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ABSTRACT The ability of vancomycin-arginine (V-r) to extend the spectrum of activ-
ity of glycopeptides to Gram-negative bacteria was investigated. Its MIC towards
Escherichia coli, including b-lactamase expressing Ambler classes A, B, and D, was 8
to 16 mg/ml. Addition of 8 times the MIC of V-r to E. coli was acutely bactericidal
and associated with a low frequency of resistance (,2.32� 10210). In vivo, V-r mark-
edly reduced E. coli burden by .7 log10 CFU/g in a thigh muscle model. These data
warrant further development of V-r in combatting E. coli, including resistant forms.
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Novel antibiotics are desperately needed to combat priority 1 or urgent-threat
pathogens (1–3). With only four new classes of antibiotics introduced into the mar-

ket since the early 1960s (4), structural modifications of current antibiotics provide an
attractive and possibly speedier approach to fulfill this significant unmet clinical need.
Vancomycin is a standard-of-care glycopeptide antibiotic for the treatment of Gram-
positive infections (5). Numerous reports have demonstrated augmentation of its anti-
microbial activity against resistant strains via different chemical modifications (6–9).
Furthermore, its molecular structure has been successfully manipulated to create a
broader spectrum of activity in the targeting of Gram-negative bacteria via adjuvant,
formulation, and cationic/lipophilic interventions (10, 11) or synergy with existing
Gram-negative antibiotics (12, 13). Recently, the covalent conjugation of L-arginine to
vancomycin, to produce vancomycin-L-arginine (V-R), led to promising Gram-negative
properties via a cell wall mode of action (14). These findings encouraged us to further
characterize the corresponding diastereomer vancomycin-D-arginine (V-r) in animal
models of E. coli infection using the D-isomer of arginine to reduce the risk of conjugate
hydrolysis (Fig. 1).

V-r was synthesized in a single chemical step from commercially available vancomy-
cin HCl (StruChem, Wujiang City, China) and D-arginine amide dihydrochloride (Aladdin
Chemical Co., Shanghai, China). The crude compound was purified and isolated as the
corresponding HCl salt at 95% purity by high-performance liquid chromatography
based on a previously described procedure (14). Identity was confirmed by 1H nuclear
magnetic resonance and time of flight mass spectrometry, and HCl content was quantified
by ion-exchange chromatography. In various physicochemical screens, V-r behaved simi-
larly to vancomycin, including no observed cellular cytotoxicity at concentrations ranging
from 100 to 750mM on human erythrocytes, HepG2, and primary renal proximal tubule
epithelial cells employing fetal bovine serum-deficient media to negate compound
quenching (15) (Table 1).
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MICs were determined in alignment with CLSI guidelines as previously described
for V-R and cationic antimicrobial peptides (14, 16). The MIC range of V-r against 29 dif-
ferent E. coli strains was 8 to 16mg/ml (MIC90, 16mg/ml), including those with multiple
resistance mechanisms (Table 2). The MIC of V-r against the efflux pump mutant strain
JW0451-2 was 8mg/ml, suggesting that V-r is unlikely to be a substrate for efflux in this
pathogen. Notably, the MIC of V-r was also 8mg/ml against two out of five of the
Acinetobacter baumannii strains tested. In comparison, the MICs of vancomycin were
significantly higher, at 64 to 256mg/ml, against all E. coli and A. baumannii strains
tested. Importantly, the antimicrobial potency of V-r towards a number of Gram-posi-
tive bacteria remained intact (Table 2). In frequency-of-resistance (FoR) assays at 8
times the MIC of V-r (128mg/ml), E. coli ATCC 25922 demonstrated an extremely low
FoR, at ,2.32� 10210, which is similar to or lower than those with standard-of-care
therapies, such as ciprofloxacin (17, 18). Time-kill assays were performed against uro-
pathogenic E. coli strains, including the sequence type 131 (ST131) NCTC 13341 iso-
late. V-r, but not vancomycin, demonstrated rapid bactericidal activity to limits of
detection (i.e., 100 CFU/ml) within 1 or 4 h of exposure, and this was maintained up
to 24 h (Fig. 2).

Plasma pharmacokinetics (PK) of V-r after subcutaneous (s.c.) administration (20 and
121mg/kg) was determined in naive male CD-1 mice (n=3/group) using liquid chro-
matography-tandem mass spectrometry for analysis with a lower limit of quantitation
of 5 ng/ml (Table 3). V-r displayed first-order elimination, similar to vancomycin, after
s.c. administration (19, 20). Prior to efficacy studies, a single s.c. administration of V-r

FIG 1 Vancomycin and vancomycin-D-arginine (V-r).

TABLE 1 Physicochemical properties of vancomycin-arginine (V-r) and vancomycin

Physicochemical propertiesa V-r Vancomycin
Mol wt (free base) 1,604 1,449
LogD (octanol/buffer) Less than24.01 25.14b

TD solubility in saline (mg/ml) 373 . 50
PPB (mouse/human % bound) 65/76 50/50
Red blood cell lysis (CC50,mM) .750 .750
HepG2 cell cytotoxicity (CC50,mM) .750 .750
hRPTEC biomarkersc (CC50,mM) .100 .100
FoR (at 8�MIC) ,2.32� 10210 Not determined
aTD, thermodynamic; PPB, plasma protein binding; hRPTEC, human renal proximal tubular epithelial cells; CC50,
concentration at which 50% cytotoxicity is observed; FoR, frequency of resistance.

bLogD vancomycin reported according to Dave and Morris (29).
cIncludes cell count, nuclear size, DNA structure, mitochondrial mass, mitochondrial membrane potential,
phospholipidosis, and glutathione content.
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was shown to be well tolerated in male CD-1 mice (n=3) at the highest dose tested
(800mg/kg).

Using a screening-based strategy, preliminary proof-of-concept studies with V-r
employed an abbreviated 9-h thigh muscle infection model in male CD-1 mice ren-
dered neutropenic (21). To that end, an E. coli ATCC 25922 isolate was inoculated at
9.7� 104 CFU into both thigh muscles per mouse (n=5 per experimental group). V-r
was administered s.c. every 2 h (110 to 880mg/kg total dose) starting 1 h postinfection.
At 9 h, thigh homogenates were prepared, and CFU were enumerated after culture on
CLED (cystine-, lactose-, and electrolyte-deficient) agar. Compared to pretreatment and

TABLE 2 Antimicrobial susceptibility profiles of V-r and vancomycin

Organism Strain Source, resistance mechanism or genotypea Ambler class

MIC (mg/ml) of:

V-r Vancomycin
E. coli ATCC 25922 CLSI susceptible reference strain 16 128
E. coli UTI89 Clinical isolate from patient with acute bladder infection 16 128
E. coli NCTC 13441 Uropathogenic E. coli ST131, blaCTX-M-15, blaOXA-1, blaTEM-1,

aac6'-lb-cr,mph(A), catB4, tet(A), dfrA7, aadA5, sul1
A, D 16 128

E. coli NCTC 13462 blaCTX-M-2 A 16 128
E. coli NCTC 13846 Clinical isolate, bacteremia, UK 2013, EUCAST reference

isolate,mcr-1
8 64

E. coli AR055 blaNDM-1,mph(A), blaCMY-6, dfrA17, sul1, tet(A), rmtC, aac(3)-IIa,
blaOXA-1, aadA5

B, C, D 16 128

E. coli AR089 strB, blaCMY-2, tet(B), strA, sul2 C 16 128
E. coli AR0114 strB, blaTEM-1B, blaKPC-3, aadB, dfrA5, sul1, strA, sul2, cmIA1 A 16 256
E. coli AR0137 blaNDM-6, blaOXA-9,mph(A), blaTEM-1A, blaCMY-42, blaCTX-M-15,

dfrA17, qnrS1, sul1, tet(B), aadA1, aac(3)-IIa, blaOXA-1, aadA5
B 16 128

E. coli AR0150 blaNDM-5,mph(A), blaTEM-1B, blaCMY-42, dfrA17, sul1, tet(A),
aadA5

A, B, C 8 128

E. coli AR0346 mcr-1, ESBL A 16 256
E. coli AR0349 mcr-1, ESBL A 16 128
E. coli AR0350 mcr-1 - 16 128
E. coli AR0493 mcr-1, ESBL A 16 256
E. coli AR0494 mcr-1 - 8 128
E. coli B096a Clinical isolate (UK) 2016, AmpC C 16 128
E. coli B808 Clinical isolate (UK) 2016, blaTEM-1, blaCTX-M-15 A 16 256
E. coli ATCC BAA-2340 blaKPC A 16 128
E. coli ATCC BAA-2469 blaNDM-1 B 16 128
E. coli ExPEC H5 Clinical isolate (UK) 8 128
E. coli H4/5 Clinical isolate, blaTEM-1, blaCTX-M-15 A 16 256
E. coli IR3 Clinical isolate, blaNDM-1 B 8 128
E. coli IR45 Clinical isolate, blaNDM-1 B 16 128
E. coli IR57 Clinical isolate, blaNDM-1 B 16 256
E. coli Swiss 2 (AF45) Clinical isolate (South Africa) ST101,mcr-1 16 128
E. coli Swiss 13 Clinical isolate (France) ST69,mcr-1 16 128
E. coli Swiss 15 Clinical isolate (Switzerland) ST446,mcr-1, blaCTX-M A 16 128
E. coli BW25113 Parent strain of BW25113DacrB::kanmutant 8 128
E. coli JW0451-2 BW25113DacrB::kan, AcrB-deficient mutant, defective in

ArcAB-TolC multidrug efflux system
8 128

A. baumannii ATCC 19606 Isolated from urine, genome-sequenced strain 32 128
A. baumannii ACC00527 Clinical respiratory isolate (USA) 2012, blaOXA-24 D 8 128
A. baumannii B803 Clinical isolate (UK) 2016 32 128
A. baumannii GS2AB1 Multiresistant clinical isolate (southern Europe) 2017 16 128
A. baumannii Naval-81 Clinical isolate (USA) 2006 8 128
S. aureus ATCC 29213 CLSI susceptible reference strain 2 2
S. aureus NRS 384 USA300-0114 MRSA, community associated 0.5 2
E. faecalis ATCC 29212 CLSI QC strain 1 2
E. faecalis B575 Clinical isolate (northwest UK) 1 2
S. agalactiae B057 Clinical isolate (northwest UK) 0.06 0.5
S. agalactiae B063 Clinical isolate (northwest UK) 0.06 1
S. pneumoniae ATCC 49619 Reference strain 0.25 0.5
S. pneumoniae 3259-03 Clinical isolate (northwest UK) 0.5 0.5
aESBL, extended-spectrum b-lactamase.
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vehicle burdens of 5.16 0.2 and 7.16 0.1 log10 CFU/g tissue, respectively, V-r exhibited
a dose-dependent reduction in bacterial burden of 1.2 to 3.4 log10 compared with vehi-
cle (Kruskal-Wallis one-way analysis of variance using StatsDirect Statistical Analysis
Software) (Table 4). V-r doses at 440 and 880mg/kg afforded 1.0- and 1.3-log10 reduc-
tions below stasis, respectively, with an extrapolated static dose of 215mg/kg. As
anticipated, vancomycin failed to significantly impact E. coli burden at a dose equiva-
lent to the highest dose of V-r. In a 24-h thigh muscle infection model, E. coli UTI89
was inoculated at 7.8� 104 CFU into one thigh muscle per mouse (n=5 to 8 per group)
and treated with V-r (total dose, 200 to 1,400mg) using an every-6-h dosing regimen
from 1 h postinfection. All doses of .200mg/kg significantly reduced burden below
stasis by up to 2.7 log10 CFU/g. These bactericidal effects of V-r were statistically supe-
rior to those of ciprofloxacin, which induced a 1.4 log10 reduction from stasis (Fig. 3
and Table 5). Overall, V-r caused an ;4 to 7.5 log10 reduction in bacterial burden, com-
pared with vehicle control, over the entire dose range.

The MIC data confirm previous findings that the coupling of arginine with vancomy-
cin bestows significant antimicrobial activity of the V-r conjugate against E. coli infec-
tion while remaining effective against methicillin-resistant Staphylococcus aureus
(MRSA) (14). Such in vitro findings were effectively translated into thigh muscle infec-
tion models, where a total 24-h dose of 250mg/kg V-r reduced E. coli burden to pre-
treatment (stasis) levels. Since area under the curve over 24 h in the steady state di-
vided by the MIC (AUC/MIC ratio) is the primary PK/pharmacodynamic predictor of
vancomycin (5), this static dose corresponds to a total AUC/MIC of 47.3. Based on a
free (f) fraction of 35%, as determined in plasma protein binding studies (Table 1),
the fAUC/MIC of V-r was 16.5. As an approximation of exposure using allometric scaling
(22), this would be equivalent to a human dose of ;20mg/kg, with a dose of 28mg/kg

FIG 2 Time-kill of vancomycin-arginine (V-r) and vancomycin against E. coli uropathogens UTI89 and
NCTC 13441.

TABLE 3 PK parameters of V-r in CD-1 mice after s.c. administration

PK parametera V-r at 20 mg/kg V-r at 121 mg/kg
Half-life (h) 0.87 1.29
Cmax (mg/liter) 20.4 98.4
Clearance (ml/min/kg) 7.8 5.4
AUC (mg · h/liter) 42.7 366
Vd (liter/kg) 0.59 0.60
aCmax, maximum concentration of drug in plasma; AUC, area under the curve; Vd, volume of distribution.
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required to elicit an additional 1-log10 kill. Such allometric doses of V-r are in line with
the daily and loading doses of vancomycin in humans (5).

The positive efficacy data support the notion that the cationic feature of arginine
within V-r allows for breaching of the stubborn outer membrane of E. coli isolates and
possibly other Gram-negative bacteria (14). The sequelae of events leading to V-r-
mediated E. coli eradication likely involve (i) improved cell surface association with
negatively charged groups, (ii) effective translocation across the outer membrane lead-
ing to enhanced drug uptake, and (iii) disruption of peptidoglycan synthesis within the
periplasmic space (6, 14). To our knowledge, the current findings describe the first
report of a marked abrogation of E. coli burden in vivo with a minimally modified van-
comycin-cationic transporter conjugate. Previously, it was reported that vancomycin-
QC14, a strongly lipophilic/cationic molecule, reduced thigh muscle infection of a car-
bapenem-resistant A. baumannii strain (23). Because V-r was highly effective in time-kill
assays against E. coli NCTC 13441, a pandemic uropathogenic clone (24), a logical next
step would be to evaluate the conjugate in a model of urinary tract infection (UTI).
Based on the high renal elimination of vancomycin in humans (25) in a nonmetabol-
ized form (26), it is reasonable to hypothesize that V-r may drive a highly targeted ther-
apeutic intervention to combat E. coli-associated UTIs.

These data further underscore a precedent for creating a novel Gram-negative
active agent by transforming a commonly used and selective Gram-positive antibiotic
by introducing certain cationic features through a simple and scalable synthesis proto-
col (14). Such an approach, in consort with effective in silico predictions (27, 28), might
expedite antibiotic development and increase the overall probability of success of

TABLE 4 Efficacy of V-r in an E. coli ATCC 25922 thigh muscle infection model (9 h) in
neutropenic CD-1 mice

Group, total dose over
9 h (mg/kg)

Log10 (group geometric
mean± SD CFU/g)

Log10 change from
vehicle (CFU/g)

P value (versus
vehicle)

Pretreatment 5.16 0.18 22.01 0.0045
Vehicle 7.116 0.12 0 0
V-r, 110 5.876 0.60 21.24 0.0415
V-r, 440 4.146 0.63 22.97 ,0.0001
V-r, 880 3.766 0.40 23.35 ,0.0001
Vancomycin, 800 6.606 0.66 20.51 Not significant

FIG 3 Efficacy of V-r in reducing E. coli UTI89 burden in a 24-h thigh muscle infection model in
neutropenic CD-1 mice.
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drug candidates. Most important, this would help to arrest the insidious pandemic of
difficult-to-treat bacterial infections.
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