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Abstract

Mitochondrial membrane potential (ΔΨm) is critical for maintaining the physiological function of the respiratory chain to generate ATP. A
significant loss of ΔΨm renders cells depleted of energy with subsequent death. Reactive oxygen species (ROS) are important signaling
molecules, but their accumulation in pathological conditions leads to oxidative stress. The two major sources of ROS in cells are environmental
toxins and the process of oxidative phosphorylation. Mitochondrial dysfunction and oxidative stress have been implicated in the pathophysiology
of many diseases; therefore, the ability to determine ΔΨm and ROS can provide important clues about the physiological status of the cell and the
function of the mitochondria.

Several fluorescent probes (Rhodamine 123, TMRM, TMRE, JC-1) can be used to determine Δψm in a variety of cell types, and many
fluorescence indicators (Dihydroethidium, Dihydrorhodamine 123, H2DCF-DA) can be used to determine ROS. Nearly all of the available
fluorescence probes used to assess ΔΨm or ROS are single-wavelength indicators, which increase or decrease their fluorescence intensity
proportional to a stimulus that increases or decreases the levels of ΔΨm or ROS. Thus, it is imperative to measure the fluorescence intensity
of these probes at the baseline level and after the application of a specific stimulus. This allows one to determine the percentage of change in
fluorescence intensity between the baseline level and a stimulus. This change in fluorescence intensity reflects the change in relative levels of
ΔΨm or ROS. In this video, we demonstrate how to apply the fluorescence indicator, TMRM, in rat cortical neurons to determine the percentage
change in TMRM fluorescence intensity between the baseline level and after applying FCCP, a mitochondrial uncoupler. The lower levels of
TMRM fluorescence resulting from FCCP treatment reflect the depolarization of mitochondrial membrane potential. We also show how to apply
the fluorescence probe H2DCF-DA to assess the level of ROS in cortical neurons, first at baseline and then after application of H2O2. This
protocol (with minor modifications) can be also used to determine changes in ∆Ψm and ROS in different cell types and in neurons isolated from
other brain regions.

Video Link

The video component of this article can be found at http://www.jove.com/video/2704/

Protocol

1. Cell culture

1. Cortical neurons are isolated and grown using previously described techniques and plated on culture dishes with a glass bottom (MatTek
Corporation, Ashland, MA ) coated with poly-D-lysine and laminin1.

2. Preparing the stock solutions for the fluorescent probes TMRM and H2DCF-DA

1. Prepare a 10-mM stock solution of TMRM by dissolving 5.0 mg of TMRM in 1 ml of anhydrous dimethylsulfoxide. Vortex it for 1 min. Then,
make aliquots and store them at -20°C, protect from light, and use within one month.

2. Next, prepare a 10-mM stock solution of H2DCF-DA by dissolving 4.87 mg of H2DCF-DA in 1 ml of anhydrous DMSO. Similarly, vortex it for 1
min. Then, make aliquots and store them at -20°C, protect from light, and use within one week.

3. Loading rat cortical neurons with TMRM and H2DCF-DA

TMRM is a potentiometric, cell-permeable fluorescent indicator that accumulates in the highly negatively charged interior of mitochondria. It is
important to use the low concentrations (10-50 nM range) of TMRM to avoid auto-quenching of mitochondrial TMRM. Then, the fluorescence
signal of TMRM can be directly co-related to ΔΨm across the inner mitochondrial membrane. A loss of ΔΨm causes TMRM to leak from
mitochondria resulting in a loss of fluorescence intensity. H2DCF-DA is cell-permeable probe converted into DCF-DA by intracellular esterases,
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and its oxidation results in fluorescent DCF. The final concentration of H2DCF-DA ranges between 2-10 μM and it should be tested empirically
in neurons derived from different brain regions since high loading concentrations might result in the saturation of DCF fluorescence even in the
absence of H2O2. The presence of any endogenous or exogenous oxidant (e.g., nitric oxide, hydrogen peroxide) will increase DFC fluorescence
intensity. Below, we provide a protocol for loading rat cortical neurons with TMRM and H2DCF-DA.

1. To load the rat cortical neurons with TMRM, first, wash the cultured neurons 3 times with Tyrode's buffer (Text Overlay: TB: 145 mM NaCl, 5
mM KCl, 10 mM glucose, 1.5 mM CaCl2, 1 mM MgCl2, and 10 mM HEPES; adjust pH to 7.4 with NaOH). Then, prepare 20 nM of TMRM by
diluting the 10 mM TMRM stock 1/1000 times in TB and then add 2 μl of diluted TMRM per 1 ml of TB. Incubate the neurons with TMRM for
45 min in the dark at room temperature. After 45 min, mount the culture dish on the stage of the microscope and start imaging.

2. To load the rat cortical neurons with H2DCF-DA, wash the cultured neurons 3 times with TB. Next, prepare 2 μM of H2DCF-DA by diluting the
10 mM H2DCF-DA stock 1/10 times in TB and then add 2 μl of diluted H2DCF-DA per 1 ml of TB. Then, incubate the neurons with H2DCF-
DA for 45 min in dark at room temperature. After 45 min, wash the neurons 4 times with TB to remove excess fluorescent indicator before
obtaining images.

4. Live imaging of neurons incubated with TMRM to determine ΔΨm

1. To perform live imaging of neurons incubated with TMRM, confocal laser scanning microscopy (Text Overlay: LSM 510, Carl Zeiss Inc.), with
the application of live time-series program, is used. Apply low-resolution and attenuated laser power (Text Overlay: low resolution: 256 x 256;
laser power: 1%) to minimize the time needed to obtain images and to avoid photobleaching.

2. . Next, adjust the focus of the mounted neurons loaded with TMRM using reflected light. Examine the TMRM fluorescence by illumination at
514 nm and detection at 570 nm. Set the detection gain of a camera just below the saturation level.

3. Once all parameters which include resolution, laser power, detection gain of a camera, and time-lapse interval to obtain images are set; do
not change these settings between experiments. Next, change the field. Start collecting images.

4. To test changes in ΔΨm, stimuli such as 1 μM of FCCP or 2 μg/ml of oligomycin, can be applied, which will significantly depolarize or
hyperpolarize the mitochondrial membrane potential, respectively. These changes will be reflected by a decrease in TMRM fluorescence
intensity compared with the baseline fluorescence intensity in the case of FCCP, or an increase in TMRM fluorescence intensity in the case of
oligomycin.

5. Live imaging of neurons incubated with H2DCF-DA to determine ROS

1. To perform live imaging of neurons incubated with H2DCF-DA, first, mount the culture dish on the stage of a microscope. Adjust the focus of
the cells using reflected light. Examine DCF fluorescence by excitation at 488 nm and emission at 515 nm.

2. Next, adjust the laser power to 5-7%, detector gain, and resolution of 256 x 256. Do not change these settings between experiments. Then,
set the frequency for obtaining live images using the time series program.

3. Select a new field and start acquiring images. To detect changes in ROS levels, treat cells with 100-200 μM of H2O2. This will be reflected by
an increase in DCF fluorescence intensity compared with baseline level.

6. Data analysis

1. Use region of interest (Text Overlay: ROI) tool from the LSM program to select the areas. Then, measure the TMRM or ROS fluorescence
intensities. Select ROIs from mitochondrial regions or ROIs from the entire cell body in imaged cells to measure the fluorescence intensities
of TMRM or ROS, respectively.

2. Calculate the average fluorescence intensities from all ROIs of each cell for TMRM or from whole cell bodies for all imaged cells for ROS for
each time point. Select regions next to the cells to calculate the background fluorescence intensity. Take several measurements and calculate
the average background intensity.

3. Subtract the average background fluorescence intensity from average fluorescence intensities of ROIs in each cell for each time point using
Microsoft Excel. After subtracting background intensity, normalize the TMRM or DCF fluorescence intensity to the baseline fluorescence
using this formula (Text Overlay: ΔF = F-Fo/Fo x 100, where F= fluorescence intensity at any time point, Fo= baseline fluorescence). Then,
use the Sigma Plot program to generate the plot showing the changes in fluorescence intensity over time.

7. Representative Results

Figure 1A shows a fluorescence image of rat cortical neurons incubated with TMRM. Addition of FCCP, a mitochondrial uncoupler, leads to
mitochondrial depolarization and a loss of TMRM fluorescence intensity (Fig. 1B). The baseline TMRM fluorescence level remains stable before
addition of FCCP (the first 350 sec; Fig. 1C). Quantitative analysis of TMRM fluorescence changes over time shows a significant decrease in
TMRM fluorescence after addition of FCCP (Fig. 1C).

Figure 1D shows the fluorescence image of rat cortical neurons loaded with DCF. Addition of H2O2 results in increased DCF fluorescence
intensity in cell bodies (Fig. 1E). The baseline DCF fluorescence level is unchanged (the first 120 sec) before application of H2O2. Time-lapse
measurements of DCF fluorescence show its steady levels, which increase after H2O2 treatment (Fig. 1F).
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Figure 1. Assessment of mitochondrial membrane potential and ROS levels in live rat cortical neurons. (A) Representative fluorescence image
of cortical neurons loaded with TMRM. After scanning the baseline TMRM fluorescence, neurons were treated with the protonophore FCCP
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(1 μM). To the right is a pseudocolor intensity bar of TMRM fluorescence with bright yellow and black representing maximum and minimum
intensity, respectively. The loss of TMRM fluorescence from the mitochondrial regions indicates the collapse of ΔΨm upon FCCP treatment
(panel B). The quantitative representation of change in TMRM fluorescence intensity at different time points before and after FCCP treatment
is shown in panel C. (D) Fluorescence image of rat cortical neurons loaded with H2DCF-DA. After determining the baseline DCF fluorescence,
cells were treated with 200 μM H2O2, and the change in DCF fluorescence was assessed. An increase in the DCF fluorescence reflects the
increase in ROS levels upon H2O2 treatment (E). Quantitative analysis of change in DCF fluorescence, before and after H2O2 treatment, is
shown in panel F. Scale bar = 10 μm

Video.7.1 – labmedia 2704_Joshi.avi
 

Live cell imaging of TMRM in cortical neurons before and after FCCP addition using 40X objective. The pseudocolor intensity shows a maximum
(bright yellow, before FCCP addition) and decreased (red color, after FCCP addition) TMRM fluorescence intensity after FCCP addition. Click
here to view video

Video. 7.5 - labmedia 2704_Joshi.avi
 

Live cell imaging of DCF in cortical neurons before and after H2O2 addition using 40X objective. The baseline DCF fluorescence has light green
color in cell bodies and H2O2 addition increases the DCF fluorescence intensity to bright green color. Click here to view video

Discussion

We have presented a step-by-step procedure describing how to determine ΔΨm and ROS in rat cortical neurons using the fluorescent indicators
TMRM and H2DCF-DA, respectively. For other cell types, it is important to empirically determine the final concentration and loading time for
TMRM or H2DCF-DA. In general, TMRM concentrations range from 20-200 nM, and the cell incubation time with TMRM varies from 20 to 60
min. The final concentration of H2DCF-DA ranges from 2-10 μM, and incubation of cells in a loading solution containing this indicator varies from
30-45 min.

It is important to optimize the laser power and scan speed of taking the images to avoid both photo-toxicity to the cells and changes in the
fluorescence intensity (for example flickering of TMRM fluorescence) in the absence of any stimulus. The optimized optical settings should result
in a fluorescence signal that is not over or under saturated (threshold) in the absence of stimulus. The optimal conditions to collect the images
from a selected field at a particular laser power and a scan speed are achieved when there are no changes in the fluorescence intensity of the
probe in the absence of any stimulus for 10-15 min of live imaging.

Other fluorescence probes to determine ΔΨm include rhodamine 123 and tetra methyl rhodamine ethyl ester (TMRE). However, they were found
to inhibit the respiratory processes in isolated mitochondria2. Importantly, TMRM has no effect on mitochondrial respiration at low concentrations2

and has low phototoxicity and photobleaching3 compared with other probes. H2DCF-DA is a good indicator for ROS as it is well retained in the
cells and recognizes several oxidant species, such as peroxides, super oxides, and nitric oxide4.
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