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Abstract: Understanding the evolutionary advantage of
sexual reproduction remains one of the most fundamental
questions in evolutionary biology. Most of the current
hypotheses rely on the fact that sex increases genetic
variation, thereby enhancing the efficiency of natural
selection; an important body of theoretical work has
defined the conditions under which sex can be favoured
through this effect. Over the last decade, experimental
evolution in model organisms has provided evidence that
sex indeed allows faster rates of adaptation. A new study
on facultatively sexual rotifers shows that increased rates
of sex can be favoured during adaptation to new
environmental conditions and explores the cause of this
effect. The results provide support for the idea that the
benefits of increasing genetic variation may compensate
for the short-term costs of sexual reproduction.

The Problem of Sex

Thinking about sex has been one of the main occupations of

evolutionary biologists for almost half a century. The widespread

occurrence of sexual reproduction—the recomposition of two

parental genomes into the genome of a new individual—is indeed

puzzling, given the important costs associated with this mode of

transmission of genetic material (see Box 1). Despite that, complete

asexuality is rare in the eukaryotic kingdom, and sex represents the

only possible mode of reproduction in a substantial number of

species (including ourselves). The oldest hypothesis on the

evolutionary significance of sex was formulated by Weismann in

1889 [1] and elaborated during the first part of the 20th century

by Morgan, Fisher, and Muller [2–4]: according to this hypothesis,

sex is beneficial because it increases genetic variation, allowing

faster rates of adaptation by combining different beneficial

mutations into the same genome. However, following the seminal

work of Maynard Smith and Williams in the early 1970s [5,6], the

apparent simplicity of this ‘‘Fisher-Muller’’ hypothesis was put into

question: for sex to bring a net benefit, it must create advantageous

genetic combinations more often than it destroys them. In

population genetics terms, this implies the existence of ‘‘negative

genetic associations’’ within populations: good alleles must tend to

be associated with bad alleles at other loci, in which case sex can

break these associations and generate genotypes combining

beneficial alleles. But where do these negative associations come

from? Different possible sources have been identified, correspond-

ing to different theories to explain sex.

First, certain forms of natural selection may generate such

associations: this happens in particular when the advantage of

beneficial alleles decreases as more beneficial alleles (at other loci)

are added to the genome (or conversely when the effect of

deleterious alleles increases as more deleterious alleles are added),

a scenario described as negative epistasis [7]. Mathematical models

show that in this situation, populations contain an excess of

intermediate genotypes carrying a mixture of good and bad alleles.

Increasing the rate of sexual reproduction increases the variance in

fitness among offspring by creating extreme (both very good and

very bad) genotypes. This is disadvantageous in the short term,

because the high fitness of very good genotypes is not sufficient to

compensate for the low fitness of very bad ones; however, it

becomes advantageous in a longer term, because very good

genotypes increase in frequency (carrying with them alleles that

promote sex). When the direction of selection remains constant

over time, the long-term benefit is stronger than the short-term

cost only under restrictive conditions [8,9] that do not correspond

to observed patterns of epistasis [10]. The short-term cost may

turn into a short-term advantage, however, when selection

changes over time (as in some models of coevolution between

species) or over space, generally making things easier for sex [11–

16]. Finally, a different family of models has shown that chance

events (that stem from the stochastic nature of mutation and

individual reproduction in finite populations) also tend to produce

negative genetic associations, thus generating an advantage for sex

[17–22].

Using Experimental Evolution to Explore the
Benefits of Sex

For a long time, most of these theoretical models have been

desperately crying for empirical validation. However, studies on

real organisms (both in the lab and in natural populations) have

been catching up, particularly during the last decade. In

particular, several classical biological models proved very useful

to explore the benefits of sex during adaptation, with different

experimental evolution studies on Chlamydomonas reinhardtii [23],

Saccharomyces cerevisiae [24], and Escherichia coli [25], demonstrating

that sexual (or recombining) lines adapt faster to new environ-

ments than asexual lines. Can this translate into a net benefit for

sexuals when competing against asexuals? Evidence for this has

been recently provided by experimental populations of the

nematode Caenorhabitis elegans, showing that this mostly self-

fertilizing organism evolves towards higher rates of biparental

sex when adapting to a new environment (or coevolving with a

pathogen) [26,27].
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In this issue of PLoS Biology, a study by Becks and Agrawal [28]

on monogonont rotifers goes one step further by dissecting the

evolutionary advantage of sex during adaptation. Contrarily to

their chaste cousins the bdelloids, which have been evolving

without sex for several millions of years, monogonont rotifers are

facultatively sexual, reproducing asexually at low density but

switching to sexual reproduction in response to a chemical

stimulus that indicates high density. In a previous study [29], the

same authors showed that the propensity for sex of these rotifers

(measured as their response to the sex-inducing stimulus) can

evolve in laboratory populations and typically decreases under

stable environmental conditions—indicating selection against

sexual reproduction. This trend is much reduced, however, when

populations are maintained in a heterogeneous environment (with

restricted migration between two different habitats), suggesting

that spatial heterogeneity in selection tends to favour sex.

For this new study, Becks and Agrawal use some of their

previous populations that have been adapting to two environments

(A and B) differing in their food composition and salinity. At the

start of the experiment, 10 populations are transferred to the

environment for which they are not adapted (5 from A to B, 5

from B to A), while 10 populations stay in their previous

environment to serve as controls. The maladaptation of each of

the transferred populations to its new environment is clearly shown

by an initial crash in density and a drop in fitness, measured by

individual fitness assays; however, after 50 days both density and

fitness have returned to their original level (before transfer),

providing clear evidence for adaptation. What about sex? As in

their previous study, the authors observe a steady decline of the

propensity for sex within control populations. In both types of

adapting populations, however, the propensity for sex increases,

before reaching a plateau and declining as the population becomes

adapted. Several lines of evidence indicate that this response is

genetic rather than plastic—in particular, no change is observed if

the opportunity for selection for sex is removed by forcing

individuals into clonal reproduction. Selection for sex is further

demonstrated by comparing the fitness of individuals derived from

sexually versus asexually produced eggs (sampled directly from the

populations): sexually derived individuals have a much lower

fitness than asexually derived ones in control populations, but this

pattern reverses during adaptation.

In order to obtain a deeper understanding of the mechanism

generating selection for sex, Becks and Agrawal perform a last

experiment: they collect random samples of rotifers from the

different treatments at different time steps and force them into

either sexual or asexual reproduction (by exposing them to a very

strong sex-inducing stimulus or keeping them at low density). The

results are particularly illuminating: in all treatments, sexually

derived individuals display a lower mean fitness but a higher

variance in fitness than asexually derived ones. The lower mean

fitness demonstrates a short-term cost for sexual reproduction,

both in control and adapting populations. The increased variance

reflects the fact that sex tends to break negative genetic

associations, resulting in a higher proportion of high- and low-

fitness genotypes (see Figure 1): in particular, in the case of

adapting populations the top-end of the fitness distribution reaches

higher values among sexually-produced offspring, driving the

evolution of increased rates of sex in these populations. This is the

first experimental demonstration of the basic tenet of Weismann’s

hypothesis (that sex can be favoured because it increases genetic

variation).

Prospects

This study opens the door to a series of questions concerning the

genetic mechanisms underlying these effects of sex on the mean

and variance in fitness. First, what are the relative effects of inter-

locus and intra-locus genetic associations? As illustrated by

Figure 1, the increased fitness variance due to sex may stem from

the fact that recombination between genomes carrying beneficial

and deleterious alleles at different loci results in the production of

genomes combining different beneficial alleles, or different

deleterious alleles. Under this scenario, the fact that sex decreases

the mean fitness of offspring would be indicative of epistatic

interactions among loci, generating a negative curvature of the

fitness function. Alternatively, Figure 1 also shows that the same

effects may arise if sex tends to create homozygous individuals

from heterozygous parents (allowing in particular the production

of individuals carrying beneficial alleles in the homozygous state);

here, the short-term cost of sex could be explained by dominance

effects between alleles at the same locus—for example, due to the

unmasking of recessive deleterious alleles. Both scenarios share the

same prerequisite, however, which is the initial presence of

negative genetic associations: excess of genotypes combining

beneficial and deleterious alleles, either at the same or at different

loci. This brings up a second question: what generates these

negative associations? As stated earlier, two possible sources have

been identified by theoretical studies: the deterministic action of

selection and stochastic effects due to finite population size. For

example, if heterozygotes at a given locus have a higher fitness

than the average of both homozygotes, selection tends to produce

an excess of these heterozygotes, which is maintained across

generations when reproduction is partly clonal [9]. Alternatively,

an excess of heterozygotes may stem from the fact that in any finite

population, new mutations first appear in the heterozygous state

(and are maintained heterozygous as long as reproduction is clonal

[18]). Answering these questions will require other carefully

planned experiments, comparing evolutionary responses at

different population sizes and exploring the genetic architecture

of fitness variation within experimental populations.

To what extent can the benefit of sex demonstrated here

compensate for the strong costs associated with sexual reproduc-

tion in natural populations? Interestingly, some of these direct

costs operate in Becks and Agrawal’s experiment (the cost of males

in particular). Nevertheless, one may object that the observed

Box 1. The Costs of Sex

Many important costs are associated with sexual repro-
duction, in particular:

N The cost of males (or ‘‘2-fold cost of sex’’): in many
species, males do not provide any resource to the next
generation, yet sexual females typically invest half of
their resources into the production of males. Everything
else being equal, this generates a 2-fold advantage for
asexual females (producing only female offspring) [30].

N The cost of breaking favourable genetic combi-
nations: genotypes that are able to survive to
adulthood and reproduce prove that they are relatively
fit in their own environment. Reproducing sexually may
disrupt beneficial genetic combinations and lower the
mean fitness of offspring.

N Costs associated with the mating process: finding a
mate can be costly in time and energy and may also
increase risks of predation and parasite transmission.
Furthermore, in some species mating may harm the
female and affect her future reproductive success.
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increase in the propensity for sex stays modest and is only

transient. Is adaptive change sufficiently frequent under natural

conditions to maintain a strong positive pressure on sexual

reproduction? Comparisons of fitness distributions of sexually

versus asexually produced individuals in natural populations

would represent an important indication but remain scarce.

Furthermore, even some of the most basic aspects of natural

selection remain poorly known: does selection typically remain

constant over long time periods, or does it fluctuate rapidly? What

maintains variation for fitness between individuals? Does adaptive

change typically involve a large number of genes, or only a few?

Answering these different questions still represents a formidable

task, but will be undoubtedly facilitated by recent technologies.

Because it is so intimately linked with these fundamental issues,

solving the problem of sex will ultimately require a deeper

empirical knowledge of the evolutionary process in general. In the

meantime, experimental evolution will remain an invaluable tool

for assessing the plausibility of theoretical scenarios.
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