Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Electronic supporting information

Surface-active ionic liquids for Palladium-catalysed cross coupling in water: Effect of ionic liquid concentration on the catalytically active species

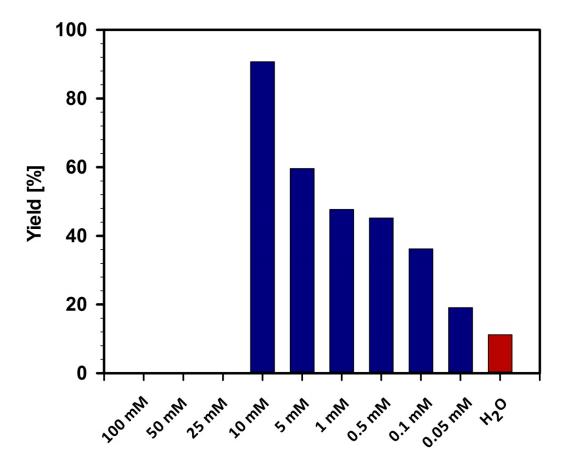
Meltem Taskin,^a Alice Cognigni,^a Ronald Zirbs,^b Erik Reimhult^b and Katharina Bica^{a,*}

^a Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna (Austria), Fax: +43 1 58801 16360; Tel: +43 1 58801 163601. E-mail: katharina.bica@tuwien.ac.at or <a href="mailto:katharina.bica@tuwien.ac.at or <a href="mailto:katharina.bica@tuwien.ac.at or <a h

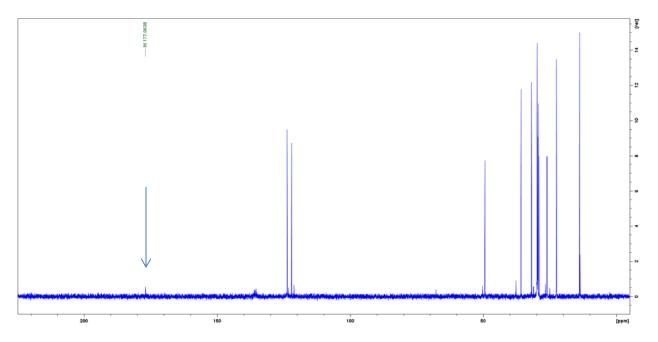
^b Group for Biologically Inspired Materials, Institute of Nanobiotechnology (DNBT), University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.

1. Table S1: Critical micelle concentrations for all involved ionic liquids

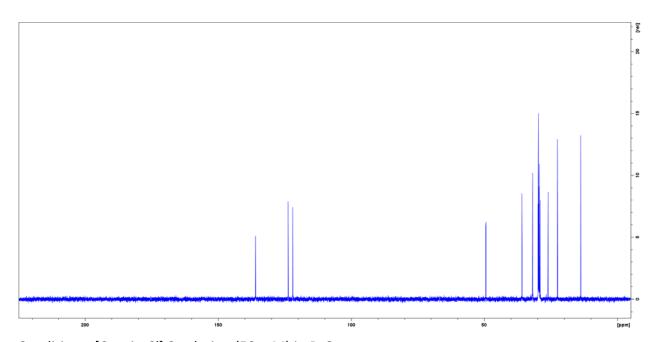
	CMC [mM] ^a	
Ionic Liquid	Conductivity ^b	Surface tension ^c
1	14.53 [1]	13.25 [1]
2	13.75 [2]	10.33 [2]
3	2.69 [3]	2.31 [3]
4	4.32	3.24
5	5.52	4.33
6	5.69	5.07
7	5.04	4.91
8	4.17	5.61


^a Solutions were prepared with doubly-distilled Millipore Milli-Q water. Samples were equilibrated at 25 °C with a HAAKE K15 thermostat before measurements. ^b Conductivity measurement were performed on a Mettler Toledo SevenExcellence system. InLAB® 741-ISM electrode (cell constant k = 0.105). The conductimeter was calibrated with a standard KCl solution and measurements were performed in duplicate; ^c Surface tension was determined with the Du Noüy ring method on a Krüss tensiometer at RT. Each measurement was repeated 5 times.

¹ A. Cognigni, P. Gaertner, R. Zirbs, H. Peterlik, K. Prochazka, C. Schröder and K. Bica, *Phys. Chem. Chem. Phys.*, 2016, **18**, 13375–13384.


² A. Cognigni, S. Kampichler and K. Bica, *J. Colloid Interface Sci.*, 2017, **492**, 136–145.

³ X.-f. Liu, L.-l. Dong and Y. Fang, *J. Surfactants Deterg.*, 2011, **14**, 203–210.


2. Figure S1: Concentration dependence of the Heck reaction of ethyl acrylate 9 and iodobenzene 10 in aqueous solution of ionic liquids [C₁₂mim]Cl 1 using DBU as base.

3. Figure S2: Copy of ¹³C NMR spectroscopy showing the formation of a Pd-carbene at 177 ppm.

Conditions: 2 mL [C_{12} mimCl] **2** solution (50 mM) in D_2O , 0.02 mmol Pd_2 allyl $_2$ Cl $_2$ and 0.02 mmol K_2CO_3 ; 30 min at 80 °C under air.

Conditions: [C₁₂mimCl] 2 solution (50 mM) in D₂O