and diagnosis
were all performed the same day to avoid any bias between
clinical evaluation and CSF sampling. All CSF samples
were stored in polypropylene tubes at � 80 1C as previously
described38 until thawing for immunoassays. All CSF
Ab11-x and Ab17-x measurements were performed twice in
two independent experiments to ensure the reliability of the
conclusions.

Statistical analyses. Statistical analyses and figures were
done using the ‘R/Bioconductor’ statistical open source
software39 or the SAS software v9.2 (SAS Institute, Cary,
NC, USA). Univariate differential analysis was performed
with the more appropriate statistical test (control of the
normality and homoscedasticity hypotheses). Multiple testing
corrections enabled to adjust the P-value of each marker to
control the false discovery rate. The Benjamini and Hochberg
approach40 was applied with the ‘multi-test’ package.
Adjusted P-values o0.05 were considered as statistically
significant. All biomarker distributions are illustrated with
boxplots and medians. The accuracy of each marker and its
discriminatory power was evaluated using the Receiving
Operating Characteristics (ROC) analysis. ROC curves are
the graphical visualization of the reciprocal relation between
sensitivity (Se) and specificity (Sp) of a test for various
values. In addition to univariate analysis, all markers were

combined to evaluate the potential increase in sensibility and
specificity using two multivariate approaches (logistic regres-
sion41 and mROC method42). A logistic regression model
was applied using biomarkers as categorical variables and
the median values as cut-points. A backward selection
process was considered in order to converge on the best
multivariate model.43 The Wald statistic criterion of P-value
o0.05 was used to keep variables in the final statistical
model. Adjusted odds ratios and their 95% confidence
intervals were computed for significant variables in the final
model. The mROC program is dedicated to identifying the
linear combination44 that maximizes the area under the ROC
curve.45 The equation for the underlying combination is
provided and can be used as a decision rule. The DeLong’s
test46 was also employed to compare several ROC curves.

Results

Antibody characterization. We produced specific anti-40
(6H7) and anti-42 (12E8) mAbs that displayed high affinity
toward their corresponding synthetic peptides and exclusive
specificity as no significant crossreaction toward other
C-terminal truncated Ab peptides was observed by surface
plasmon resonance analyses (Supplementary Table S1).
Thus, unlike 4G8 that, as expected, interacted similarly with
both N-40 and N-42 peptides with affinities in the nanomolar
range, 6H7 only bound to N-40 peptides, whereas 12E8

Table 1 Demographic data and psychometric assessment of the patients

a
Mean±s.d. (min–max) P-value

CTRL (n¼ 21) MCI (n¼23) AD (n¼ 23) CTRL vs MCI CTRL vs AD MCI vs AD

CDR-GS 0 n¼ 21 n¼ 1
CDR-GS 0.5 n¼ 22 n¼ 7
CDR-GS 1 n¼10
CDR-GS 2 n¼ 6
MMSE 29.71±0.46 24.78±2.13 17.57±2.86 o0.0001 o0.0001 o0.0001

(29–30) (21–28) (13–24)
ADAS-cog 0 18.04±8.04 36.91±11.02 o0.0001 o0.0001 o0.0001

(2–36) (22–59)
CDR-SB 0 2.3±1.35 6.5±3.81 o0.0001 o0.0001 o0.0001

(0–5.5) (2–14)
Mean age, year 65.48±5.31 69.57±9.52 77.39±6.83 0.084 o0.0001 0.0027

(60–77) (50–82) (66–90)
Sex, female/male 10/11 10/13 15/8 0.55 0.37 0.56
(%) (47.62/52.38) (43.48/56.52) (65.22/34.78)

b
Mean±s.d. (min–max) P-value

CTRL
(n¼21)

MCI p1.5
(n¼9)

MCI X2
(n¼14)

CTRL
vs MCI p1.5

CTRL
vs MCI X2

MCI p1.5
vs MCI X2

MMSE 29.71±0.46 (29–30) 25.89±1.83 (23–28) 24.07±2.06 (21–28) o0.0001 o0.0001 0.043
ADAS-cog 0 16±7.67 (2–27) 19.36±8.27 (7–36) o0.0001 o0.0001 0.34
CDR-SB 0 1±0.5 (0–1.5) 3.14±1 (2–5.5) o0.0001 o0.0001 o0.0001
Age, year 65.48±5.31 (60–77) 70.44±7.94 (58–81) 69±10.67 (50–82) 0.053 0.20 0.73
Sex, female/male 10/11 4/5 6/8 0.88 0.79 0.94
(%) (47.62/52.38) (44.4/55.6) (42.8/57.2)

Abbreviations: AD, Alzheimer’s disease; ADAS-cog, Alzheimer’s Disease Assessment Scale–Cognitive Subscale; CDR-GS, Cognitive Dementia Rating–Global
Score; CDR-SB, Cognitive Dementia Rating–Sum of Boxes; CTRL, controls; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination.
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interacted with all tested N-42 peptides with high affinity.
Surface-enhanced laser desorption/ionization analysis con-
firmed that 6H7 and 12E8 bound specifically to AbN-40 or
N-42 peptides, respectively, in complex biological fluids.
Accordingly, in supernatants from HEK293 APPwtþBACE1

cells that secrete high amounts of Ab1-x and Ab11-x
peptides,24 the 6H7 and 12E8 antibodies captured only
Ab1-40 and Ab11-40 or Ab1-42 and Ab11-42 peptides,
respectively, without any crossreactivity toward other Ab11-x
or Ab1-x (with x different from 40 or 42) variants
(Supplementary Figure S1).

Characterization and validation of the 6H7/12E8/IRR
triplex assays. We then developed two 6H7/12E8/IRR
triplex assays in which AbN-40 and AbN-42 peptides are
simultaneously captured via their C-terminus by the 6H7 and
12E8 antibodies. Ab11-x or Ab17-x peptides are then
detected with the 7H1 or 8H5 mAbs that were previously
characterized.24 Sandwich assays performed with all mAb
combinations showed a detection limit of o10 pg ml� 1

(Supplementary Figure S2). This rather high sensitivity
allowed the accurate assessment of AbN-x peptides in
complex media. The reproducibility of these assays was
examined using supernatants from HEK293 cell lines that
express wild-type AbPP (APPwt), wild-type APP and BACE1
(AbPPwtþBACE1) or AbPP with the Swedish mutation
(APPsw) and that secrete various Ab11-x and Ab17-x

Table 2a Concentration of the different AD biomarkers and of N-truncated Ab peptides in controls (CTRL) and patients with MCI or AD, and their significance in
differentiating the three study groups

Mean (pg ml� 1)±s.d. (min–max) P-value

CTRL (n¼21) MCI (n¼ 23) AD (n¼23) CTRL vs MCI CTRL vs AD MCI vs AD

Ab1-42 557.48±88.45
(380.21–699.62)

468.20±152.09
(179.41–829.88)

356.20±107.48
(186.35–588.39)

o0.05 o0.001 o0.01

T-Tau 54.72±20.13
(22.75–100.22)

79.51±37.90
(29.95–174.34)

145.40±89.10
(34.29–398.56)

o0.05 o0.001 o0.01

P-Tau 27.61±7.21
(15.27–41.10)

36.85±16.99
(12.59–78.16)

56.37±35.65
(13.75–171.99)

o0.05 o0.001 o0.05

Ab11-40 163.56±39.35
(95.75–230.23)

133.10±28.76
(85.34–192.69)

133.69±56.77
(30.77–235.95)

o0.01 0.051 0.97

Ab11-42 26.63±7.14
(15.67–40.99)

22.23±7.01
(13.81–43.87)

23.70±11.30
(5.02–50.02)

o0.01 0.32 0.60

Ab17-40 43.34±28.36
(9.65–98.65)

45.58±25.49
(8.81–100.02)

33.93±20.04
(5.19–66.03)

0.79 0.20 0.09

Ab17-42 11.63±3.82
(5.58–18.80)

11.51±7.12
(3.92–27.34)

8.15±3.60
(1.35–15.25)

0.94 o0.05 0.051

Abbreviations: AD, Alzheimer’s disease; CTRL, controls; MCI, mild cognitive impairment; P-Tau, phosphorylated Tau; T-Tau, total Tau.
The CSF biomarkers presented classical AD-like profiles with significant progressive decrease of Ab1-42 and increase of both T-Tau and P-Tau concentration in
accordance with the severity of the pathology. The concentration of the Ab11-40 and Ab11-42 peptides was lower in patients with MCI than in controls. Ab17-40 level
did not differ significantly in the three groups and Ab17-42 concentration was lower in the AD group.

Table 2b Diagnostic potential (mROC) of the different CSF biomarkers as univariate variables for MCI diagnosis

CTRL vs MCI Ab1-42 T-Tau P-Tau Ab11-40 Ab11-42 Ab17-40 Ab17-42

Median (pg ml� 1) 535.14 56.6 27.47 147.58 22.21 37.85 11.15
Cutoff (pg ml� 1) �490.47 64.16 27.26 � 146.66 �21.87 46.15 � 11.05
Sensitivity (%) 60.87 60.87 69.57 69.57 65.22 52.17 60.87
Specificity (%) 76.19 76.19 66.67 71.43 76.19 66.67 61.9
NPV (%) 64.00 64.00 66.67 68.18 66.67 56.00 59.09
PPV (%) 73.68 73.68 69.57 72.73 75.00 63.16 63.64
AUC 0.704 0.706 0.684 0.739 0.708 0.537 0.594
95% Confidence interval (0.547–0.861) (0.548–0.864) (0.522–0.847) (0.588–0.890) (0.548–0.868) (0.360–0.715) (0.419–0.769)
P-value (Delong’s test) 0.021 0.019 0.036 0.006 0.018 0.672 0.285

Abbreviations: AUC, area under the curve; CSF, cerebrospinal fluid; CTRL, controls; MCI, mild cognitive impairment; NPV, negative predictive value; PPV, positive
predictive value; P-Tau, phosphorylated Tau; T-Tau, total Tau.
The cut-offs were chosen to yield the highest Youden’s index. P-values (DeLong’s test) represent the comparison of biomarkers with AUC¼ 0.5.

Table 3 Diagnostic potential (mROC) of the different CSF biomarkers as
multivariate variables for MCI diagnosis

CTRL vs MCI T-TauþP-Tau
þAb1-42 (Z1)

T-TauþAb11-40
þAb17-40 (Z2)

Cutoff � 0.79 � 1.28
Sensitivity (%) 60.87 73.91
Specificity (%) 66.67 95.24
NPV (%) 60.87 76.92
PPV (%) 66.67 94.44
AUC 0.727 0.89
95% Confidence interval (0.575–0.878) (0.791–0.990)
P-value (Delong’s test) 0.01 o0.0001

Abbreviations: AUC, area under the curve; CSF, cerebrospinal fluid; CTRL,
controls; MCI, mild cognitive impairment; NPV, negative predictive value; PPV,
positive predictive value; P-Tau, phosphorylated Tau; T-Tau, total Tau.
The cutoffs were chosen to yield the highest Youden’s index. P-values
(DeLong’s test) represent the comparison of biomarkers with AUC¼ 0.5.
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peptides as well as in human control CSF samples
(Supplementary Figure S3). Reproducibility was satisfactory
for CSF Ab11-x measurements (percent coefficient of
variation o20%), and slightly more variable but still
acceptable for Ab17-x measurements (percent coefficient
of variation between 20 and 30% for Ab17-40 and B30% for
Ab17-42).

To further validate the assay specificity, we examined the
ability of the multiplexed assays to discriminate between
peptides differing by only one amino acid. Thus, we compared
the reactivity of the 6H7/7H1 and 6H7/4G8 sandwich assays
toward Ab 9–40, 10–40, 11–40, 12–40 or 13–40 peptides
(Supplementary Figure S4A) and the reactivity of the 6H7/8H5
and 6H7/4G8 sandwich assays toward Ab 15–40, 16–40,
17–40, 18–40 or 19–40 peptides (Supplementary Figure
S4B). The 6H7/7H1 and 6H7/8H5 assays clearly showed a
restricted specificity toward Ab11-40 and Ab17-40 peptides,
respectively. Conversely, the 4G8 antibody detected all tested
peptides with different sensitivities, according to the peptide
sequence.

As the concentrations of truncated fragments and flAb in
pathological conditions are unknown and could vary during
the disease course, we examined whether high levels of flAb
could influence the detection of truncated fragments in the two
assays. High concentrations of Ab1-40 or Ab1-42 (4100-fold
above the affinity constant for the truncated fragments) did not
significantly affect Ab11-x or Ab17-x detection, respectively
(Supplementary Figure S5). We therefore conclude that, in
these experimental conditions, the binding capacity of the
beads remains sufficient to preclude any technical bias,
thereby validating the use of the 6H7/12E8/IRR triplex assays
for the detection and quantification of N-truncated Ab peptides
in human CSF samples.

Table 4 Logistic regression coefficient and odds ratios of the best multivariate
model (controls vs MCI patients)

Logistic regression and odds ratio estimates

Effect Estimate P-value Odds ratio 95% CI

Intercept 0.49 0.45
Tau �1.75 0.03 0.17 (0.035–0.85)
Ab11-40 2.94 0.002 18.81 (2.84–124.58)
Ab17-40 �1.89 0.038 0.15 (0.025–0.90)
Intercept �1.224 0.016
T-TauþAb11-40
þAb17-40

2.73 0.0003 15.30 (3.51–66.70)

Abbreviations: CI, confidence interval; MCI, mild cognitive impairment; T-Tau,
total Tau.
Variables were discretized using the median values as cut-points. The
significant variables retained in the backward elimination model were T-Tau,
Ab11-40 and Ab17-40. The model had a good fitness as estimated by the
Hosmer–Lemeshow test (P40.05).

Figure 1 The Ab1–42/P-Tau and Ab1-42/T-Tau ratios do not allow discriminating between the mild cognitive impairment (MCI) p1.5 group and controls (CTRL). P-Tau,
phosphorylated Tau; T-Tau, total Tau. The Ab17-40/Ab11-40 ratio significantly differentiates the MCI p1.5 group from controls. The symbol ‘–’ indicates P40.05; *Po0.05;
**Po0.01.
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Quantification of Ab11-x and Ab17-x peptides in CSF
allows MCI detection at early stages. We then quantified
the concentration of Ab11-40, Ab11-42, Ab17-40 and
Ab17-42 peptides using the two Cter 6H7/12E8/IRR triplex
assays and the concentration of Ab1-42, T-Tau and P-Tau
with the AlzBio3 assay in CSF samples from patients with AD
or MCI (n¼ 23 per group) and controls (n¼ 21; Table 2a). As
previously reported,10,47 Ab1-42 was significantly reduced
whereas T-Tau and P-Tau concentrations were significantly
higher in CSF samples from patients with MCI than from
controls (Po0.05). These differences were further exacer-
bated at the AD stage (Po0.001). Ab11-40 and Ab11-42
concentrations were significantly lower in patients with MCI
than in controls (Po0.01), whereas no significant difference
was observed in Ab17-x levels in the three groups, but for
Ab17-42 between controls and AD (Po0.05). Ab11-40 and
Ab11-42 peptides discriminated more efficiently patients with
MCI from controls, even when compared with the classical
biomarkers Ab1-42, T-Tau and P-Tau (Table 2b). Analysis of
different marker combinations for discriminating patients
with MCI from controls using the mROC program (Table 3)
and logistic regression analysis (Table 4) indicated that
the combination of Ab11-40, Ab17-40 and T-Tau allowed the
best evaluation of the MCI risk (multivariate adjusted odds
ratio: 15.30, Po0.05 for each biomarker). Accordingly, a
person with a CSF Ab11-40 level o147.6 pg ml� 1 was 18.8
times more at risk to have MCI. This result was strengthened
by the mROC approach, which confirmed that, compared
with the reference Ab1-42, T-Tau and P-Tau combination
(sensitivity 60.87%; specificity 66.67%; area under
the ROC curve 0.727), the Ab11-40, Ab17-40 and T-Tau
combination better discriminated patients with MCI
from controls (sensitivity 73.91%; specificity 95.24%; area
under the ROC curve 0.890; Table 3 and Supplementary
Figure S6).

Quantification of Ab11-x and Ab17-x peptides discrimi-
nate patients with MCI at different stages of severity.
MCI is a complex concept that covers various stages
characterized by distinct cognitive dysfunctions. Thus, to
further investigate the potential interest of the measurements
of N-truncated Ab peptides for MCI diagnosis, we classified
patients with MCI in two subgroups (MCI p1.5 and MCI X2)
based on their CDR-SB score, because CDR-SB
reliably measures AD clinical and pathological progres-
sion.37,48,49 Ab1-42, T-Tau and P-Tau could not significantly
discriminate patients with very early MCI (MCI p1.5) from
controls (Supplementary Figure S7A). Conversely, Ab11-40
concentration was significantly lower (fold median¼ 0.78;
Po0.01) and Ab17-x concentration tended to be higher
(not significant) in CSF samples from patients with MCI p1.5
than in controls (Supplementary Figures S7B and S7C).
Accordingly, the Ab17-40/Ab11-40 ratio was significantly
increased in the MCI p1.5 group in comparison with
controls (Figure 1, fold median¼ 2.07; Po0.01), whereas
the classical Ab1-42/P-Tau and Ab1-42/T-Tau ratios, which
have potential predictive value, could not differentiate
controls from patients with MCI p1.5 (Figure 1). Noteworthy,
the Ab17-42/Ab11-42 ratio also discriminated, although with
lower significance, the MCI p1.5 group from controls

(Figure 1b). When analysing patients with very early
cognitive impairment, the increase of the Ab17-40/Ab11-40
ratio becomes more significant when the used CDR-SB
cutoff decreases, highlighting the potential value of this ratio
for describing very early cognitive impairment, or categoriz-
ing the MCI status (Supplementary Figure S8).

Discussion

This study highlights for the first time the potential diagnostic
value of the CSF concentration of Ab11-40, Ab11-42,
Ab17-40 and Ab17-42 peptides for early AD detection and
MCI characterization. These results are based on new
sensitive multiplexed assays that were validated using
different synthetic peptides and cell supernatants, before
use in human CSF samples. We also show that the Ab11-40,
Ab17-40 and T-Tau combination might better discriminate
patients with MCI from controls than the currently used Ab1-
42, T-Tau and P-Tau combination.

The results obtained with these multiplexed assays in
controls and patients with MCI or AD highlight several
important points. First, the AbN-40 and AbN-42 diagnostic
performances in controls and patients with MCI are not
significantly different. This suggests that the subsequent
cleavages of b’-secretase (C89) and a-secretase (C83)-
derived AbPP fragments by g-secretase leading to Ab11-x
or Ab17-x peptides, respectively, does not account for the
setting of early proteolytic alterations responsible for the
generation of N-terminally truncated Ab fragments during
early MCI stages.

Second, the Ab11-x levels in CSF samples from MCI
patients were lower than in controls. Several previous studies
demonstrated that BACE1 b’-cleavage between the Y10 and
E11 residues of Ab is dependent on the BACE1 activity level.
Ab11-x concentration is supposed to be lower in physiological
conditions50 than in AD24,51–56 because BACE1 is upregu-
lated in AD-affected brains, and could be associated with
hippocampal atrophy.57 The apparent CSF reduction of
Ab11-x peptides in MCI could reflect their high hydrophobicity
and aggregative properties, thus explaining their presence in
plaques19,58 and their reduced presence in CSF samples as
previously described for pathogenic flAb42. Alternatively, one
cannot exclude the possibility of a modification of BACE1
activity/affinity toward other cleavage sites as previously
suggested59,60 that would favour breakdown at the b-site
cleavage rather than at the b’ one. A proteolytic shift between
b and b’ sites of cleavages was recently highlighted by the
discovery of a new AbPP mutation at the E11 residue (E682K)
in a Belgian patient with early-onset AD. This mutation
prevents b’-cleavage and thus simultaneously decreases
the production of C89 fragments and Ab11-x peptides, while
increasing that of C99 fragments and Ab1-x peptides.61 This
finding suggests that elevated Ab11-x concentration in CSF
samples represents a protective signature because AbPP
cleavage at the b’-site has been considered nonamyloido-
genic.61 It would be interesting to evaluate the CSF
concentration of Ab11-x in these patients and in patients with
other APP mutations, such as the A673T mutation that has
protective effect against AD by affecting directly the
b-cleavage of AbPP by BACE1 and reducing Ab1-x secretion.62
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Third, Ab17-x measurements, especially Ab17-40, are of
interest for discriminating between controls and patients with
MCI, as shown by the mROC and logistic regression
analyses. This may be explained by the heterogeneity of the
MCI group. Indeed, this population could be divided in two
subgroups (MCI p1.5 and MCI X2, based on their CDR-SB
score). In our study, despite the low number of patients, the
CDR-SB classification fitted very well with the scores of other
cognitive tests, such as the MMSE or ADAS-cog
(see Table 1b), thus strengthening our results. The Ab1-42,
T-Tau and P-Tau biomarkers and the Ab1-42/T-Tau and
Ab1-42/P-Tau ratios, which were reported to have prognostic
values,10,11,63–65 could not discriminate controls from the MCI
p1.5 group. Conversely, the Ab17-40/Ab11-40 ratio was
significantly higher in the MCI p1.5 group than in controls.
Despite a lower discriminating value, the Ab17-42/Ab11-42
ratio allowed the identification of this subgroup as well. To our
knowledge, this is the first report in which the modulation of
a-secretase-derived products could be detected during the
very first steps of AD. Indeed, previous studies aimed at
detecting the CSF concentrations of secreted APPa, which
derives from a-secretase cleavage of AbPP, did not find any
significant variation in its level.28,66 This may indicate that the
first steps of AD could be characterized by an increase of the
CSF concentration of Ab17-x peptides, which are toxic
component of diffuse amyloid deposits,67–69 probably
because of a lack of degradation or modulation of their
aggregation, rather than by an increase or decrease of
a-secretase activity.

In conclusion, our results show differential CSF concentra-
tions of b’- and a-secretase-derived peptides during AD
progression and suggest the possible role of Ab11-x and
Ab17-x peptides in the first steps of AD, highlighting key
physiological aspects of the pathology. The clinical interest of
Ab11-x and Ab17-x peptides as new biomarkers for improving
MCI detection and characterization and as a consequence the
stratification of MCI patients has to be further validated in
longitudinal clinical studies, especially for delineating the
outcome of the different MCI subpopulations. Our study adds
new candidates to the cohort of Ab-related fragments that
could contribute to the aetiology of early-stage AD. Overall, it
indicates that conclusions based on the monitoring of flAb
alone or on the results of immunological assays using
antibodies that interact nonspecifically with all AbN-40/42
species should be reconsidered.
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