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Abstract

Background: The role of thyroid hormones and their receptors (TR) during liver regeneration after partial hepatectomy (PH)
was studied using genetic and pharmacologic approaches. Roles in liver regeneration have been suggested for T3, but there
is no clear evidence distinguishing the contribution of increased amounts of T3 from the modulation by unoccupied TRs.

Methodology/Principal Findings: Mice lacking TRa1/TRb or TRb alone fully regenerated liver mass after PH, but showed
delayed commitment to the initial round of hepatocyte proliferation and transient but intense apoptosis at 48h post-PH,
affecting ,30% of the remaining hepatocytes. Pharmacologically induced hypothyroidism yielded similar results. Loss of TR
activity was associated with enhanced nitrosative stress in the liver remnant, due to an increase in the activity of the nitric
oxide synthase (NOS) 2 and 3, caused by a transient decrease in the concentration of asymmetric dimethylarginine (ADMA),
a potent NOS inhibitor. This decrease in the ADMA levels was due to the presence of a higher activity of
dimethylarginineaminohydrolase-1 (DDAH-1) in the regenerating liver of animals lacking TRa1/TRb or TRb. DDAH-1
expression and activity was paralleled by the activity of FXR, a transcription factor involved in liver regeneration and up-
regulated in the absence of TR.

Conclusions/Significance: We report that TRs are not required for liver regeneration; however, hypothyroid mice and TRb–
or TRa1/TRb–deficient mice exhibit a delay in the restoration of liver mass, suggesting a specific role for TRb in liver
regeneration. Altered regenerative responses are related with a delay in the expression of cyclins D1 and E, and the
occurrence of liver apoptosis in the absence of activated TRb that can be prevented by administration of NOS inhibitors.
Taken together, these results indicate that TRb contributes significantly to the rapid initial round of hepatocyte proliferation
following PH, and improves the survival of the regenerating liver at later times.
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Introduction

Liver regeneration after removal of two-thirds of the organ (2/3

PH) is a well-known tissue repair process providing an example of

a synchronized biological regenerative response. Much knowledge

on liver regeneration has been obtained in recent years, and this

process is known to involve the concerted action of hormones,

growth factors and other metabolic stimuli [1,2,3]. Roles in liver

regeneration have been suggested for thyroid hormone (T3) and its

receptors (TR), but there is no clear evidence distinguishing the

contribution of increased amounts of T3 from the modulation by

unoccupied thyroid hormone receptors (TRs), despite the fact that

activated receptors have been recognized as important modulators

of the regenerative response [4,5,6,7]. Recently, an induction of

deiodinase type 3 (that catalyses the inactivation of T3 and T4)

after PH has been described [8], which explains the transient drop

of thyroid hormones described after PH by various groups ([4,8,9],

this work). Liver expresses both TRa and TRb, although their

distribution and roles seem to depend on the developmental status

of the animal: During the perinatal period, TRa1 plays a critical

role in hepatocyte maturation, whereas in adult liver the

predominant form is TRb [10,11]. However, TRa appears to

be the predominant form of TR in the hepatocyte precursor, the

stellate cells [7].

The important role of T3 in regulating liver metabolism is well

known. Gene profiling of livers from TRb knockout mice

PLoS ONE | www.plosone.org 1 January 2010 | Volume 5 | Issue 1 | e8710



identified more than 200 differentially regulated genes, most

down-regulated but others up-regulated, revealing a clear

predominance of TRb over TRa in liver function [5,12]. Previous

in vivo studies on the role of thyroid hormones in hepatocyte

proliferation showed a proliferative action in combination with

other mitogens, such as hepatocyte growth factor or keratinocyte

growth factor. Indeed, in hypothyroid animals, liver regeneration

after PH is associated with slower recovery of liver mass [4], and

studies of the liver proteome in rats showed that TRb is one of 34

proteins that are significantly upregulated in the regenerating liver

after PH [13]. A question emerging from these studies is how to

distinguish between effects due to altered hormone activation of

TRs and effects due to altered TR expression. We therefore

investigated liver regeneration after PH in gene-deficient mice

lacking TRa1, TRb (all forms) or both genes, comparing these

responses with those of hypothyroid animals to distinguish the

specific contributions of receptor expression and activation. We

report that TRs are not required for liver regeneration; however,

hypothyroid mice and TRb– or TRa1/TRb–deficient mice

exhibit a delay in the restoration of liver mass. This delay involves

a later initiation of liver proliferation together with a significant

but transient apoptotic response at 48 h after PH. Altered

regenerative responses and liver apoptosis in the absence of

activated TRb are linked to an enhanced nitrosative stress,

resulting from a drop in the levels of asymmetric dimethylarginine

(ADMA), a potent physiological inhibitor of nitric oxide synthase

activity (NOS) [14,15,16].

Materials and Methods

Ethics Statement
Animals were treated in accordance with the protocols issued by

the ‘Ethics Committee for Animal Experimentation’ of the

Instituto de Investigaciones Biomédicas (CSIC-UAM), which

followed National (normative 1201/2005) and International

recommendations (normative 609/86 from EU).

Chemicals
Antibodies were from Santa Cruz Biotech. (Santa Cruz, CA),

Chemicon (Temecula, CA, USA), and BD Transduction Labora-

tories (San Jose, CA, USA). Other reagents were from Roche

(Mannheim, Germany) or Sigma (St. Louis, MO).

Animals and PH
TRb single KO and TRa1/TRb double KO mice –referred to as

KO group- and the corresponding WT animals in the same genetic

background (129/Sv6C57BL/6J; [17]) were bred in our animal

facility. TRa1/TRb double KO mice were generated from

TRa12/2/TRb+/2 KO mice as previously described [17]. Five

to eight animals per group (except otherwise stated) aged 2–3

months were supplied with food and water ad libitum and exposed to

a 12 h light-dark cycle. For PH, mice were anesthetized with a

92:7 mg/kg mix of ketamine:xylacine and subjected to midventral

laparotomy with 70% liver resection (left lower and upper and right

upper lobes), and the weight of the excised liver was determined.

Sham surgery entailed midventral laparotomy. Survival was higher

than 80% and all deaths were due to post-surgery complications

during the first 24 h post-PH. Liver regeneration index was

calculated as the ratio of the liver remnant to body mass and

6100). Hypothyroidism was induced by administration during 4

weeks of methimazole (MMI) (0.05%) and KClO4 (1%) in the

drinking water [18]. When required, L-thyroxine (T4) was

administered to MMI-hypothyroid mice at 20 ng/g body weight

per day for a week. Plasma was obtained from the aorta and allowed

to clot. Serum was stored at 280uC. The activity of aspartate

aminotransferase (AST) in serum was measured to evaluate liver

injury, using a commercial assay kit (Roche).

Hydrodynamic transfection
Liver-specific transfection was accomplished by hydrodynamic

overload with 100 mg plasmid (void vector pLPCX, pGFP, or a

1:10 ration of pGFP:pTRb) dissolved in 2 ml isotonic NaCl. The

plasmid solution was injected during 8 s into the tail veins of 22–

24 g adult male mice (hydrodynamic injection) [19]. Animals were

subjected to PH 24 h after injection and liver sections were used to

evaluate the transfection efficiency, using GFP as marker.

Flow cytometry of isolated liver cells
Liver sections (3 mm) were processed in a Dako Medimachine

equipped with a 50 mm Medicon filter to disaggregate the tissue

and yield individual cells. Cells were fixed in 70% ethanol and

stained with Red Nile and Hoechst 33342 to evaluate ploidy or

with Ki67 to identify proliferative cells; cells were analyzed in a

BD FACS Canto II cell cytometer.

Western blot
Equal amounts of protein (10–50 mg) were size-fractionated by

10–12% SDS-PAGE, transferred to Hybond P membrane

(Amersham) and, after blocking with 5% nonfat dry milk,

incubated with the corresponding Abs. Commercially available

antibodies were used to determine the amounts of TRa, TRb,

cyclins E and D1, PCNA, CCAAT/enhancer binding proteins (C/

EBP)-a and -b, caspases 3 and 9, glutathione S-transferase (GST),

NOS-2 and NOS-3, DDAH-1, farnesoid X receptor (FXR) and

the apoptosis-related proteins (Bcl-2, Bax, Bid, IAP-1, x-IAP).

Blots were normalized to the expression of b-actin and/or PI3K

subunit p85. Multiple film exposure times (CCD camera in a

Luminiscent Image Analyzer; LAS 3000, TDI, Madrid) were used

to ensure linearity of the band intensities.

Caspase assays
Tissue or cell extracts were prepared by homogenization in

10 mM HEPES pH 7.9; 1 mM EGTA, 1 mM EDTA, 120 mM

NaCl, 1 mM DTT, 0.5 mM PMSF, 2 mg/ml aprotinin, 10 mg/ml

leupeptin, 2 mg/ml TLCK, 5 mM NaF, 1 mM NaVO4, 10 mM

Na2MoO4 and 0.5% Nonidet P-40 (buffer A). After centrifugation

of the cell lysate the supernatant was stored at 280uC (cytosolic

extract) and protein content was assayed with Bio-Rad protein

reagent. The activities of caspases 3 and 9 in cytosolic extracts

were determined with the fluorogenic substrates N-acetyl-DEVD-

7-amino-4-trifluoromethylcoumarin and N-acetyl-LEHD-7-ami-

no-4-trifluoromethylcoumarin, respectively (Calbiochem). The

linearity of caspase assays was determined over a 30 min reaction

period, and was expressed as percentage vs. the activity measured

in sham operated animals at 0h.

Immunofluorescence
For detection and quantification of apoptosis, the TUNEL

commercial kit for cell death detection (Roche) was used following

the instructions of the manufacturer. TO-PRO-3 (Molecular

Probes) was used for DNA staining. Lipid bodies were stained with

Nile red. Images were acquired with a Radiance 2100 confocal

microscope (Zeiss).

RNA isolation and qRT-PCR
One mg of total RNA, extracted with Trizol Reagent

(Invitrogen), was reverse transcribed using 50 U of Expand
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Reverse transcriptase and pd(N)6 random hexamer as primer (GE

Healthcare). cDNAs were amplified by qRT-PCR with the

following oligonucleotide primers: TRb (59TGGTGCACTGAA-

GAATGAGC39 sense, 59AGTGGTACCCTGTGGCTTTG39

antisense, 218 bp), FXR (59GCACGCTGATCAGACAGCTA39

sense, 59CAGGAGGGTCTGTTGGTCTG39 antisense, 121 bp),

mBSEP (59 TGGATCAACAGCTCCTTCAA39 sense, 59ACAC-

CAACTCCTGCGTAGA39 antisense, 111bp), DDAH-1 (59A-

GCCGCAGGAAGGAGGTT39 sense, 59AATAGGACGTCCC-

CACCATC39 antisense, 110 bp) and for 18S rRNA (59GCAAT-

TATTCCCCATGAACGA39 sense, 59CAAAGGGCAGGGAC-

TTAATCAA39 antisense, 100 bp). Reactions were performed in

triplicate. For each primer pair and cDNA, a dilution series of the

input was used to generate a standard curve, from which the Ct

value and fold enrichment were calculated ($1.5 was considered

significant).

Determination of T3, T4 and metabolites
The levels of T3 and T4 were determined in serum using an

ECL-based kit (Diagnostic Products Corp. Los Angeles, CA). The

lower limits of detection were 0.25 ng/ml and 3.5 ng/ml for T3

and T4, respectively. Triglycerides (TAG) and cholesterol (Cho)

were determined in liver homogenates by enzymatic methods with

specific kits from Biosystems (Barcelona). Nitrotyrosine and

ADMA were determined using a specific ELISA kit (Chemicon).

GSH, GSSG, malondialdehyde (MDA) and 8-oxodeoxyguanosine

(8-oxo-dG) were determined as previously described [20]. Protein

concentrations were determined with Bradford reagent.

DDAH activity
DDAH-1 activity was measured from the conversion of L-N-

monomethylarginine (L-NMMA) into L-citrulline. Liver samples

(50 mg) were homogenized in 200 ml buffer A (see above) and

centrifuged at 20,000g for 15 min. Supernatants were collected

and stored at 4uC. To measure DDAH activity 20 ml of the

supernatant was incubated for 60 min at 30uC in 80 ml reaction

buffer (20 mM Tris; pH 7.4 and 500 mM L-NMMA). The

reaction was stopped with 1 ml ice-cold stop buffer (20 mM

HEPES; pH 5.5 and 2 mM EDTA). L-citrulline was separated

from L-NMMA with the cation exchange resin Dowex AG50 X8-

400. Aliquots of the eluent were used to determine the

concentration of L-citrulline by HPLC in an amino acid analyzer.

One unit of DDAH-1 activity corresponded to the synthesis of one

nanomol of L-citrulline per minute.

Data analysis
Data are expressed as means 6 standard deviation (SD).

Statistical significance was estimated with Student’s t test for

unpaired observations. The results were considered significant at

P,0.05. Data were analyzed with the SPSS for Windows statistical

package, version 9.0.1.

Results

TRb expression transiently decreases in regenerating liver
after PH

Expression levels of TRa and TRb were determined in liver

extracts from animals that had undergone PH. TRa content did

not change in the period after PH; however, TRb decreased

significantly 24–72 h post-PH, returning to control levels at 96 h

(Fig. 1A–B). Western blot confirmed absence of TRa1 and TRb
from TR double KO mice. Consistent with the protein expression

profile, TRb mRNA expression increased 3-fold by 48–72 h

(Fig. 1C). TRa1/TRb double KO mice exhibit a marked

hyperthyroidism that has been previously reported [17]. The T3

and T4 serum levels were determined after PH and both WT and

TRa1/TRb double KO mice exhibited a rapid decrease in

thyroid hormone levels after PH that recovered at 72–96 h

(Fig. 1D), presumably due to the rapid overexpression of

deiodinase type 3 [8]. Interestingly, the basal thyroid hormone

levels of the TRa1/TRb double KO mice where higher than

those of WT mice, in agreement with previous work [17].

Regarding liver regeneration, TRa1/TRb double KO mice had a

slower rate of liver mass recovery after PH than WT, reflected in a

delayed increase in the regeneration index (Fig. 1E). A milder

delay was also observed in hypothyroid animals treated with MMI,

and the liver regeneration index was restored in these animals by

administration of T4. Interestingly, serum AST activity in

hepatectomized animals, a marker of liver injury, was about a

third of the WT value in the double KO mice, reflecting a

decrease in liver injury after PH (Fig. 1F). This unexpected

protection against PH-induced liver injury was systematically

observed in TRa1/TRb double KO mice and in MMI treated

mice, being lost after administration of T4 in the latter case.

Despite the attenuated liver regeneration in TRa1+TRb KO or

MMI-treated mice, survival rates after PH in these animals were

identical to those in non-treated wild-types (Fig. 2A). Animal death

was usually due to post-surgery complications, and always

occurred during the first 24 h after intervention. Determination

of cell proliferation, by Ki67-positive cell count in liver sections,

revealed delayed progression in the cell cycle in TRa1/TRb KO

and MMI-treated mice (Fig. 2B), while flow cytometry of

disaggregated liver cells showed no significant differences in the

ploidy distribution among the animal groups (Fig. 2C). The

delayed hepatocyte replication in double-KO and MMI-treated

mice was reflected in delayed upregulation in the expression of the

cell-cycle markers PCNA and cyclins E and D1 (Fig. 2D).

Moreover, the typical drop in hepatic levels of C/EBPa that

normally follows PH, and which is required for progress of

hepatocytes through the cell cycle [21], was delayed in double-KO

and MMI-treated mice, whereas the increase in C/EBPb levels

was much lower in animals lacking functional TRs (Fig. 2D).

TR activity prevents transient hepatocyte apoptosis in
regenerating liver after PH

Analysis of apoptosis by TUNEL in regenerating liver identified

a transient peak at 48 h after PH in TRa1/TRb KO and MMI-

treated mice (Fig. 3A). This apoptotic response was accompanied

by an increased caspase 3 activity in samples of the remnant liver

at 48 h (Fig. 3B). However, other processes relevant to the

regenerative response, such as steatosis, evaluated by the

accumulation of Nile red positive droplets (Fig. 3C) and liver

cholesterol and triglyceride content (Fig. 3D–E), appeared to be

little affected by the lack of functional TRs, although there was a

moderate but statistically significant increase (p,0.05) in liver

cholesterol and triglycerides in TRa1/TRb KO animals at 48 h.

Ectopic expression of TRb in vivo restores liver mass
recovery and inhibits apoptosis after PH

Mice were injected with a bolus of plasmids encoding TRb and

GFP to allow hydrodynamic transfection of liver in vivo [19]. An

average 40–60% hepatocytes stained positive for GFP 24 h post

transfection (Fig. 4A). The protein levels of TRb after hydrody-

namic transfection are shown in Fig. 4A. Transfection of TRa1/

TRb double KO or TRb KO mice with TRb resulted in a

significant increase in liver mass recovery at 48 h after PH

(Fig. 4B), suggesting a specific and non-redundant role for TRb in
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liver regeneration. Interestingly, overexpression of TRb in WT

animals did not modify the regenerative response (WT condition

in Fig. 4B). Ectopic expression of TRb in the KO mice also

markedly decreased the expression and activity of caspase 9 and

activity of caspase 3 at 48 h PH, as determined in liver extracts

(Fig. 4C,D,E).

TRb deficiency decreases ADMA content in regenerating
live

A possible explanation for the increased apoptosis in the

regenerating liver of TR KO mice is an enhanced oxidative and/

or nitrosative stress. To evaluate oxidative stress, we measured the

levels of 8-oxo-deoxyguanosine (8-oxo-dG), malondialdehyde

(MDA) and GSH-GSSG, and the activity of glutathione

peroxidase (GPx). Neither TRb KO or TRa1/TRb double KO

mice showed significant variation in these parameters compared

with WT animals, and only a tendency of low statistical

significance to higher levels of GSH and lower of 8-oxo-dG was

evidenced in the KO model (Fig. 5A). However, the liver content

of nitrotyrosine was elevated in the KO animals (Fig. 5B),

indicating enhanced nitrosative stress. TRa1/TRb gene deficiency

did not affect the protein expression level or phosphorylation state

of NOS-3, suggesting that the activity of this isoenzyme was not

regulated by changes in the phosphorylation of the specific Ser473

residue; however, the characteristic transient spike in NOS-2

expression in regenerating liver [22] was significantly enhanced

(Fig. 5C). Other enzymes induced in regenerating liver, such as

glutathione-S-transferase (GST), showed similar profiles in WT

and KO mice (Fig. 5C). The enhanced nitrosative stress in TRa1/

TRb double KO mice suggested higher NOS activity. Consis-

tently, serum levels of ADMA –a physiological NOS inhibitor

[15,16,23,24]– were specifically decreased in TRb KO and

TRa1/TRb double KO mice 24–48 h after PH, with the start of

recovery evident at 72 h (Fig. 6A). This ADMA decrease was

accompanied by increased expression and activity of DDAH-1,

which converts ADMA into citrulline (Fig. 6B). One candidate

regulator of DDAH-I expression in liver is the nuclear receptor

FXR [25], and the FXR content of liver nuclear extracts was

much higher in the TRa1/TRb double KO than in the WT

animals (Fig. 6C). Likewise, mRNA expression of FXR and the

bile salt export pump (mBSEP), a target of FXR activity [26,27],

were always higher in the TRa1/TRb double KO mice than in

the WT group, suggesting a higher activity of FXR in these

animals after PH (Fig. 6D). Moreover, whereas FXR mRNA and

protein expression showed a decrease at 24 h PH in WT animals,

an increase was observed in the TRa1/TRb double KO group.

These differential changes in FXR expression might explain the

comparatively high expression of DDAH-1 in the regenerating

livers of TRa1/TRb double KO mice (Fig. 6B).

Inhibition of NOS-2 significantly reduces liver apoptosis
in regenerating liver after PH in TR KO mice

To confirm a contribution by enhanced nitrosative stress to the

transient apoptosis detected in regenerating liver in the absence of

Figure 1. TRb is transiently downregulated after PH and liver regeneration is delayed in TRa1/TRb double KO mice. (A,B) WT and TRa1/
TRb KO mice (‘KO’) were submitted to 70% PH, and the protein levels of TRa1 (55 kDa) and TRb (47 kDa) were determined by Western blot, and
expressed as percentage of the normalized band intensities (using b-actin as control) vs. sham operated animals at 0 h. (C) mRNA levels of TRa1 and
TRb were determined by quantitative real time RT-PCR. (D) The serum levels of T3 and T4 after PH were measured and expressed as percentage vs.
sham operated animals at 0 h. The basal values were 7.460.5 and 36.564.2 mg/dl for T4 in WT and KO, respectively; 7865 and 29656307 ng/dl for T3
in WT and KO, respectively. (E) Liver mass recovery after PH was determined in these animals and in WT mice treated with MMI to pharmacologically
induce hypothyroidism, and in one group of animals thyroid hormone was restituted by administration of T4. (F) Acute liver injury after PH was
evaluated by measuring serum AST levels. Results show means 6 SD of 6 to 8 animals per condition (B,C,E,F), 4 animals (D) or a representative blot of
three (A). #P,0.01 vs. the corresponding condition at 0h (B,D); *P,0.05, **P,0.01 vs. WT condition or T4-untreated WT animals (E,F).
doi:10.1371/journal.pone.0008710.g001
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Figure 2. TRa1/TRb deficiency results in delayed hepatocyte proliferation after PH. (A) Effect of TRa1/TRb deficiency on survival rates after
PH (n = 19–32); animal death occurred in the first 24h post-PH. (B) Percentage of Ki67-positive cells in liver sections. (C) Hepatocyte ploidy distribution
determined in preparations of liver disaggregated cells in a Medimachine. (D) Time-course of PCNA, cyclins E and D1, C/EBPa and C/EBPb protein
levels determined in liver extracts after PH. Results show means 6 SD of 6 animals per condition (B,C) or a representative blot of three (D). *P,0.05,
**P,0.01 vs. WT condition.
doi:10.1371/journal.pone.0008710.g002

Figure 3. TRb inhibits apoptosis in regenerating liver. (A) TUNEL staining of cells undergoing apoptosis in regenerating liver (green). Liver
sections were obtained at the indicated times after PH. The mean (n = 5 sections) of TUNEL positive cells per 100 nuclei (blue; TO-PRO-3 staining) is
given at 48 h. (B) Caspase 3 activity was determined fluorometrically in liver extracts obtained at the indicated times after PH, and expressed vs. the
activity of sham samples at 0h. (C) Alternatively, liver sections were stained with eosin/hematoxylin or Nile red to visualize lipid bodies. (D,E)
Intrahepatic levels of cholesterol and triglycerides determined in liver extracts obtained at the indicated times after PH. Results show means 6 SD of 6
animals per condition (B,D,E) or sections from a representative experiment of three (A,C). *P,0.05 vs. the WT condition.
doi:10.1371/journal.pone.0008710.g003
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Figure 4. Hydrodynamic transfection of TRb restores liver regeneration index and impairs caspase activation in regenerating liver
of TR KO mice. Before PH, animals (WT, TRb single KO and TRa1/TRb double KO mice, referred as ‘KO’) were transfected hydrodynamically with GFP
and TRb expression vectors, or the TRb-void vector pCX. The expression of GFP and the levels of TRb (A), the liver mass regeneration index (B) and the
levels of procaspase 3 and caspases 3 and 9 (C) were determined 48 h after PH. (D,E) Activities of caspase 9 and caspase 3 using specific peptide
substrates were determined in liver extracts obtained 48 h post-PH. Results show the mean 6 SD of 5 animals per condition (B,D,E) or a
representative section or Western blot out of three (A,C). *P,0.01 vs. the WT condition; #P,0.01 vs. animals of the same genotype transfected with
control TRb-void vector (pCX).
doi:10.1371/journal.pone.0008710.g004

Figure 5. Metabolic and enzymatic markers of oxidative and nitrosative stress in regenerating liver after PH. (A) Content of 8-oxo-
deoxyguanosine (8-oxo-dG), malondialdehyde (MDA), GSH and GSSG and the activity of glutathioneperoxidase (GPx) were determined in samples of
liver obtained at the indicated times after PH. (B) Nitrosative stress in the remnant liver tissue was determined by ELISA of nitro-tyrosine. (C) Western
blots of the protein levels of nitric oxide synthase 2 and 3 (NOS-2, -3) and the phosphorylation state of NOS-3 (at S473), and glutathione-S-transferase
(GST). The levels of b-actin were used as control of lane charge (C). Results show means 6 SD of 5 animals (A,B) or a representative experiment of 3
(C). *P,0.05, **P,0.001 vs. the WT condition (B).
doi:10.1371/journal.pone.0008710.g005
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TRb, PH animals were administered with the NOS-2 inhibitor

1400W, and apoptosis, caspase 3 activity, nitrotyrosine concen-

tration and ADMA levels were determined at 48 h. Treatment

with 1400W shifted the apoptotic response, caspase 3 activity and

nitrotyrosine levels of PH TRa1/TRb double KO mice down to

the range seen in WT counterparts (Fig. 7A), in spite of the fact

that ADMA levels remained notably below those of WT animals

(Fig. 7B). This result suggests that inhibition of NOS-2 is sufficient

to prevent apoptosis at 48 h in the remnant liver. Analysis of pro-

apoptotic genes at this time showed that expression of Bcl-2,

unprocessed Bid and IAP-1 decrease in the TRa1/TRb double

KO mice, while Bax expression was significantly increased;

treatment with 1400W attenuated or even suppressed these

changes. Moreover, 1400W treatment rescued the increased

expression of PCNA and cyclin E at 48 h after PH seen in wild-

types. Together, these results support a role for enhanced NOS

activity in the apoptosis detected in the regenerating liver of TRb
or TRa1/TRb double KO mice at 48 h post-PH.

Discussion

Previous reports described delayed post-PH liver regeneration

in hypothyroid animals [4,28]. Our results confirm these data and

show the same effect in animals lacking TRs, despite the

hyperthyroidism exhibited by these animals. This delay in the

commitment of hepatocytes to proliferation might be related to the

proposed role of T3 in cell-cycle regulation, including activation of

cyclin D1 and enhancement of cell viability [6,7,29,30].

Interestingly, overexpression of TRb by hydrodynamic overload

did not modify the regenerative PH response in WT animals, but

did significantly restore the regeneration in TRb KO mice.

However, in hyperthyroid animals liver apoptosis occurs through a

mechanism that appears to involve TNF-a signaling in the absence

of NF-kB activation [31], a condition clearly absent in animals

overexpressing the receptor TRb in liver.

The first important finding of this study is that the absence of

both TRa and TRb, a condition that suppresses binding of T3

to nuclear liver extracts [17], does not affect post-PH survival

rates, indicating that neither of these genes is required for

regeneration, despite the delay observed in the restoration of

liver mass. Previous reports described anti-apoptotic effects of

that TR activation in hepatocytes [30,32,33] and in other cell

types; for example, pancreatic beta cells and oligodendrocytes

[34,35]. A likely mediator of pro-apoptotic activity in hypothy-

roidism or in the absence of TRs is increased oxidative stress

due to the lack of T3 signaling [36,37,38]. However, this

possibility is discounted by the lack of significant differences in

oxidative stress parameters between the regenerating livers of

WT and TRs KO mice (apparently, the levels of GSH and 8-

oxo-dG are even higher in the KO mice). In contrast, lack of

TR activity increased nitrosative stress, as evidenced by higher

amounts of nitrated proteins and nitrotyrosine in the TR KO

mice. NOS-3 activity was unchanged post-PH, while NOS-2

was transiently overexpressed in TR KO mice with respect to

WT animals. We therefore focused attention on regulatory

molecules that affect these enzymes’ activities [19,20,22]. Basic

Figure 6. ADMA levels decrease after PH of MMI-treated WT mice or TRb KO and TRa+TRb double KO mice. (A) ADMA was determined
in liver extracts at the indicated times after PH. (B) Enzymatic activity and protein and mRNA levels of DDAH I measured in liver extracts at the
indicated times. (C) Total protein levels of FXR (59 kDa) were determined in liver extracts using mitochondrial porin (30 kDa) as control. (D) Hepatic
levels of FXR and mBSEP mRNA after PH, determined by real-time q-PCR. Results show means 6 SD of 4 animals (A–D) or a representative experiment
of 3 (C). *P,0.05, **P,0.001 vs. time-controlled WT. #P,0.01 vs. the condition at time 0.
doi:10.1371/journal.pone.0008710.g006
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and clinical studies indicate that regulation of NOS activity is

pathophysiologically relevant, whether achieved by limiting

arginine transport or direct inhibition by dimethylarginine

derivatives [16,23,24,39,40]. Consistently, elevated ADMA

levels correlate with post-PH liver dysfunction [15,41]. In this

regard, ADMA levels remained stable in the WT group, but

decreased notably in the course of liver regeneration in

hypothyroid and TRs KO animals, offering a possible

explanation for the enhanced NOS activity [23,42,43]. ADMA

is cleared by the action of the liver enzyme DDAH-1

[25,27,39,44]. The higher expression and activity of DDAH-1

in TR KO liver suggests that this enzyme is regulated during

liver regeneration in the TR-deficient mice. DDAH-1 tran-

scription in liver has been proposed to be regulated by FXR

[25]; our finding that FXR expression is modified during liver

regeneration and is significantly higher in TR KO mice

supports a role for this nuclear receptor. This is further

supported by the similar expression profile observed for mBSEP,

a highly FXR-responsive gene [45]. Although pharmacologic

studies modulating FXR activity have not been performed, it is

possible that partial inhibition of FXR in the PH liver of WT

mice might prevent increases in DDAH-1 expression, thereby

maintaining ADMA levels stable.

The scheme shown in Fig. 8 presents a picture of the possible

mechanisms involved in the transient liver apoptosis at 48h after

PH. In the livers of animals lacking TR activity, DDAH-1,

probably regulated by FXR activity, is overexpressed. Conse-

quently, ADMA levels drop, favoring a higher NOS-2/NOS-3

activity in the course of liver regeneration, particularly NOS-2,

which is transiently expressed at this time. Also, it is noteworthy

the observation that transient NOS-2 levels in the TR KO mice

are higher than in the WT counterparts. This associated

overproduction of NO enhances nitrosative stress and promotes

apoptosis.

The question remains as to what causes the delay to the

commitment of cells to the first round of proliferation. Among

other possibilities, the absence of TR activity might contribute to

an altered pattern of cyclin expression, as previously mentioned

[6]. Such an association is not unprecedented: in animals lacking

caveolin 1, hepatocytes are committed more rapidly to the

expression of cyclin E and A, and these cyclins are present in

the nucleus 12 h after PH, accelerating the rate of regeneration; in

WT counterparts these events do not occur before 24 h [46]. An

alternative mechanism relates to the temporal coincidence of

NOS-2 expression, the drop in ADMA levels and the initiation of

S-phase; this raises the possibility that over-activation of NOS-2

kills proliferating hepatocytes by apoptosis. This view is supported

by administration of NO donors or induction of NO production

from a PEPCK-regulated NOS-2 transgene, both of which delay

Figure 7. Inhibition of NOS-2 impairs apoptosis in the remnant
liver of TRa1/TRb double KO mice. Animals were submitted to PH
as described in Fig. 1 and 1400W (20 mg/kg) was administered
intraperitoneally 8 h and 32 h after PH, and analyses were done at
48 h. (A) Apoptosis was determined by TUNEL staining of liver sections,
caspase 3 activity was measured, and hepatic levels of nitrotyrosine
were determined by ELISA. (B) ADMA was measured in liver at 48 h
post-PH. (C) Western blots showing the levels of Bcl-2 (26 kDa), Bax
(21 kDa), intact Bid (26 kDa), IAP-1 (72 kDa), x-IAP (57 kDa), PCNA
and cyclin E in liver extracts obtained at 48 h post-PH. Results show
means 6 SD of 3 animals (A,B) or a representative experiment out of 3
(C). *P,0.05, **P,0.001 vs. the condition in the absence of 1400W.
doi:10.1371/journal.pone.0008710.g007

Figure 8. Possible mechanisms leading to apoptosis in the
regenerating liver of TRa1/TRb double KO mice after PH. Loss of
signaling via TRb, through TR gene deletion or MMI treatment,
promotes a transient increase in FXR levels and activity favoring an
increase in DDAH-1 activity that reduces ADMA levels –a NOS inhibitor-
and promotes the synthesis of higher levels of NO. This enhancement in
the activity of hepatic NOS induces nitrosative stress and promotes
apoptosis. Inhibition of NOS-2 activity with 1400W, a selective inhibitor,
abrogates nitrosative stress in liver and partially prevents apoptosis at
48 h after PH in TRb-targeted mice (Fig. 7).
doi:10.1371/journal.pone.0008710.g008
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expression of cyclin E, D1 and PCNA, postponing the onset of

liver regeneration [19,20]. Interestingly, the apoptosis occurring at

48h (,30% of the cells) is unable to influence the PH survival rate,

highlighting the ability of liver to regenerate after acute injury.

The results presented here provide insight into the protective

effects of thyroid hormones in the regenerating liver, mediated by

preventing nitrosative stress and favoring the initiation of the

proliferative response of the remnant liver. A contribution of

thyroid hormones to the regulation of NOS activity during liver

regeneration was unexpected, and this finding underlines the value

of studying liver regeneration in whole animals. This allows of

identification of the role of metabolites such as dimethylarginine

derivatives in the regulation of NOS-3, involved in the vascular

function, and NOS-2, transiently expressed in the regenerating

hepatocyte. The role of thyroid status in other liver pathologies

deserves further study.
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