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INTRODUCTION 
 
Osteosarcoma, the major cause of tumor-related death 
in adolescents and children, is the most common 
malignant primary bone cancer [1–5]. Osteosarcoma 
is destructive and has high metastatic potential, 
mostly to the lungs [3, 6–8]. Despite treatment 
strategies that have been rapidly developed, the five-
year survival rate of osteosarcoma is still 
unsatisfactory [9–11]. Until now, the molecular 
mechanism underlying the progression and 
development of osteosarcoma remained unknown 
[12–14]. Therefore, it is urgently necessary to identify 
new therapeutic factors or targets for osteosarcoma. 

 

 
Long noncoding RNAs (lncRNAs) are a group of 
transcripts that lack protein-coding potential and that 
are longer than 200 nucleotides [15–18]. Increasing 
studies have implicated dysregulated lncRNAs in 
multiple tumors, such as hepatocellular carcinoma, lung 
cancer, colorectal cancer, bladder cancer and 
osteosarcoma [19–25]. LncRNAs play vital roles in 
tumor apoptosis, proliferation, differentiation, 
metastasis and invasion [26–30]. Recently, a new 
lncRNA, HIF1A-AS2, was found to be dysregulated in 
several tumors, such as colorectal cancer, breast cancer, 
glioblastoma, bladder cancer and gastric cancer [31–
35]. It was found that HIF1A-AS2 promoted cell 
proliferation and invasion. However, the expression and 
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ABSTRACT 
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Counting Kit-8 (CCK-8) and invasion assays were performed to determine cell proliferation and invasion ability, and a 
dual luciferase reporter assay was performed to determine the interaction between HIF1AAS2 and miR-129-5p. We 
showed that the expression of HIF1A-AS2 was upregulated in the osteosarcoma samples compared with the 
expression in noncancerous samples. Moreover, patients with high HIF1A-AS2 expression had a shorter overall 
survival. Ectopic expression of HIF1A-AS2 enhanced osteosarcoma cell proliferation, cell cycle progression and 
invasion. We found that overexpression of miR-129-5p decreased the luciferase activity of wild-type (WT) HIF1A-AS2 
but not mutant HIF1A-AS2. Ectopic expression of HIF1A-AS2 suppressed miR-129-5p expression in MG-63 cells. We 
demonstrated that miR-129-5p was downregulated in osteosarcoma and was negatively associated with HIF1A-AS2 
expression. Furthermore, ectopic expression of miR-129-5p suppressed osteosarcoma cell proliferation, cell cycle 
progression and invasion. In addition, overexpression of HIF1A-AS2 promoted cell proliferation, cell cycle 
progression and invasion of osteosarcoma cells through the modulation of miR-129-5p. These results indicated that 
HIF1A-AS2 might be a potential therapeutic target for osteosarcoma. 
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potential role of HIF1A-AS2 in the development of 
osteosarcoma remain unknown. 
 
In this study, we found that the expression of HIF1A-
AS2 was upregulated in the osteosarcoma samples 
compared with the expression levels in noncancerous 
samples. Moreover, patients with high HIF1A-AS2 
expression had a shorter overall survival than the low 
HIF1A-AS2 expression group. Furthermore, we studied 
the function of HIF1A-AS2 in osteosarcoma cells and 
indicated that ectopic expression of HIF1A-AS2 
enhanced osteosarcoma cell proliferation, cell cycle 
progression and invasion. 
 
RESULTS 
 
HIF1A-AS2 was upregulated in osteosarcoma and 
was related to poor survival 
 
RT-qPCR was performed to measure HIF1A-AS2 
expression in 30 osteosarcoma samples and paired 
adjacent normal tissue, which were normalized to U6. 
The expression of HIF1A-AS2 was significantly higher 
in the osteosarcoma samples compared to the 
expression levels in the paired normal controls (Figure 
1A, mean expression in the osteosarcoma samples 
versus the normal tissue = 2.790 ± 0.2451 vs. 1.321 ± 
0.1329, respectively; p<0.001). In addition, the 
expression of HIF1A-AS2 was upregulated (defined as 
a cutoff set at log 2.0-fold-change >1) in 23 cases 
(23/30; 77 %) compared to the expression in adjacent 
normal tissues (Figure 1B). Moreover, we showed that 
the median survival of osteosarcoma patients with high 
HIF1AAS2 expression in primary tumors was 50 
months, which was shorter than those with low 
HIF1AAS2 expression (92 months) (Figure 1C, median 
overall survival, =50 vs. 92 months; log-rank p<0.01). 

HIF1A-AS2 promoted osteosarcoma cell 
proliferation, cell cycle progression and invasion 
 
Next, we showed that the expression of HIF1A-AS2 
was upregulated in osteosarcoma cell lines (U2OS, 
SoSP-M, SaOS-2, MG-63) compared to the expression 
in the osteoblast cell line (hFOB) (Figure 2A, p<0.001). 
Then, we confirmed that pcDNA-HIF1A-AS2 could 
enhance the expression of HIF1A-AS2 in U2OS (Figure 
2B, p<0.001) and MG-63 (Figure 2C, p<0.001) cells by 
using qRT-PCR analysis. Moreover, ectopic expression 
of HIF1A-AS2 increased the S phase of the U2OS 
(Figure 2D, p<0.05) and MG-63 (Figure 2E, p<0.05) 
cells compared to that of the control group. The MTT 
analysis was conducted to measure the growth of  
the U2OS and MG-63 cells after ectopic expression  
of HIF1A-AS2. Overexpression of HIF1A-AS2 
promoted U2OS (Figure 2F) and MG-63 (Figure 2G) 
cell growth. Ectopic expression of HIF1A-AS2 
increased U2OS (Figure 2H, p<0.001) and MG-63 
(Figure 2I, p<0.001) cell invasion, and the relative 
invasive cells are shown. 
 
Ectopic expression of HIF1A-AS2 inhibited miR-
129-5p expression 
 
Using qRT-PCR analysis, we confirmed that the miR-
129-5p mimic could enhance the expression of miR-
129-5p in MG-63 cells (Figure 3A, p<0.001). The 
binding sites between HIF1A-AS2 and miR-129-5p 
were identified by using bioinformatics analysis (Figure 
3B). A luciferase reporter assay was conducted to 
validate the binding site combinations. We showed that 
overexpression of miR-129-5p could decrease the 
luciferase activity of wild-type (WT) HIF1A-AS2 but 
not that of the mutant HIF1A-AS2 (Figure 3C, p<0.05). 
Overexpression of miR-129-5p decreased the

 

 
 

Figure 1. HIF1A-AS2 was upregulated in osteosarcoma and was related to poor survival. (A) The expression of HIF1A-AS2 in 30 
osteosarcoma samples and their noncancerous pairs was detected by qRT-PCR. U6 was used as the internal control. (B) The expression of 
HIF1A-AS2 was upregulated in 23 cases (23/30; 77 %) compared to the expression in adjacent tissues. (Defined as a cutoff of Log 2.0-fold-
change >1) (C) The high HIF1A-AS2 expression group had a shorter overall survival than the low HIF1A-AS2 expression group (median overall 
survival =50 vs. 92 months, respectively; log-rank p<0.01). 
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expression of HIF1A-AS2 in MG-63 cells (Figure 3D, 
p<0.01). Ectopic expression of HIF1A-AS2 suppressed 
miR-129-5p expression in MG-63 cells (Figure 3E, 
p<0.01). Furthermore, we showed that overexpression 
of HIF1A-AS2 increased VCP expression in MG-63 
cells (Figure 3F, p<0.01). We also confirmed that 
ectopic expression of HIF1A-AS2 promoted VCP 
protein expression in MG-63 cells (Figure 3G). 

MiR-129-5p was downregulated in osteosarcoma 
and was negatively correlated with HIF1A-AS2 
expression 
 
RT-qPCR was performed to analyze miR-129-5p 
expression in 30 osteosarcoma samples and paired 
adjacent normal tissues, which were normalized to U6. 
The expression of miR-129-5p was significantly lower 

 

 
 

Figure 2. HIF1A-AS2 promoted osteosarcoma cell proliferation, cell cycle progression and invasion. (A) The expression of HIF1A-
AS2 in osteosarcoma cell lines (U2OS, SoSP-M, SaOS-2, MG-63) and an osteoblast cell line (hFOB) was measured by qRT-PCR. (B) The 
expression of HIF1A-AS2 in U2OS cells was determined by qRT-PCR. (C) The expression of HIF1A-AS2 in MG-63 cells was determined by qRT-
PCR. (D) Ectopic expression of HIF1A-AS2 increased the S phase of U2OS cells. (E) Ectopic expression of HIF1A-AS2 promoted the S phase of 
MG-63 cells. (F) Overexpression of HIF1A-AS2 promoted U2OS cell proliferation. (G) Ectopic expression of HIF1A-AS2 promoted MG-63 cell 
growth. (H) Ectopic expression of HIF1A-AS2 increased U2OS cell invasion, and the relative invasive cells are shown. (I) Ectopic expression of 
HIF1A-AS2 increased MG-63 cell invasion, and the relative invasive cells are shown. *p<0.05, **p<0.01 and ***p<0.001. 
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in the osteosarcoma samples than in the paired normal 
control tissues (Figure 4A, mean expression in the 
osteosarcoma tissue versus the normal tissue =1.710 ± 
0.1479 vs. 2.496 ± 0.1523, respectively; p<0.001). In 
addition, the expression of miR-129-5p was down-
regulated (defined as a cutoff set at Log 2.0-fold-change 
>1) in 22 cases (22/30; 73%) compared to the 
expression in adjacent normal tissues (Figure 4B). 
Moreover, we showed that miR-129-5p expression was 
negatively correlated with HIF1A-AS2 expression 
(Figure 4C, r2=-0.31, p<0.01) by using Pearson's 
correlation coefficient analysis. 
 
miR-129-5p suppressed osteosarcoma cell 
proliferation, cell cycle progression and invasion 
 
Next, we showed that the expression of miR-129-5p 
was downregulated in osteosarcoma cell lines (U2OS, 

SoSP-M, SaOS-2, MG-63) compared to the expression 
in the osteoblast cell line (hFOB) (Figure 5A, p<0.001). 
The MTT analysis was conducted to measure the 
growth of MG-63 cells after ectopic expression of miR-
129-5p. Overexpression of miR-129-5p suppressed 
MG-63 cell growth (Figure 5B). Ectopic expression of 
miR-129-5p decreased the S phase of the MG-63 cells 
compared to that of the control group (Figure 5C, 
p<0.05). Ectopic expression of miR-129-5p decreased 
MG-63 cell invasion, and the relative invasive cells are 
shown (Figure 5D and 5E, p<0.001). 
 
HIF1A-AS2 regulated cell proliferation, cell cycle 
progression and invasion of osteosarcoma cells 
through the modulation of miR-129-5p 
 
We aimed to determine whether HIF1A-AS2 acted by 
silencing miR-129-5p expression. The MTT assay

 

 
 

Figure 3. Ectopic expression of HIF1A-AS2 inhibited miR-129-5p expression. (A) The expression of miR-129-5p in MG-63 cells was 
detected by using qRT-PCR analysis. (B) The binding sites between HIF1A-AS2 and miR-129-5p obtained from bioinformatics analysis are 
shown. (C) We showed that overexpression of miR-129-5p can decrease the luciferase activity of wild-type (WT) HIF1A-AS2 but not mutant 
HIF1A-AS2. (D) Overexpression of miR-129-5p decreased the expression of HIF1A-AS2 in MG-63 cells. (E) Ectopic expression of HIF1A-AS2 
suppressed miR-129-5p expression in MG-63 cells. (F) Overexpression of HIF1A-AS2 increased VCP expression in MG-63 cells. (G) The protein 
expression of VCP was detected by Western blot. GAPDH was used as the control. *p<0.05. 
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indicated that the miR-129-5p mimic could inhibit the 
promotion of proliferation induced by HIF1A-AS2 
overexpression (Figure 6A). Ectopic expression of miR-
129-5p decreased the S phase of the HIF1A-AS2-
overexpressing MG-63 cells compared to that of the 

scrambled group (Figure 6B, p<0.05). In addition, 
elevated expression of miR-129-5p suppressed the 
invasion of HIF1A-AS2-overexpressing MG-63 cells 
compared to that of the scramble group (Figure 6C and 
6D, p<0.001). 

 

 
 

Figure 4. miR-129-5p was downregulated in osteosarcoma and was negatively related to HIF1A-AS2 expression. (A) The miR-
129-5p expression in 30 osteosarcoma samples and their noncancerous pairs was determined by qRT-PCR. U6 was used as the internal 
control. (B) The expression of miR-129-5p was downregulated in 22 cancerous tissues (22/30; 73%) compared to the adjacent tissues. 
(Defined as a cutoff of Log 2.0-fold-change >1) (C) miR-129-5p expression was negatively correlated with HIF1A-AS2 expression in 
osteosarcoma samples by using Pearson's correlation coefficient analysis. 

 

 
 

Figure 5. miR-129-5p suppressed osteosarcoma cell proliferation, cell cycle progression and invasion. (A) The expression of miR-
129-5p in osteosarcoma cell lines (U2OS, SoSP-M, SaOS-2, MG-63) and an osteoblast cell line (hFOB) was measured by qRT-PCR. (B) 
Overexpression of miR-129-5p suppressed MG-63 cell growth. (C) Ectopic expression of miR-129-5p decreased the S phase of MG-63 cells 
compared to that of the scramble group. (D) Ectopic expression of miR-129-5p decreased MG-63 cell invasion. (E) The relative invasive cells 
are shown. *p<0.05, **p<0.01 and ***p<0.001. 
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DISCUSSION 
 
Increasing studies have suggested that lncRNAs perform 
critical functions in the modulation of genes that regulate 
cancer growth, migration, and apoptosis, which has 
increased our understanding of biological behaviors of 
several diseases, especially tumors including osteo-
sarcoma [22, 28, 36–39]. Moreover, previous evidence 
has shown that lncRNAs are therapeutic targets and 
valuable biomarkers [40, 41]. A previous study suggested 
that a new lncRNA, HIF1A-AS2, located on chromosome 
14q23.2 was upregulated in several cancers, such as 
neuroblastoma, chronic myeloid leukemia, colorectal 
cancer and bladder cancer [33, 35]. HIF1A-AS2 was 
overexpressed in gastric cancer, and HIF1A-AS2 
knockdown could suppress gastric cancer cell 
proliferation and tumorigenesis [31]. However, the 
relationship between osteosarcoma and HIF1AAS2 
remains unknown. 

This is the first study to explore the function of HIF1A-
AS2 in osteosarcoma. In our research, we detected the 
mean expression levels and clinical importance of 
HIF1A-AS2 in osteosarcoma and further investigated its 
cellular function in osteosarcoma cell lines. Our study 
demonstrated that the expression of HIF1A-AS2 was 
upregulated in osteosarcoma samples compared with the 
expression in noncancerous samples. Moreover, patients 
with high HIF1A-AS2 expression had a shorter overall 
survival than the low HIF1A-AS2 expression group. 
Furthermore, we studied the function of HIF1A-AS2 in 
osteosarcoma cells and demonstrated that ectopic 
expression of HIF1A-AS2 enhanced osteosarcoma cell 
proliferation, cell cycle progression and invasion. 
Suppressing HIF1A-AS2 expression may present one 
therapeutic strategy for curing osteosarcoma in the 
clinical setting. More work is required to explain the 
molecular mechanisms of HIF1A-AS2 in the develop-
ment of osteosarcoma. 

 

 
 

Figure 6. HIF1A-AS2 regulates cell proliferation, cell cycle progression and invasion of osteosarcoma cells through the 
modulation of miR-129-5p. (A) The cell proliferation of MG-63 cells was determined by MTT analysis. (B) Ectopic expression of miR-129-
5p decreased the S phase of HIF1A-AS2-overexpressing MG-63 cells compared to that of the scrambled group. (C) Elevated expression of miR-
129-5p suppressed the invasion of HIF1A-AS2-overexpressing MG-63 cells compared to the invasion of the scrambled group. (D) The relative 
invasive cells are shown. *p<0.05, **p<0.01 and ***p<0.001. 
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Previous studies have demonstrated that lncRNAs exert 
crucial functions in regulating biological cell processes 
by acting as ‘sponges’ for miRNAs [25, 42]. Lin et al 
showed that HIF1A-AS2 promoted colorectal cancer 
progression and epithelial-mesenchymal transition by 
suppressing miR-129-5p expression. To study the 
downstream genes of HIF1A-AS2, we used 
bioinformatics to find a potential miRNA with 
complementary binding at the HIF1A-AS2 3’-UTR. 
Furthermore, we performed a luciferase reporter assay 
and found that overexpression of miR-129-5p could 
decrease the luciferase activity of wild-type (WT) 
HIF1A-AS2 but not mutant HIF1A-AS2. Ectopic 
expression of HIF1A-AS2 suppressed miR-129-5p 
expression in MG-63 cells. Several studies have 
suggested that miR-129-5p plays important roles in the 
development of tumors such as hepatocellular 
carcinoma, colon cancer, breast cancer, lung cancer, 
gastric cancer and osteosarcoma [43–48]. Long et al 
[48] showed that miR-129-5p expression might be 
regulated by demethylation and that miR-129-5p 
suppressed osteosarcoma cell invasion and migration by 
targeting valosin-containing protein (VCP) in 
osteosarcoma. In addition, Liu et al [49] indicated that 
lncRNA MALAT1 increased osteosarcoma progression 
by regulating HMGB1 expression via miR-129-5p and 
miR-142-3p. In our study, we observed that miR-129-
5p was downregulated in osteosarcoma and was 
negatively related to HIF1A-AS2 expression. Further-
more, ectopic expression of miR-129-5p suppressed 
osteosarcoma cell proliferation, cell cycle progression 
and invasion. In addition, overexpression of HIF1A-
AS2 promoted cell proliferation, the cell cycle 
progression and invasion of osteosarcoma cells through 
the modulation of miR-129-5p. 
 
In conclusion, the data from our study suggested that 
upregulated HIF1A-AS2 acted as an oncogene in 
osteosarcoma and induced the tumorigenesis of 
osteosarcoma by regulating miR-129-5p expression, 
indicating that HIF1A-AS2 might be a potential 
therapeutic target for osteosarcoma. 
 
MATERIALS AND METHODS 
 
Tissue samples 
 
Thirty paired osteosarcoma samples and matched 
adjacent normal bone samples from osteosarcoma 
patients who underwent surgery were collected from the 
No. 2 Affiliated Hospital of Qingdao University. The 
surgically removed tissues were quickly stored in liquid 
nitrogen until they were used. This research was 
approved by the local clinical ethics committee of the 
No. 2 Affiliated Hospital of Qingdao University, and 
our study was performed following the principles of the 

Declaration of Helsinki. Written informed consent was 
obtained from all patients. 
 
Cell culture and transfection 
 
Human osteosarcoma cell lines (U2OS, SoSP-M, SaOS-
2, MG-63) and an osteoblast cell line (hFOB 1.19) were 
purchased from the American Type Culture Collection 
(ATCC) (Rockville, MD). These cell lines were 
maintained in DMEM (Dulbecco’s modified Eagle’s 
medium) (Invitrogen, Carlsbad, CA, USA) sup-
plemented with FBS (fetal bovine serum) and 
streptomycin/penicillin. miR-129-5p mimic and 
scramble, pcDNA-HIF1A-AS2 and pcDNA-control 
were purchased from Ambion. Cells were transfected 
with these vectors using Lipofectamine 2000 
(Invitrogen, USA) according to the manufacturer’s 
instructions. 
 
RNA isolation and real-time PCR 
 
Total RNA from the samples or cell lines was separated 
using a TRIzol kit (Invitrogen, Carlsbad, USA). The 
expression of miRNA, lncRNA and mRNA was 
determined using SYBR Green (TaKaRa) with the 
Applied Biosystems 7900 system according to the 
manufacturer’s recommendations. The qRT-PCR data 
were normalized using the 2-ddCt method. The 
expression of miRNA and lncRNA was normalized to 
U6. The expression of mRNA was normalized to 
GAPDH. The primer sequences of these genes were as 
follows: U6 forward, 5ʹ-CGCTAGCACATATCGGC 
TA-3ʹ and reverse, 5ʹ-TTCTGCGACGAATTTGTCAT-
3ʹ; HIF1A-AS2 forward, 5ʹ-TCTGTGGCTCAGTTCCT 
TTTGT-3ʹ and reverse, 5ʹ-ATGTAGGAAGTGCCA 
GAGCC-3ʹ; GAPDH forward, 5ʹ-CGCTCTCTGCTCC 
TCCTGTTC-3ʹ and reverse, 5ʹ-ATCCGTTGACTCC 
GACCTTCAC-3ʹ. 
 
Cell growth and invasion assay 
 
Cell growth was determined using MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). 
Osteosarcoma cells were seeded in a 96-well plate, and 10 
μL of MTT was added to each well. After three hours, the 
absorbance value at 490 nm was measured. For cell 
invasion, cells were cultured in the top of a Matrigel-
coated chamber with serum-free DMEM. Medium 
containing FBS was added to the lower chamber. After 48 
hours, cells that invaded the lower well were fixed, 
stained with hematoxylin and counted. For the cell cycle 
assay, flow cytometric analysis was used. The cells were 
fixed with ethanol (70 %) and incubated with RNase A. 
Subsequently, these cells were incubated with propidium 
iodide (PI) (Becton–Dickinson, CA, USA) and analyzed 
on the FACScan flow cytometer (San Jose, USA). 
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Western blotting 
 
Protein from cells or tissues was extracted using RIPA 
buffer (Pierce) in accordance with the manufacturer’s 
recommendations. The protein concentration was 
quantified using a BCA kit. Equal amounts of protein 
were separated with SDS–acrylamide gel and 
transferred into a PVDF membrane (Millipore). After 
blocking with nonfat milk, the membrane was incubated 
with anti-VCR and anti-GAPDH antibodies. The 
membrane was then incubated with secondary antibody 
at room temperature for half an hour. The signal was 
determined by enhanced chemiluminescence (ECL). 
GAPDH was used as the control. 
 
Luciferase reporter assay 
 
MG-63 cells were cultured in a 24-well plate. The 
binding sites of miR-129-5p and the HIF1A-AS2 
3’UTR and the wild-type 3’UTR were subcloned into 
the pGL3 luciferase promoter vector (Promega, USA). 
Cells were cotransfected with 3’UTR and wild-type 
3’UTR HIF1A-AS2 or miR-129-5p mimics and 
luciferase reporter plasmids (Promega, USA) using 
Lipofectamine 2000 following the manufacturer’s 
protocol. Luciferase activity was detected using the 
Dual Luciferase Reporter Assay kit (Promega). 
 
Statistical analysis 
 
Data are presented as the mean ± standard deviation 
(SD) and were measured by SPSS 17.0 (IBM, Chicago, 
USA). The two-tailed Student’s t test and ANOVA 
were performed to assess the significance differences. 
The overall survival analysis of these osteosarcoma 
patients was performed by log-rank test, and the 
correlation between HIF1A-AS2 or miR-129-5p was 
determined by Pearson's correlation coefficient analysis. 
P<0.05 was accepted as statistically significant. 
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