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Abstract:
The advance of high-throughput RNA-Sequencing techniques enables researchers to analyze the complete gene
activity in particular cells. From the insights of such analyses, researchers can identify disease-specific expres-
sion profiles, thus understand complex diseases like cancer, and eventually develop effective measures for di-
agnosis and treatment. The high dimensionality of gene expression data poses challenges to its computational
analysis, which is addressed with measures of gene selection. Traditional gene selection approaches base their
findings on statistical analyses of the actual expression levels, which implies several drawbacks when it comes
to accurately identifying the underlying biological processes. In turn, integrative approaches include curated
information on biological processes from external knowledge bases during gene selection, which promises to
lead to better interpretability and improved predictive performance. Our work compares the performance of
traditional and integrative gene selection approaches. Moreover, we propose a straightforward approach to
integrate external knowledge with traditional gene selection approaches. We introduce a framework enabling
the automatic external knowledge integration, gene selection, and evaluation. Evaluation results prove our
framework to be a useful tool for evaluation and show that integration of external knowledge improves overall
analysis results.
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Knowledge Bases
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1 Introduction

Recent advances in high-throughput sequencing technologies allow a more in-depth analysis of the human
genome. RNA-Sequencing, in particular, measures the complete gene activity, i.e. gene expression levels, from
specific tissues [1]. Researchers use this data to investigate on the molecular characteristics of diseases, e.g.
cancer. Analyzing interactions of genes and their associations to diseases leads to their deeper understanding,
helps to improve diagnosis and results in more effective treatment [2].

The high dimensionality of gene expression data containing tens of thousands of genes as features cou-
pled with a low number of samples, noise and redundancy poses challenges to its processing [3]. A feasible
computational data analysis requires measures for dimensionality reduction, which is addressed by feature
selection – in this context referred to as gene selection. Gene selection approaches rank genes according to a
specific measure, and an optimal gene ranking reflects the biological processes inherent in the data. It is a hard
task to identify these processes based on data statistics alone. For example, two genes can show very similar
expression patterns in the dataset, but actually correlate just by chance and participate in different biological
processes. Traditional approaches for gene selection would see a correlation of these two genes as they rely on
observations made in the data alone and miss the biological context.

There are two options for gene selection to avoid undesired behavior like this: On the one hand, researchers
apply more complex gene selection, e.g. based on machine learning, that is more likely to identify the underly-
ing biological processes. However, more complex algorithms lead to more computational runtime and decrease
researchers’ understanding of what is going on during computation. When applying traditional gene selection,
researchers now face the challenge of finding an approach that a) balances a high result set accuracy with
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feasible computational runtime, and b) remains transparent in the way it generates its findings. On the other
hand, literature argues that gene selection can profit from including the biological context early into its analy-
ses [4]. At the same time, publicly available knowledge bases provide machine-readable, curated repositories
and meta-repositories of biological knowledge in the form of gene-disease-associations, pathway information,
and ontologies [5], [6], [7]. We argue that this available information can be used to provide gene selection ap-
proaches with the biological context they need. Gene selection can profit from integrating external knowledge
on biological processes, as this will lead to the delivery of biologically meaningful results and a reduced com-
putational complexity that facilitates a transparent processing and feasible execution runtimes. Consequently,
the aim of this paper is to investigate on how the integration of external knowledge can improve the analysis
of gene expression data, e.g. in terms of biological interpretability, performance in classification, and runtime
durations compared to traditional approaches.

Our contribution is two-fold: In order to examine the impact of external knowledge bases on the analysis, we
present an own straightforward approach to flexibly combine external knowledge and traditional approaches as
desired. We conduct a study that measures the performance of cancer type classification on multiple datasets
from The Cancer Genome Atlas (TCGA), comparing traditional approaches and combinations thereof with
external knowledge according to our own approach. In addition, we introduce a framework that allows the
flexible combination and comparison of knowledge bases with traditional approaches, integrating multiple
knowledge bases, a wide range of the existing traditional approaches, classifiers and evaluation metrics.

The remainder of the paper is structured as follows: Section 2 presents related work on both traditional
and integrative gene selection. Section 3 presents our framework in detail, including the distinct processing
steps and our own approaches to integrate external knowledge into gene selection. Section 4 describes the
experiments conducted and provides evaluation results. Section 5 discusses these results in a broader context.
Section 6 summarizes our main findings.

2 Related Work

Combining traditional gene selection with external knowledge is an emerging field of research. Currently, how-
ever, traditional approaches are predominantly used because existing integrative approaches are mostly man-
ually built and specific to a certain use case. In the following, we first highlight the current state of the art for
traditional approaches, and afterwards concentrate on existing integrative approaches.

2.1 Traditional Gene Selection

Literature classifies Gene selection approaches according to their characteristics into filter, wrapper, embed-
ded, hybrid, and ensemble categories [3], [4]. Table 1 provides an overview on recent gene selection methods
according to this classification.

Table 1: Overview on traditional gene selection approaches and their classification. Filter approaches have lowest com-
plexity, wrapper and embedded approaches apply machine learning strategies, hybrid and ensemble approaches com-
bine multiple approaches.

Category Functionality Characteristics Approaches

filter uses only + independent of classifier Information Gain (IG) [8]
intrinsic data + low complexity ReliefF [9]
characteristics + good generalization and [10], [11], [12], [13], [14], [15]

wrapper uses learning + detects gene dependencies Genetic Algorithms (GA) [16]
algorithm to / interacts with classifier Successive Feature
evaluate genes − high complexity Selection (SFS) [17]

− risk of overfitting
embedded gene selection + detects gene dependencies Support Vector Machine

is embedded into / interacts with classifier with Recursive Feature
learning algorithm Elimination(SVM-RFE) [18] and

[19], [20]
hybrid applies multiple / intermediate complexity SVM-RFE + mRMR Filter [21]

approaches − risk of slight overfitting and [22], [23]
sequentially

ensemble uses aggregate + good for small Ensemble Gene Selection
of a group of sample domains by Grouping (EGSG) [24]
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gene rankings + less prone to overfitting and [25], [26]
− computationally expensive
− difficult to interpret

While the simplest statistical methods (filter) are in favor for feasibility and usability reasons, more com-
plex approaches achieve a higher result set accuracy by applying machine learning methods (wrapper and
embedded) or combining multiple gene selection methods (hybrid and ensemble).

A simple, yet common filter gene selection approach is based on the variance of all genes across samples.
This variance-based (VB) approach assumes that highly variant genes are likely to separate samples into distinct
groups. Genes are therefore ranked according to their variance in decreasing order.

As another example, Information Gain (IG) is defined as “the difference between the prior uncertainty and
expected posterior uncertainty using” a certain feature [8]. The information gain of a gene is calculated using
the change in entropy of a dataset given this gene is known. However, information gain is a univariate approach,
i.e. it considers each gene independently. As biological processes consist of gene interactions, univariate filters
like information gain cannot adequately reflect and identify the underlying biological processes in the data.
ReliefF is a more sophisticated filter approach that can also deal with noisy and incomplete data and multi-class
problems [9]. It builds on and extends the original, instance-based Relief feature selection approach, which
works by randomly choosing one instance of a dataset and finding the nearest instance from the same and
opposite class [27].

As wrapper and embedded gene selection approaches apply more complex machine learning strategies,
they deliver more accurate results but tend to be viewed as a computational black box by its users. Support
Vector Machines with Recursive Feature Elimination (SVM-RFE) is an embedded approach to create a feature
ranking [18]. It repeatedly trains an SVM and removes the feature with the lowest weight magnitude. A feature
subset ranking is produced when multiple features are removed at once. The usefulness of RFE compared to a
naive feature ranking based on only the first iteration on RFE was demonstrated for small feature subsets over
multiple classifiers.

Extensive studies from Bolón-Canedo et al. analyze the performance of multiple traditional gene selection
methods on various datasets, both real-world and simulated [28], [29]. The authors highlight data character-
istics challenging for traditional approaches, e.g. redundancy, noise, small sample to feature ratios, or class
imbalances, and evaluate a wide range of gene selection approaches from all categories. Results of these stud-
ies show that subset filters, Information Gain, and SVM-RFE are advisable for scenarios with small sample to
feature ratio like gene expression data. In addition, wrapper approaches have the highest computational costs,
performed worst on average and are not applicable on small sample to feature ratio datasets due to overfitting.

2.2 Integrative Gene Selection

Integrative gene selection incorporates domain knowledge from external knowledge bases during its compu-
tations [4], [30]. Integrative gene selection leads to gene rankings that consider both the statistical significance
of a gene in the dataset and the biological background information acquired through research.

Qi and Tang integrate Gene Ontology (GO) with a simple filter approach [5], [31], [32]. GO provides a uni-
fied, machine readable representation of genes and their products in three disjoint ontologies: Cellular Com-
ponents, Molecular Functions, and Biological Processes. First, IG computes discriminative scores for each gene
and discards genes with a score of zero. Second, all remaining genes are annotated with GO terms on biological
processes. Third, GO terms receive a score that is the average of all the discriminative scores from the genes
that are annotated with the respective term. From the highest ranked terms, the gene with the highest discrim-
inative score is chosen for the final gene set, removed from the annotated genes, and the complete ranking and
selection process for the GO terms and genes is repeated until the final gene set is complete. Compared to using
IG only, Qi and Tang achieve better results on multiple cancer datasets.

SoFoCles integrates GO to find semantically similar genes [33]. A classic filter approach like χ2, ReliefF, or IG
initially assigns a discriminative score to each gene. The top n ranked genes make up the initial set of candidate
genes. All genes are annotated with GO terms and receive a similarity score. Genes with a high similarity
score, i.e. that are semantically highly similar to candidate genes, are added to the set of candidates. Evaluation
of SoFoCles shows that including biological knowledge in the gene selection process improves results.

Fang et al. combined the Kyoto Encyclopedia of Genes and Genomes (KEGG) and GO with IG [30]. KEGG
is a pathway knowledge base providing manually curated pathways [6]. The authors apply IG as initial filter
on the dataset and then search for GO and KEGG annotations for the remaining genes. To this annotation
information, they then apply association mining and compute the interestingness of the frequent itemsets by
averaging the original discriminative scores (from IG) of the contained genes. The final gene set is created by
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selecting the highest ranked gene from the top n frequent itemsets. They evaluated combinations of GO, KEGG,
and both against IG and Qi and Tang’s approach. Although the new approach improved the overall accuracy
only slightly, it was able to achieve this with a much lower number of genes.

Raghu et al. integrate KEGG, DisGeNET, and further genetic meta information into their approach. Dis-
GeNET is a meta knowledge base on gene-disease-variant associations that integrates knowledge from curated
databases [7]. Raghu et al. compute two metrics for a gene: the importance score and gene distance [34]. The im-
portance score combines a gene-disease-association score from DisGeNET with the expression levels inherent
in the data. The gene distance measures the distance between two genes according to their chromosomal loca-
tions and their associations to the same diseases. Both scores are then applied to find maximally relevant and
diverse gene sets with Preferential Diversity (PrefDiv). In comparison to variance-based gene selection (VB),
using the top n genes according to the formulated importance score performs similarly or slightly better in a
predictive modeling task while selecting causally relevant genes.

Quanz et al. apply an integrative approach that is rather related to feature extraction, as they aim to map
genes to pathways, which are then used as features for further pattern mining [6], [35]. They use the global
test to extract pathways from KEGG related to the phenotypes of a dataset. The genes in each pathway are
then transformed into one single feature by mean normalization or logistic regression. Experiments showed
an improved performance over different traditional approaches, however the approach was not tested in a
multiclass problem like cancer (sub-) type classification.

Acharya et al. replace genes as features by their GO terms [36]. They map all genes to GO terms and construct
a gene-GO term matrix. On this matrix, Acharya et al. apply Partitioning Around Medoids (PAM) clustering.
The best value k for the number of clusters is chosen by repeatedly calculating the silhouette index value of
k clusters for multiple values of k. From those k clusters, the medoids are used as the selected gene subset.
A comparison of the method to related approaches showed similar or better performance and the biological
relevance of the chosen genes was proven.

Su et al. combine interaction networks with known breast cancer genes to identify potential drug targets
[37]. Their Linear and Probabilistic Relations Prediction (LPRP) first creates a gene-gene interaction network
from the given RNAseq data set and enhances it with network information from Pathway Commons [38]. The
resulting interaction network is then filtered by known breast disease-related genes and their direct interaction
partners to receive potential marker genes for breast cancer.

Most of the integrative approaches presented here have two things in common: They apply machine learning
techniques, which again increases computational complexity, and they are highly specific to a single knowl-
edge base, e.g. KEGG or GO. In contrast, we aim to flexibly combine low complexity traditional gene selection
approaches with a multitude of knowledge bases.

3 Proposed Framework

To investigate the usefulness of the integration of biological knowledge in gene selection, we developed a frame-
work for the flexible comparison of gene selection approaches that also incorporate external knowledge bases.
The framework takes as input a gene expression dataset with some meta data, e.g. associated disease, and se-
lected external knowledge bases. It outputs ranked lists of top n genes from selected gene selection approaches
with their respective evaluation results, e.g. clustering accuracy.

According to Equation 1, we formally define the input of dataset as an expression matrix E of dimensions
m by n where the set of samples S contains the sample IDs and the set of genes G contains the gene IDs.

𝑆 = {𝑠𝑎𝑚𝑝𝑙𝑒1, 𝑠𝑎𝑚𝑝𝑙𝑒2, … , 𝑠𝑎𝑚𝑝𝑙𝑒𝑚}; |𝑆| = 𝑚
𝐺 = {𝑔𝑒𝑛𝑒1, 𝑔𝑒𝑛𝑒2, … , 𝑔𝑒𝑛𝑒𝑛}; |𝐺| = 𝑛
𝐸 = (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑖,𝑔𝑒𝑛𝑒𝑗

) ∈ ℝ𝑚×𝑛;
𝑠𝑎𝑚𝑝𝑙𝑒𝑖 ∈ 𝑆; 1 ≤ 𝑖 ≤ 𝑚; 𝑔𝑒𝑛𝑒𝑗 ∈ 𝐺; 1 ≤ 𝑗 ≤ 𝑛

(1)

The elements of E contain the expression levels for the respective sample and gene. Additionally, E owns meta-
data that contains additional sample information such as disease code, tissue type, or clinical data. In this work,
we include the disease assigned to a sample in our computations as we aim to classify samples by disease types.
Equation 2 reflects this association with D as a set of possible diseases and SDM as a set of m mappings between
S and D.
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𝐷 = {𝑑𝑖𝑠𝑒𝑎𝑠𝑒1, 𝑑𝑖𝑠𝑒𝑎𝑠𝑒2, … , 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑜}; |𝐷| = 𝑜
𝑆𝐷𝑀 = {(𝑠𝑎𝑚𝑝𝑙𝑒1, 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑥), (𝑠𝑎𝑚𝑝𝑙𝑒2, 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑦), … , (𝑠𝑎𝑚𝑝𝑙𝑒𝑚, 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑧)};

𝑠𝑎𝑚𝑝𝑙𝑒𝑖 ∈ 𝑆; 1 ≤ 𝑖 ≤ 𝑚; 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑗 ∈ 𝐷; 1 ≤ 𝑗 ≤ 𝑜
(2)

Our framework is divided into four distinct steps of a) data preprocessing, b) external knowledge acquisition,
c) gene selection and d) gene evaluation. Figure 1 depicts the process of the framework in Business Process
Model and Notation (BPMN) [39].

Figure 1: Overview on the analysis process carried out by our framework. It splits up into distinct steps of preprocessing,
external knowledge acquisition, gene selection, and gene evaluation.

3.1 Preprocessing and External Knowledge Acquisition

We assume that the input dataset has been filtered, normalized by library size, and log-transformed prior. Our
framework then checks the input data for the required format: Columns must contain gene names, rows must
contain sample names. If this is not the case, the data is transformed accordingly. The framework then extracts
disease codes from the metadata. This is straightforward if the expression metadata and all external knowledge
bases used apply the same disease nomenclature. As this is seldomly the case, the framework creates separate
disease ID lists for the respective knowledge bases, which are then used to query them. From each knowledge
base, the framework then receives a list of relevant genes per disease. For each knowledge base, these gene lists
are then combined into a separate list. We combine gene lists in an interleaving manner, this way preventing
diseases with a long gene list or highly-scored genes to dominate the final gene list and representing each
disease equally. Equation 3 depicts the formal definition of such a list KBGLi, with geneix depicting gene x from
knowledge base i.

𝐾𝐵 = {𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑒𝑏𝑎𝑠𝑒1, 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑏𝑎𝑠𝑒2, ..., 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑏𝑎𝑠𝑒𝑟}; |𝐾𝐵| = 𝑟
𝐾𝐵𝐺𝐿𝑖 = {𝑔𝑒𝑛𝑒𝑖1, 𝑔𝑒𝑛𝑒𝑖2, … , 𝑔𝑒𝑛𝑒𝑖𝑙}; |𝐾𝐵𝐺𝐿𝑖| = 𝑙; 𝑖 ∈ 𝐾𝐵

(3)

3.2 Gene Selection

This step combines traditional gene selection approaches with external biological knowledge. It receives as
input the preprocessed gene expression dataset E and the gene lists KBGLi, previously retrieved from external
knowledge bases. It outputs gene rankings for the desired gene selection approaches and knowledge bases.
Figure 2 proposes the two options how the external knowledge can be integrated into the gene selection process:
Either in the form of data filtering, i.e. the external knowledge is integrated before the traditional gene selection
takes place, or in the form of gene filtering, i.e. after the traditional gene selection.
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Figure 2: The actual gene selection step splits up into two alternatives data filtering and gene filtering, depending on
when external knowledge is combined with traditional gene selection.

3.2.1 Data Filtering

Data filtering uses prior knowledge already before the actual gene selection takes place. Our framework filters
the preprocessed dataset E in order to only retain the genes in KBGLi. Such a filtering can drastically reduce
the dimensionality of the dataset and with that allow for more complex traditional gene selection approaches
at low runtimes. Equation 4 shows how the framework restricts the set of genes G to Gfiltered: It intersects G with
KBGLi to only keep the genes from the knowledge base i. The dataset E is then filtered by only retaining the
genes from Gfiltered. The resulting Efiltered is forwarded as input for the traditional gene selection.

𝐺𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐺 ∩ 𝐾𝐵𝐺𝐿𝑖

𝐺𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = {𝑓 𝐺𝑒𝑛𝑒1, 𝑓 𝐺𝑒𝑛𝑒2, … , 𝑓 𝐺𝑒𝑛𝑒𝑝}; |𝐺𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑| = 𝑝; 𝑝 ≤ 𝑙
𝐸𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑖,𝑔𝑒𝑛𝑒𝑗

) ∈ ℝ𝑚×𝑝;
𝑠𝑎𝑚𝑝𝑙𝑒𝑖 ∈ 𝑆; 1 ≤ 𝑖 ≤ 𝑚; 𝑔𝑒𝑛𝑒𝑗 ∈ 𝐺𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑; 1 ≤ 𝑗 ≤ 𝑝

(4)

3.2.2 Gene Filtering

Figure 3: Gene filtering example showing the filtering of a traditional gene ranking by retaining only genes extracted
from a knowledge base.
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Gene Filtering employs external knowledge after the actual gene selection takes place. As shown in Figure
3, our approach filters gene selection produced by traditional gene rankings and keeps only those genes that
are, according to prior research, connected to the diseases in the metadata. As defined in Equation 5, the tra-
ditional gene selection approach maps the expression dataset E to a gene ranking GR, which is an ordered set
of discriminant scores for each gene in G. Our framework now aims to reduce GR to GRfiltered by selecting only
those genes that were returned by the external knowledge bases (KBGLi).

𝑓 ∶ 𝐸 → 𝐺𝑅
𝐺𝑅 = (𝑠𝑐𝑜𝑟𝑒𝑔𝑒𝑛𝑒𝑥

, 𝑠𝑐𝑜𝑟𝑒𝑔𝑒𝑛𝑒𝑦
, ...𝑠𝑐𝑜𝑟𝑒𝑔𝑒𝑛𝑒𝑧

) ∈ ℝ; 𝑔𝑒𝑛𝑒𝑖 ∈ 𝐺
𝐺𝑅𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = (𝑠𝑐𝑜𝑟𝑒𝑔𝑒𝑛𝑒𝑙

, 𝑠𝑐𝑜𝑟𝑒𝑔𝑒𝑛𝑒𝑚
, ...𝑠𝑐𝑜𝑟𝑒𝑔𝑒𝑛𝑒𝑛

) ∈ ℝ; 𝑔𝑒𝑛𝑒𝑖 ∈ 𝐺𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑

(5)

3.3 Gene Evaluation

This step evaluates the respective gene selection approaches according to standard evaluation metrics. It re-
ceives the gene expression dataset E as input and all gene rankings that were produced prior. Depending on
the user’s choice, these can be gene rankings GR from traditional gene selection approaches or GRfiltered from
combinations with external knowledge bases. For each gene ranking, the framework selects the top n genes
with 2 ≤ n ≤ 100 and uses them for training and classification on E. By choosing a wide range of different
classifiers, e.g. SVM, Naive Bayes and Logistic Regression, users can make sure that the evaluated gene rank-
ing achieves stable performance across different classifiers instead of suiting well for only one of them. Our
framework conducts a 10-fold cross validation to reduce the effects of overfitting and reports a classification
performance metric that is averaged over all classifiers.

3.4 Technical Implementation

Our framework prototype is implemented in Python and automatically coordinates and executes the afore-
mentioned processing steps. Figure 4 depicts the architecture of our prototype in Unified Modeling Language
(UML) and shows respective modules for each of the processing steps [40]. Our framework currently provides
modules for accessing DisGeNET and KEGG as external knowledge bases. It additionally owns modules for
accessing WEKA and R, which provides users the flexibility to use any traditional gene selection, classifier and
evaluation metric that is offered by WEKA or R [41]. If users want to integrate a new gene selection method
that is not present in WEKA or R, they can either implement it as an own module within the framework or
provide dedicated WEKA/R packages and extend the existing adapter module in our framework. To integrate
a new knowledge base, users need to implement an own module that accesses the knowledge base’s respective
Application Programming Interface (API). The framework is available on https://github.com/CPerscheid/GSEF.git.
In the following, we briefly describe the main components of the system:
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Figure 4: The architecture of the framework. Each processing step is encapsulated in an own module, with the Frame-
work Pipeline module orchestrating the overall execution.

The Framework Pipeline is the main component of our framework and orchestrates the execution of all
processing steps in their corresponding modules. It requires a configuration file with respective execution pa-
rameters, e.g. which knowledge bases and gene selection approach to use.

The Data Preprocessing Module prepares the raw dataset for subsequent processing. It currently integrates
disease codes from metadata into the expression dataset to enable gene selection and evaluation. In the future,
this module will be extended to include other standard preprocessing steps, e.g. filtering, normalization, or
log-transformation.

The External Knowledge Base Module provides the interface for querying various external knowledge bases
from within the framework. The corresponding submodules encapsulate the concrete API access of a specific
knowledge base. Currently, submodules for KEGG and DisGeNET are implemented.

The Data Filtering Module creates a reduced expression dataset containing only genes present in the lists
retrieved by the knowledge bases. Users can define whether they want to use a single specific knowledge base
for data filtering or a combination of multiple knowledge bases.

The Gene Selection Module connects our Python framework with external implementations of traditional
gene selection approaches. Currently, we have implemented modules for R and WEKA, respectively, but our
framework can be easily extended for further resources by implementing a new submodule.

The Gene Filtering Module creates combined gene rankings from traditional gene selection approaches and
the gene lists obtained from knowledge bases. It integrates external knowledge according to the procedures
described prior.

The Gene Evaluation Module uses the previously produced gene rankings and evaluates their suitability
for classification. This module uses the wide range of classifiers and evaluation metrics available in WEKA. For
each gene ranking, this module measures the performance of using the top n genes with n increasing within a
user-defined range. The final result of the framework is an evaluation for each distinct gene ranking containing
a) the number of genes used, b) accuracies for each classifier, and c) averaged accuracy.

4 Experiments

We tested our framework and evaluated the proposed integration strategies against traditional gene selection
methods. We selected gene selection approaches according to recommendations from Bolón-Canedo et al. [28],
[29]. They conclude that IG, ReliefF and SVM-RFE are the best approaches in their respective categories of
univariate filter, multivariate filter and embedded. We did not compare to wrapper approaches because of their
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high complexity and no clear advantages over filter or embedded methods. Additionally, we applied VB gene
selection as the most simple, yet powerful approach for gene selection. We conducted the tests on a machine
using four cores of an Intel® Xeon® CPU E5-2697 v3 running at 2.60 GHz and with 99 GB of main memory.

As external knowledge bases, we queried DisGeNET and KEGG and combined them with the aforemen-
tioned gene selection approaches. We constructed two datasets comprising expression values from 8 distinct
cancer types each: Dataset I covers expression data from cancer types with good coverage in DisGeNET, dataset
II cancer types with low coverage in DisGeNET. We assume a cancer type to have good coverage in DisGeNET
if the top 5 Gene-Disease-Asssociations (GDAs) have a score greater than 0.2. We set this threshold because it
guarantees that this association has been identified in at least one of the highest trusted resources, e.g. UniProt-
KB/Swiss-Prot or CTD, or is covered by a sufficient mix of the other resources [7], [42], [43].

Table 2 provides details on the cancer types contained in datasets I and II, DisGeNET disease codes, and
manually mapped KEGG pathway IDs applied when querying the knowledge bases. HNSC and SARC occur in
different locations and tissue types and therefore no specific KEGG pathways exist for them. We downloaded
data of The Cancer Genome Atlas (TCGA), filtered out all genes and samples that had more than 30 % missing
values, normalized and log-transformed the data with variance stabilizing transformation (VST) [44], [45]. After
preprocessing, Dataset I spans 3189 samples and 55,572 genes, dataset II spans 3807 samples and 55,621 genes
after preprocessing.

Table 2: Details on the two evaluation datasets and their corresponding cancer types, DisGeNET disease codes, and
KEGG pathway IDs.

TCGA DisGeNET KEGG
Cancer Type Disease Code Pathway ID
Dataset I
SARC – Sarcoma C1261473 −
HNSC – Head and Neck Squamous Cell C1168401 −
GBM – Glioblastoma Multiforma C0017636 hsa05214
KIRC – Kidney Renal Clear Cell Carcinoma C0279702 hsa05211
LAML – Acute Myeloid Leukemia C0023467 hsa05221
LUAD – Lung Adenocarcinoma C0152013 hsa05223
THCA – Thyroid Carcinoma C0238463 hsa05216
UCEC – Uterine Corpus Endometrial Carcinoma C0476089 hsa05213
Dataset II
OV – Ovarian Serous Cystadenocarcinoma C0279663 −
PRAD – Prostate Adenocarcinoma C0007112 hsa05215
COAD – Colon Adenocarcinoma C0338106 hsa05210
LUSC – Lung Squamous Cell Carcinoma C0149782 hsa05223
BRCA – Breast Invasive Carcinoma C0853879 hsa05224
PAAD – Pancreatic Adenocarcinoma C0281361 hsa05212
STAD – Stomach Adenocarcinoma C0278701 hsa05226
CESC – Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma C0279671 hsa05165,

hsa05203

We evaluated the selected approaches according to the following criteria: Classification accuracy, runtime
performance (dataset I only), and overlap of gene rankings (dataset I only). Regarding classification accuracy, we
used 10-fold cross validation with SVM, Logistic Regression, Naive Bayes and KNN (with k = 3; 5) and averaged
accuracy across classifiers. For the comparison of execution time, we measured 10 runs of 10 executions for each
gene selection method, computed the standard deviation and selected the run with lowest standard deviation
as final measurement.

4.1 Classification Accuracy

We measured classification accuracy for both datasets according to the described setup. We compared tradi-
tional gene selection approaches with their combined versions, i.e. data filtering and gene filtering, applying
DisGeNET and KEGG as knowledge bases.
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4.1.1 Results for Dataset I

Figure 5 shows classification accuracies for the four selected traditional gene selection approaches and their
combinations with KEGG and DisGeNET. From the presented accuracy performances, we observe that all ap-
proaches reach a high classification accuracy already between 96 and 99 %. In general, combined approaches
yield significantly higher classification accuracies already for the lower gene set sizes, starting with accuracies
between 80 and 90 %. While the accuracies vary more widely between approaches for smaller numbers of genes
selected, all approaches eventually converge to plateaus that are very close to each other, mostly around 7–8
genes.

Figure 5: Classification accuracies on dataset I for the respective traditional gene selection approaches and their combina-
tion with external knowledge: Variance-based (VB), Information Gain (IG), ReliefF, and SVM-RFE.

As VB is a univariate filter that considers each gene independently from each other, data and gene filtering
will produce the same gene rankings. Therefore, we only state the type of knowledge base, but not whether data
or gene filtering were applied. According to the evaluation results, all approaches for VB achieve classification
accuracies between 95 and 98 %. All combinations of VB with external knowledge bases improve classification
accuracy significantly for gene sets of up to 16 genes. For larger gene sets, combined approaches still perform
better than traditional VB, but with only a minor improvement. All combined approaches reach a classification
accuracy above 95 % already for 9 genes, whereas the traditional VB approach reaches this accuracy with 16
genes. A combination with DisGeNET leads to best classification accuracies, although there are only minor
accuracy differences between combined approaches.

For IG, all approaches reach high classification accuracies above 90 % already with a low number of genes
and increase to accuracies up to 98 %. As IG is also a univariate filter as VB, the same applies regarding results
for data and gene filtering. In contrast to VB, IG delivers better classification accuracies in general and catches up
with a combination with KEGG for gene sets larger than 8 genes. A combination with DisGeNET outperforms
all other approaches for gene sets larger than 7 genes. A combination of both knowledge bases, however, does
not stabilize these results.

In contrast to VB and IG, ReliefF is a multivariate filter approach, i.e. genes are selected according to their
relations to other genes. Consequently, applying data filtering (DF) and gene filtering (GF) will yield different
results. Classification accuracies for the original ReliefF approach are outperformed by combined approaches
throughout all gene set sizes. Gene filtering with DisGeNET performs best in general and reaches classification
accuracies of up to 98 %. In general, all combined approaches show very similar performances once they reached
a plateau.
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Unlike the previous approaches, the original SVM-RFE outperforms its combined approaches for gene set
sizes larger than 6. It reaches a classification accuracy of 95 % for already 7 genes, which rises up to 99 %
classification accuracy. From the combined approaches, again a combination with KEGG performs worst.

Figure 6: Classification accuracies on dataset I of the best performing approaches for the respective traditional gene selec-
tion approach.

Figure 6 compares the top performing approaches from our previous comparisons between traditional gene
selection and their combinations with external knowledge bases. From each comparison, we choose the ap-
proach with the highest average classification accuracy. For VB, IG, and ReliefF, a combination with DisGeNET
always achieves best results, whereas SVM-RFE is the only traditional gene selection approach that outperforms
its combinations with external knowledge bases. Results show that integrative approaches based on simpler fil-
ter approaches outperform SVM-RFE up until 12 genes selected and achieve competable classification accuracy
for larger gene sets.

4.1.2 Results for Dataset II

With our evaluations on classification accuracies for dataset II, we aim to examine how our combined ap-
proaches perform for datasets on diseases that are not well researched. Figure 7 depicts classification accuracies
for VB, IG, ReliefF, and SVM-RFE and compares them to their combinations with external knowledge bases,
respectively. Similar to results for dataset I, we also observe a convergence of all approaches to a plateau. In
contrast to dataset I, the overall best accuracy is lower with up to 90–95 %, the variance between approaches is
larger, and the plateaus are reached later for larger gene sizes.
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Figure 7: Classification accuracies on dataset II for the respective traditional gene selection approaches and their combi-
nation with external knowledge: Variance-based (VB), Information Gain (IG), ReliefF, and SVM-RFE.

Although DisGeNET coverage is low for this dataset, VB is still outperformed by its combined approaches
for almost all gene set sizes. Again, using DisGeNET seems to deliver a gene set more suitable for classification
than KEGG, as the latter procedure scores lowest from the combined approaches.

Classification accuracies of all IG approaches increase up to 92–94 %. In contrast to VB, the original IG
approach this time performs best for all gene set sizes except for 7 and 8 genes. For most of the gene set sizes,
a combination with KEGG achieves lowest classification accuracies.

Similar to IG, ReliefF and its combined approaches reach a classification accuracy between 92 and 94 %.
The original ReliefF approach, however, is always outperformed by combined approaches, which altogether
achieve very similar classification accuracies.

For SVM-RFE, all approaches reach highest classification accuracies up between 94 and 98 %. In contrast to
the other traditional approaches, the original SVM-RFE approach performs significantly better than all com-
bined approaches for gene set sizes above 5. From the approaches integrating external knowledge, data filtering
with a combination of both knowledge bases achieves best results, hence the original SVM-RFE performs sig-
nificantly better.

Figure 8: Classification accuracies on dataset II of the best performing approaches for the respective traditional gene se-
lection approach.

12

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Perscheid et al.

Figure 8 compares the top performing approaches from our previous comparisons between traditional gene
selection and their combinations with external knowledge bases. From each of the presented comparisons, we
chose the approach with the highest average classification accuracy. Results show that a combination with
knowledge bases like DisGeNET does not pay off for all traditional approaches anymore. Moreover, SVM-RFE
not only clearly outperforms its own combinatory approaches, but also all other traditional approaches and
their combinations with knowledge bases.

4.2 Runtime Performance

Figure 9: Runtime performances of traditional gene selection approaches compared to data and gene filtering with exter-
nal knowledge bases.

Figure 9 compares execution runtimes on a logarithmic scale for traditional gene selection approaches and
when data or gene filtering is applied. In general, the most complex gene selection approaches ReliefF and
SVM-RFE have much higher execution runtimes than the simpler filter approaches. As expected, performance
improvements for all approaches except VB are significant when applying data filtering. VB itself requires less
runtime than querying an external knowledge base. In contrast, gene filtering increases computational run-
times, as external knowledge bases are queried additionally to the traditional gene selection approach. Still,
execution runtimes for querying a knowledge base are only a fraction of the gene selection approaches’ run-
times and thus do not significantly increase the overall execution times. This impact can even be decreased by
applying parallelization strategies, e.g. by querying external knowledge bases and carrying out gene selection
in parallel instead of sequentially.

4.3 Gene Rankings Overlap

We applied multiple gene selection approaches on dataset I and examined the resulting gene rankings for any
overlap of their top 100 genes. Our intuition was that there is an agreement to a certain extent by most of the
gene selection approaches on specific genes that are discriminant for a particular disease. We assumed this
portion to rise for integrative approaches that use the same external knowledge base.

Figure 10: Overlaps of the top 100 genes selected by (A) traditional gene selection, (B) data filtering, and (C) gene filtering
approaches.

Figure 10 depicts the overlaps of (A) traditional gene selection methods, (B) when applying data filtering,
and (C) when applying gene filtering. From the traditional approaches, all of them jointly agree on only 5 genes.
Moreover, filter methods, i.e. VB, ReliefF, and IG, have a higher overlap than SVM-RFE as embedded approach.
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SVM-RFE in general shows only a small overlap of 26 genes with other approaches. Agreement on the selected
genes rises as expected when applying data filtering. Here, filter gene selection approaches have an increased
total overlap between 84 and 94 genes whereas SVM-RFE agrees on only 69 genes. This effect even increases
when applying gene filtering, where now all gene selection approaches agree on 50 out of 100 top ranked genes.

5 Discussion

Our experiment results show that integrating biological knowledge into the gene selection process improves
classification accuracy, execution runtime and consistency of selected genes.

Especially simpler filter approaches, e.g. VB and IG, profit from the integration of external knowledge. They
now provide classification accuracies that can compete with more complex approaches like SVM-RFE. This fact,
together with far less computational runtimes and a computation procedure that remains transparent and inter-
pretable for users, renders an integrative approach feasible for its application in practice also on larger datasets.
SVM-RFE, on the other hand, does not require external knowledge to achieve best classification performances
across datasets and gene selection approaches. Moreover, integrating external knowledge can even decrease
its performance significantly. Together with the performance differences to filter approaches, this shows that
more complex machine learning based gene selection approaches like SVM-RFE interpret the data fundamen-
tally different than filter methods. Although these methods have proven to work out on real-world data, the
appeareance as a black box together with increased computational runtimes renders it unattractive for potential
users.

Our investigations regarding overlaps on selected genes also revealed interesting results. The traditional
gene selection approaches have a low overlap in general. The slightly higher overlap between filter results again
indicates their similarities in computing gene rankings compared to more complex approaches like SVM-RFE.
The generally high classification accuracies of all gene selection approaches suggests that they all are likely to
detect most of the underlying biological processes, but select different or multiple representatives. The generally
low agreement on selected genes has been recognized and discussed in former studies [46], [47], [48], [49]. This
instability of gene selection approaches across methods and datasets puts the validity of their produced gene
rankings in question. Literature assumes that the integration of external knowledge can stabilize gene selection
and lead to more consistent results [50], [51]. The increased overlap when combining external knowledge bases
suggests that this can indeed be the case.

We evaluated all approaches with two datasets representing diseases that have good and bad coverage
in knowledge bases, respectively. Integrating external knowledge proved to increase accuracies for the dataset
with well covered diseases. For less covered diseases, combined approaches showed both a slight improvement
and decline in classification accuracies, depending on the traditional approach. Real-world datasets will most
likely contain a mix of well and less researched diseases. Based on our evaluation results, we assume that if our
integrative is applied in practice, it will still have a positive impact on classification accuracy.

From the knowledge bases we integrated, DisGeNET appeared to yield best classification improvements.
Integrating KEGG, on the other hand, even showed worse results than the traditional approach. One reason
for this behavior could be our selection of the diseases contained in the datasets based on their coverage in
DisGeNET alone. A different composition of diseases could have led to more favorable results for KEGG. On
the other hand, we have to bear in mind that DisGeNET is a meta knowledge base providing gene-disease as-
sociations, i.e. integrates information from various curated knowledge bases on direct associations of a gene
to a disease. In contrast, KEGG provides a far smaller set of self-curated pathways, i.e. interaction data be-
tween genes, gene products, or other complexes. This difference might render DisGeNET more suitable for a
straightforward integrative approach as we presented here. However, we assume that an integration of KEGG
can achieve better classification accuracy if gene interactions are more thoroughly integrated into the gene se-
lection process.

5.1 Threats to Validity

Our evaluation of the presented approach comprises only a subset of possible application scenarios, which
limits the validity of our findings to this specific setting. A more in-depth study could show even better results
for combinations or reveal cases where the integration of biological knowledge is especially useful.

We tested our approaches with two cancer datasets that have either good or bad coverage in knowledge
bases. Further experiments should include datasets containing diseases other than cancer and that have both
good and bad coverage on the knowledge bases. In addition, we selected the data based on its coverage in Dis-
GeNET alone, although also integrating KEGG. This might be one reason why combinations with DisGeNET
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almost always performed best. We also only integrated two knowledge bases, although there are many others
with high reputation, e.g. GO. A combination with other knowledge bases is thus likely to perform different
and should be tested. Finally, we only compared a fraction of the existing traditional gene selection approaches.
Future experiments should also include wrapper, ensemble, or hybrid approaches to receive a comprehensive
view.

Our framework enables and encourages an extension of the experiment settings as it can be easily enhanced
by further gene selection methods and external knowledge sources. We think, however, that the results obtained
with our current experiments already point towards the right direction.

5.2 Limitations

There are some limitations to the proposed integrative approaches though. Our approach works in a supervised
fashion: We always need some kind of labels in the data to use them for querying external knowledge bases. In
addition, the labels must be suitable query parameters for the knowledge bases. For example, DisGeNET only
delivers results if the query term is a disease, gene, or variant.

For receiving reasonable results, integrative approaches like the ones presented here require knowledge
bases with an extensive coverage of the questionable domain. As shown in our evaluations, our approaches
perform worse for diseases that are not well researched and thus not sufficiently covered by the knowledge
bases. This makes an integrative approach as presented here not applicable for analyzing data on rare diseases.
However, as biological knowledge bases gather more data through research, integrative approaches in general
will become more viable and useful for an increasing number of scenarios in the future.

Integrative approaches that automatically include external knowledge bases depend on the accessibility
of the respective knowledge bases. Most knowledge bases offer RESTful APIs for online access, which avoids
downloading data locally, but also requires an internet connection and maintenance of the whole approach
once the API gets updated.

Lastly, our presented integrative approach leads to a substantial filtering of the feature space. The experi-
ments in this work show the benefits regarding runtime, classification performance and consistency of selection.
However, this straightforward combination of gene expression with external data runs into danger of rather
representing the knowledge base and not the actual data, and it also impedes the detection of unassociated
genes and their correlations. Future approaches should thus integrate external knowledge in a way that care-
fully balances both latest research findings and insights from statistical data analysis.

6 Conclusion

In this work, we examined the usefulness of utilizing information from biological knowledge bases in the gene
selection process for gene expression data. We tested our hypothesis with a straightforward integration of ex-
ternal knowledge into gene selection and presented a corresponding framework for comparing both traditional
and knowledge based gene selection methods for gene expression data.

Our results show that especially simple traditional filter approaches, e.g. IG, profit from the integration of
external data and can now compete with more complex machine learning approaches at nearly equal classifica-
tion accuracy, but far less computational runtime and a more transparent and thus interpretable computation
process.

Future work will include an extension of the framework and experiment setting to include further external
knowledge bases, both traditional and integrative gene selection approaches, and more datasets.

Conflict of interest statement: Authors state no conflict of interest. All authors have read the journal’s publi-
cation ethics and publication malpractice statement available at the journal’s website and hereby confirm that
they comply with all its parts applicable to the present scientific work.
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