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Abstract

Nutrient addition to forest ecosystems significantly influences belowground microbial diver-

sity, community structure, and ecosystem functioning. Nitrogen (N) addition in forests is com-

mon in China, especially in the southeast region. However, the influence of N addition on

belowground soil microbial community diversity in subtropical forests remains unclear. In

May 2018, we randomly selected 12 experimental plots in a Pinus taiwanensis forest within

the Daiyun Mountain Nature Reserve, Fujian Province, China, and subjected them to N addi-

tion treatments for one year. We investigated the responses of the soil microbial communities

and identified the major elements that influenced microbial community composition in the

experimental plots. The present study included three N treatments, i.e., the control (CT), low

N addition (LN, 40 kg N ha-1 yr-1), and high N addition (HN, 80 kg N ha-1 yr-1), and two depths,

0−10 cm (topsoil) and 10−20 cm (subsoil), which were all sampled in the growing season

(May) of 2019. Soil microbial diversity and community composition in the topsoil and subsoil

were investigated using high-throughput sequencing of bacterial 16S rDNA genes and fungal

internal transcribed spacer sequences. According to our results, 1) soil dissolved organic car-

bon (DOC) significantly decreased after HN addition, and available nitrogen (AN) significantly

declined after LN addition, 2) bacterial α-diversity in the subsoil significantly decreased with

HN addition, which was affected significantly by the interaction between N addition and soil

layer, and 3) soil DOC, rather than pH, was the dominant environmental factor influencing

soil bacterial community composition, while AN and MBN were the best predictors of soil fun-

gal community structure dynamics. Moreover, N addition influence both diversity and com-

munity composition of soil bacteria more than those of fungi in the subtropical forests. The

results of the present study provide further evidence to support shifts in soil microbial commu-

nity structure in acidic subtropical forests in response to increasing N deposition.
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Introduction

Industrialization and urbanization have increased the quantity of nitrogen (N) and phospho-

rus entering terrestrial systems [1], especially in China’s warm and humid climatic zones [2].

The annual atmospheric N deposition in China increased from 7.6 to 20 Tg in 1978−2010 [3],

attracting the attention of researchers regard the potential effects of N deposition on terrestrial

ecosystems. Excessive N input negatively impacts the structure and functioning of terrestrial

ecosystems, causing soil acidification [4, 5], decline in tree productivity [6–8], reduced plant

diversity [9, 10], and reduced understory vegetation species richness [11, 12]. N deposition

could also alter ectomycorrhizal fungal [13] and soil bacterial community structure [14, 15].

Soil bacteria and fungi play pivotal roles in terrestrial ecosystems, mediating biogeochemi-

cal processes (e.g., carbon [C] and N cycling) [14, 16] and promoting aboveground plant

health and productivity [2, 17, 18]. Several meta-analyses have examined the effects of N addi-

tion on soil microbial biomass and community composition [19–28]. Overall, simulated N

deposition appears to suppress microbial biomass [2]; however, the effects varied across

biomes. N addition reduced soil microbial biomass C (MBC) in temperate forests and grass-

lands, but significantly increased MBC in tropical/subtropical forests [27]. This increase in

microbial biomass following N addition is thought to be mediated by increasing C or N

resource availability [28].

N addition can also induce changes in soil microbial α-diversity and microbial community

composition [29–31]. In a previous meta-analysis, N additions increased the Shannon indices

and reduced bacterial Chao1 indices, although the effect on soil bacterial richness was greater

than that on fungal richness [28]. Similarly, in a subtropical forest, simulated N deposition sig-

nificantly decreased microbial α-diversity [29, 30, 32]. However, N additions do not always

alter in the evenness and richness of soil bacterial and fungal communities. Short-term N addi-

tion significantly altered soil microbial community structure by increasing fungi/bacteria ratio

(F/B) in tropical/subtropical forest soil, although long-term N addition did not induce such

changes [29, 33]. Nevertheless, some studies have reported no change in the F/B ratio in

response to short-term N enrichment [34], while others have demonstrated that N enrichment

could reduce the F/B ratio in subtropical forests [28, 35]. According to the copiotrophic

hypothesis, increasing N enrichment could decrease the abundance of oligotrophic groups but

increase the abundance of copiotrophic groups [14, 15, 32, 36–38]. Therefore, the effects of N

enrichment on microbial communities are variable, and the mechanisms by which N addition

influence the soil microbial community composition needs to be elucidated.

N addition can influence soil physicochemical properties, which, in turn, influence soil

microbial structure [39]. Numerous studies have explored the major factors that could explain

the changes observed in sensitive soil microbial communities within terrestrial ecosystems fol-

lowing N enrichment [5]. For example, soil pH is considered a key factor influencing soil bac-

terial community composition in terrestrial ecosystems [38, 40]. However, fungal community

composition appears to be less impacted by pH, because fungi usually exhibit a greater range

of optimal pH than that in bacteria [40, 41].

The absolute abundances of major microbial groups present in the soil is positively corre-

lated with soil C and N concentrations [42]. N addition could directly influence soil bacterial

community composition by altering the availability of compounds such as modified ammo-

nium N (NH4
+-N) [5, 28, 43]. Furthermore, soil bacterial community composition could be

influenced by a slight decline in pH caused by an increase in soil NH4
+-N in extremely acidic

soil (pH < 4.5) [5]. Although such mechanisms have been previously studied, few comprehen-

sive studies have examined the wide array of soil physicochemical properties associated with
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changes in bacterial and fungal communities following N enrichment in subtropical forest

ecosystems.

Currently, subtropical forests in Southeast China are experiencing extensive N deposition,

accompanied by signs of N saturation, leading to soil acidification [44]. In the present study,

we investigated the responses of bacterial and fungal communities to N addition and the

underlying mechanisms of such responses. We addressed the following questions in this study:

(1) How do bacterial and fungal communities respond to N additions? (2) How do biotic and

abiotic elements in the soil modulate the responses of bacterial and fungal communities? (3)

What are the potential mechanisms that are responsible for the observed changes in microbial

community structure? We hypothesized that N addition could reduce the bacterial and fungal

diversity, and, thereby alter soil microbial community composition in subtropical forests. We

also hypothesized that soil pH and nutrients would regulate the responses of microbial com-

munities through the direct or indirect effects of N amendments.

Materials and methods

Site description and experimental design

The study area is located in the scenic Jiuxian Mountains within the Daiyun Mountain Nature

Reserve in Dehua County, Fujian Province, in southeast China (118˚06´3–5@E, 25˚42´22–

27@N). The reserve is located in the transition zone between central subtropical and southern

subtropical forests [45]. This nature reserve, which has the southernmost distribution in

China, has the highest degree of biodiversity per unit area in China, and comprises the largest

area of the best preserved natural Pinus taiwanensis community (Fig 1). P. taiwanensis is a

unique alpine tree species in China that plays a valuable role in ecological restoration. The area

is also the largest germ plasm gene pool of P. taiwanensis in China, which are mainly distrib-

uted at an altitude of 1000−1800 m. The climate type is subtropical maritime monsoon climate,

with cold winters and hot summers. The climate can be simultaneously hot and rainy, with

four distinct seasons, mean annual temperature of 20˚C, a mean annual precipitation of 1800

mm, and a mean relative humidity of 80%. The soil is an Ultisol formed from sandstone and

classified as red soil according to Chinese soil classification. Total N deposition in the region is

approximately 38 kg N ha-1 yr-1 [44].

In the P. taiwanensis forest, we randomly selected 12 experimental plots to perform the sim-

ulated N addition treatment in May 2018. No permits were required for the experiments since

this study was part of an on-going collaborative scientific effort with the Daiyunshan Nature

Reserve. All experimental plots are close to the top of the mountain, face the same direction,

and have similar slopes and elevations. In each experimental plot, 12 subplots (10 × 10 m)

were randomly assigned three different levels of N addition, including the control (CT), low N

(LN), and high N (HN) (0, 40, and 80 kg N ha-1 yr-1, respectively), with four replicates for each

N level. Each plot was surrounded by a 5-m wide buffer zone. We used urea [CO(NH2)2] as

the N source, which was added into the experimental plots from March to September every

year. The required amounts of urea were dissolved in 8 L purified water, and CT plots received

an equivalent volume of water without urea.

Soil sampling and analysis

In May 2019, soil samples were randomly collected from 5−8 cores at depths of 0−10 cm (top-

soil) and 10−20 cm (subsoil) from each plot after removing the surface litterfall. Soil samples

were passed through a 2-mm sieve after removing the litter, roots, and stones, and divided into

three parts. One portion of each sample was immediately processed to measure soil moisture

content (SMC), mineral N, and dissolved organic C (DOC), and then stored at -80˚C for the
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soil molecular biology analyses. Another portion was air-dried for soil physicochemical

parameter analyses. The air-dried soil portion was passed through a 0.149-mm sieve to mea-

sure total soil C and N.

Soil pH was determined using a glass electrode (STARTER 300; OHAUS, USA). Samples

were shaken for 0.5 h in a 1:2.5 soil:water solution (w/v). Soil moisture content was assessed

following oven-drying for 48 h at 105˚C to constant mass. The soil organic C (SOC) to total N

ratio (C:N) was measured using an elemental analyzer (Elementar Vario EL III; Elementar,

Langenselbod, Germany). Total P content was determined after digesting the samples with

H2SO4 and HClO4 (at a 4:1 ratio) using a continuous flow analyzer (Skalar san++, Skalar,

Breda, Netherlands). After 2 M KCl extracts of fresh soil samples were prepared, soil

Fig 1. Study site location. (A) Map of China. (B) Map of Fujian Province. (C) Map of Dehua county. The blue pentagram is the

sampling area.

https://doi.org/10.1371/journal.pone.0246263.g001
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suspensions were centrifuged at 4000 rpm for 10 min, filtered through Whatman 42 filter

papers, and analyzed for NH4
+-N and NO3

—N using the Continuous Flow Analytic System

(Skalar san++; Skalar, Breda, the Netherlands). Available N (AN) was calculated as the sum of

ammonium-N and nitrate-N. DOC was extracted with deionized water in a 1:4 soil:water solu-

tion (w/v) by shaking for 0.5 h, centrifuging at 4000 rpm for 0.5 h, and then filtering through

0.45-μm Millipore filters. The extracts were analyzed on a TOC-VCPH/CPN analyzer (Ele-

mentar Analysensysteme GmbH, Germany) to determine the DOC concentrations. The soil

cation exchange capacity (CEC) was measured using the ammonium acetate method [46].

Soil MBC and N (MBN) were measured using the chloroform-fumigation extraction

method [47]. The correction factor of MBC was 0.38 [48], while that of MBN was 0.45 [49].

Quantitative PCR (qPCR) analysis of soil microbial abundance

Soil DNA was extracted from 0.25-g soil samples using PowerSoil DNA Isolation Kit (MoBio

Laboratories, Carlsbad, CA) according to the manufacturers instruction. Genomic DNA purity

and quality were checked on 0.8% agarose gels. The quantitative PCR (qPCR) method was

used to measure the relative abundance of the bacterial 16S rDNA genes and fungal internal

transcribed spacers (ITS) that were amplified using the primers detailed in S1 Table [50].

For each soil sample, a 10-digit barcode sequence was added to the 5´ end of the forward

and reverse primers (provided by Allwegene Company, Beijing). PCR was carried out on a

Mastercycler Gradient (Eppendorf, Germany) using 25-μl reaction volumes, containing

12.5 μl 2× Taq PCR MasterMix, 3 μl bovine serum albumin (2 ng μl-1), 2-μl primers (5 μM), 2-

μl template DNA, and 5.5-μl ddH2O. The cycling parameters were as follows: 94˚C for 5 min,

followed by 30 cycles of 94˚C for 30 s, 55˚C for 30 s, and 72˚C for 30 s, with a final extension at

72˚C for 10 min. Three PCR products per sample were pooled to mitigate reaction-level PCR

biases. PCR products were purified using a QIAquick Gel Extraction Kit (QIAGEN, Germany)

and quantified using real time PCR. The fungal-to-bacterial (F/B) ratio was calculated using

the 16S rDNA and ITS gene copy numbers.

Illumina Miseq sequencing and bioinformatics analysis

Deep sequencing was performed on a Miseq platform at Allwegene Company (Beijing). After

the run, image analysis, base calling, and error estimation were performed using Illumina

Analysis Pipeline v2.6 (Illumina, San Diego, CA, US).

Raw data were first split based on barcodes and then screened. Sequences were removed from

consideration if they were shorter than 200 bp, had a low-quality score per sequence (� 20), con-

tained ambiguous bases, or did not exactly match the primer sequences and barcode tags. The

data were split then overlapped and spliced using PEAR (Paired-End read merger) software.

Qualified reads were separated using the sample-specific barcode sequences and trimmed with

Illumina Analysis Pipeline Version 2.6, while chimeras were removed. Subsequently, the dataset

was analyzed using QIIME v1.8.0 (http://qiime.org). Sequences were clustered into operational

taxonomic units (OTUs) at a similarity level of 97% [51] to generate rarefaction curves and to cal-

culate the richness and diversity indices. The ribosomal database project classifier tool (release

10.3) was used to classify all sequences into different taxonomic groups [52].

Statistical analysis

All data are presented as means in the tables and figures. Statistical analyses were performed

using IBM SPSS Statistics 20 (IBM Corp., Armonk, NY, US), and data were tested for normal-

ity and homoscedasticity before statistical analyses. One-way analysis of variance (ANOVA)

was used to determine the differences in soil properties and soil microbial parameters, and
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multiple comparisons were conducted using the least significant difference (LSD) test at

p< 0.05. Moreover, correlation analysis was performed with the Pearson’s test (two-tailed) at

two significance levels, i.e., p< 0.05 and p< 0.01.

To examine similarity between different samples, we used clustering and Principal Compo-

nents Analysis (PCA) on the OTUs from each sample in R [53]. We used PCA because it is

suitable for ordination using only species composition, and is an unconstrained method. The

evolutionary distances between microbial communities from each sample were calculated

using the Tayc coefficient and represented as an unweighted pair group method with arithme-

tic mean (UPGMA) clustering tree describing the dissimilarity (1—similarity) between multi-

ple samples [54]. Multivariate statistical analysis, known as linear discriminant analysis (LDA),

was performed to calculate the effect sizes in order to identify the species with significant dif-

ferences in abundance among the soil samples.

Two-way ANOVA was used to compare the results in the soil fractions (topsoil and subsoil)

and fertilizer treatments. Pearson’s correlation analysis was performed to assess the relation-

ships between soil properties and microbial α-diversity indices. Chao1, Simpson, Shannon,

phylogenetic diversity whole tree (PD whole tree), and observed species indices were calcu-

lated using QIIME v1.8.0 to estimate the α-diversity levels. Partial least squares discriminant

analysis (PLS-DA), which is a multivariate statistical analysis method for discriminant analysis,

estimated the β-diversity in soil bacterial and fungal communities. Pearson’s correlation analy-

sis was used to address the relationships among soil properties, microbial abundance, and

microbial biomass. In all tests, a p< 0.05 was considered statistically significant. To identify

the relationship between changes in the soil microbial community composition and soil envi-

ronmental factors, redundancy analysis (RDA) and Mantel test analysis were performed using

CANOCO 5.0 (Ithaca, NY, USA) and R (3.6.2), respectively.

Results

Responses of soil properties and microbial biomass to nitrogen additions

Among the soil physicochemical properties we examined, soil pH, SMC, CEC, SOC, total N

(TN), TP, and C:N were not affected by N additions (Table 1). Meanwhile, soil NO3
—N

Table 1. Responses of physicochemical properties of soil at different depths to nitrogen addition in the Daiyun Mountain Nature Reserve in southeastern China.

Topsoil (0–10 cm) Subsoil (10–20 cm)

CT LN HN p CT LN HN p

pH 4.22(0.04) 4.32(0.05) 4.35(0.10) 0.43 4.57(0.04) 4.6(0.03) 4.58(0.03) 0.80

SMC (%) 74(9.29) 66(3.20) 59(3.60) 0.31 41(2.53) 39(4.02) 39(3.77) 0.92

CEC (cmol kg-1) 12.58(2.27) 9.47(1.83) 10.63(0.97) 0.49 12.27(1.65) 8.61(0.69) 8.79(0.90) 0.09

NH4
+ (mg kg-1) 74.28(8.22)a 51.23(2.91)b 62.77(5.42)ab 0.06 30.32(3.98)a 16.19(3.55)b 29.61(3.05)a 0.02

NO3
- (mg kg-1) 4.80(1.56)b 5.69(1.60)ab 9.65(0.89)a 0.07 6.22(0.29) 5.49(0.72) 6.45(0.55) 0.47

AN (mg kg-1) 79.08(7.28)a 56.92(7.79)b 72.42(10.25)ab 0.03 36.54(4.23)a 21.68(2.97)b 36.06(2.80)a 0.04

DOC (mg kg-1) 325.75(46.54)a 245.37(11.86)ab 206.87(18.36)b 0.05 63.92(7.84)a 46.07(4.38)ab 28.51(4.56)b 0.01

SOC (g kg-1) 55.73(2.68) 55.99(4.41) 47.02(3.16) 0.17 26.25(2.96) 27.27(3.92) 30.98(3.77) 0.63

TN (g kg-1) 4.06(0.47) 3.75(0.36) 3.12(0.19) 0.22 1.81(0.21) 1.62(0.24) 2.20(0.27) 0.27

TP (g kg-1) 0.25(0.03) 0.22(0.02) 0.25(0.01) 0.51 0.17(0.02) 0.14(0.01) 0.19(0.03) 0.21

C:N 14.98(0.50) 15.01(0.40) 15.11(0.64) 0.98 14.55(0.09) 14.82(1.11) 14.11(0.58) 0.75

MBC 543.98(45.42) 682.61(119.04) 616.18(127.69) 0.66 283.83(53.21) 360.33(98.88) 437.41(59.25) 0.38

MBN 97.09(6.09)c 201.99(8.58)a 145.27(9.75)b 0.00 50.31(13.23) 61.78(9.67) 81.91(7.73) 0.15

The mean values of soil properties in control (CT), low (LN), and high (HN) nitrogen addition treatments in topsoil (0–10 cm) and subsoil (10–20 cm) soil samples are

shown. Different letters represent significant differences (one-way ANOVA, p < 0.05, LSD post hoc analysis) between different levels of nitrogen addition.

https://doi.org/10.1371/journal.pone.0246263.t001
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concentration in the topsoil ranged from 4.8 mg kg-1 in the CT plots to 9.65 mg kg-1 in the HN

plots, and increased significantly under high-N addition, while soil NH4
+-N concentration in

the topsoil ranged from 74.28 mg kg-1 in the CT plots to 51.23 mg kg-1 in the LN plots and

decreased significantly under LN treatments. Furthermore, LN addition reduced soil AN con-

centration and HN addition reduced soil DOC concentration in both the topsoil and the sub-

soil (p< 0.05). However, changes in MBN in response to N addition were only observed in the

topsoil, while N addition did not affect MBC in the topsoil or the subsoil.

Bacterial and fungal abundances were determined by quantification of copy numbers of

bacterial 16S rDNA or fungal ITS using qPCR. The highest number of 16S rDNA gene copies

in both the topsoil and the subsoil were observed in the LN plots, while the lowest numbers

were observed in the topsoil and the subsoil of the HN plots (S2 Table). F/B values were greater

in the topsoil than in the subsoil (S2 Table). Additionally, F/B values were positively correlated

with soil MBN (R2 = 0.58, p< 0.01) and NO3—N (R2 = 0.51, p< 0.05) levels, and negatively

correlated with soil pH values (R2 = -0.61, p< 0.01) (S3 Table).

Effects of N addition on bacterial and fungal diversity

Overall, 3,760 OTUs were obtained from 1,185,330 high quality and chimera-free clean tags by

Miseq sequencing of 16S rDNA gene amplicons, with an average of 19,719−89,416 clean tags

per sample. Similarly, 4,584 OTUs were obtained from a total of 1,171,127 high quality and

chimera-free clean tags by Miseq ITS sequencing, with an average of 23,183−86,895 clean tags

per sample. The rarefaction curves showed that these are reasonable amounts of sequencing

data (S1A and S1B Fig) with a Good’s coverage of 97.13−98.75%, which indicated that

sequence reads were sufficient to capture the bacterial and fungal α-diversity (S4 Table).

Soil bacterial and fungal α-diversity was affected differently by N addition between the top-

soil and the subsoil (Table 2; S5 Table). N addition decreased bacterial α-diversity (Chao1,

observed species, PD whole tree, Shannon indices) in the subsoil of the HN plots relative to

that of the CT plots (S5 Table; p< 0.05). However, bacterial richness indices, including

Chao1, observed species, and PD whole tree, in samples of the topsoil of LN plots were all

Table 2. Effects of nitrogen deposition, soil layer, and their interactions on soil bacterial (B) and fungal (F) α diversity analyzed by two-way ANOVA.

Diversity indices Soil layer Nitrogen treatment Interaction

F p F p F p

B_Chao1 2.98 0.10 2.69 0.09 1.22 0.32

B_goods_coverage 3.17 0.09 4.60 0.02� 0.72 0.50

B_observed_species 2.02 0.17 1.66 0.22 3.54 0.05�

B_PD_whole_tree 0.001 0.97 1.57 0.24 5.80 0.01��

B_Shannon 9.37 0.007�� 0.70 0.51 5.67 0.01��

B_Simpson 11.85 0.003�� 0.37 0.70 3.51 0.05�

F_Chao1 24.24 0.00��� 1.39 0.27 1.65 0.22

F_goods_coverage 23.8 0.00��� 3.58 0.04� 1.14 0.34

F_observed_species 12.85 0.002�� 1.10 0.36 1.48 0.25

F_PD_whole_tree 13.14 0.002�� 1.10 0.35 1.81 0.19

F_Shannon 1.33 0.263 0.05 0.95 0.76 0.48

F_Simpson 1.31 0.267 0.35 0.71 0.67 0.52

�p < 0.05

��p < 0.01

���p < 0.001.

https://doi.org/10.1371/journal.pone.0246263.t002
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slightly higher than in those of the topsoil of CT and HN plots, though the differences were

not statistically significant (p> 0.05) (S5 Table). The interaction between N addition and soil

layer significantly affected α-diversity of bacteria (observed species, PD whole tree, Shannon,

and Simpson) (Table 2). The fungal α-evenness (Shannon, Simpson) and α-richness indices

(Chao1 and PD whole tree), were significantly higher in the topsoil than in the subsoil. How-

ever, the indices declined in the topsoil but increased in the subsoil with N addition (S5 Table).

Pearson’s correlation coefficients indicated that soil microbial α-diversity was correlated

with soil properties (Fig 2A & 2B). Changes in soil bacterial α-diversity (Shannon and Simpson

index) induced by N addition were most closely related to soil pH (R2 = -0.47, p< 0.05; R2 =

-0.49, p< 0.05) and NO3
—N, with a strong positive correlation with NO3

—N (R2 = 0.47,

p< 0.05; R2 = 0.40, p< 0.05) observed. Changes in soil bacterial α-richness (Chao1 index)

exhibited negative and positive correlations with soil pH and SOC, respectively (R2 = -0.44,

p< 0.05; R2 = 0.44, p< 0.05). However, it was weakly correlated with C:N, CEC, TP, and AN.

The pH of the soil was negatively correlated with fungal Chao1, observed species, and PD

whole tree indices, and positively correlated with the Good’s coverage index (p< 0.01). Soil

properties (SMC, NH4
+, AN, SOC, TN, DOC) exhibited significant positive correlations with

fungal diversity indices (Chao1, observed species, PD whole tree), while they exhibited a nega-

tive correlation with Good’s coverage index (p< 0.01). However, the correlations between

Shannon and Simpson indices, and soil properties, were weak. Moreover, PLS-DA, which esti-

mates the distances among multiple samples (β-diversity), revealed that soil bacterial and fun-

gal communities differed significantly among N addition treatments (S2A–S2D Fig).

Relative abundance of dominant microbial taxa and species variation

The relative abundances of dominant bacterial and fungal phyla in the topsoil and subsoil are

shown in Fig 3. The variation in bacterial and fungal species under different treatments is illus-

trated in S3 Fig in cladograms constructed based on LDA analysis.

In LN plots, the bacterial phyla of Proteobacteria, Acidobacteria, and Actinobacteria consti-

tuted 80.25% and 74.22% of the total sequences in the topsoil and the subsoil, respectively, fol-

lowed by Firmicutes (3.47% and 2.2%, respectively), Planctomycetes (4.3% and 6.62%,

respectively), and Chloroflexi (3.23% and 8.24%, respectively). In the HN plots, the bacterial

phyla of Proteobacteria, Acidobacteria, and Actinobacteria constituted 76.95% and 77.25% of

the total sequences in the topsoil and subsoil, respectively, followed by Firmicutes (4.89% and

0.74%, respectively), Planctomycetes (4.22% and 5.97%, respectively), and Chloroflexi (2.87%

and 9.62%, respectively) (Fig 3). Among fungi, the phylum Ascomycota was the most abundant

in the LN plots, constituting 46.9% and 43.29% of the sequences in the topsoil and the subsoil,

respectively. Basidiomycota (41.8% and 37.5%, respectively) were also present in both soil lay-

ers. In the HN plots, Ascomycota (50.09% and 39.59%, respectively) and Basidiomycota (37.5%

and 51.65%, respectively) were the most abundant phyla in the topsoil and the subsoil (Fig 3).

The relative abundance of the bacterial phyla Firmicutes and Chloroflexi increased with an

increase in N addition, especially in the HN plots. At the class level, six groups varied with N

addition. These include Subgroup 2 and Acidobacteria from phylum Acidobacteria, Ktedono-

bacteria and JG37-AG-4 from phylum Chloroflexi, Clostridia from phylum Firmicutes, and

Acidimicrobiia from phylum Actinobacteria (S3A Fig).

Two fungal families exhibited changes in abundance levels in both soil layers after N addi-

tion. One was the family Myxotrichaceae, from phylum Ascomycota, and the other was

unidentified. At the genus level, the relative abundance of Oidiodendron and Cortinarius,

belonging to the Ascomycota and Basidiomycota phyla, respectively, were significantly

decreased in both soil layers of HN plots (S3B Fig).
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Bacterial and fungal community structure and correlations with

environmental parameters

The results of two-dimensional RDA carried out at the OTU level (Fig 4) indicated that soil

DOC was the most important parameter influencing soil bacterial community composition,

and their relationship was closely correlated with the first RDA axis (Fig 4A).

RDA also revealed that soil AN and MBN from the first two constrained axes explained

36.92% of the variation in the fungal community, with the first and second axes explaining

Fig 2. Pearson’s correlation coefficients between soil properties and soil bacterial (A) and fungal (B) α-diversity. α-diversity

indices include Chao1, good coverage, observed species, PD whole tree, Shannon, and Simpson indices; SMC represents soil

moisture content, CEC represents cation exchange capacity, SOC represents soil organic carbon, TN represents total nitrogen, TP

represents total phosphorus, CN ratio represents the carbon:nitrogen ratio, and DOC represents dissolved organic carbon.

https://doi.org/10.1371/journal.pone.0246263.g002
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24.54% and 12.38% of the variation, respectively. Moreover, RDA clearly showed that the soil

AN and MBN concentrations were the most significant contributors to the variation in fungal

communities (p< 0.01).

The Mantel test analysis of soil physicochemical properties and microbial community

structure revealed that soil bacterial community structure was not significantly related to most

parameters of the topsoil and the subsoil. However, bacterial community structure was signifi-

cantly correlated with SMC in the subsoil (p< 0.01), and fungal community structure was sig-

nificantly correlated with MBN as well as AN in the topsoil, which were consistent with the

RDA results (Table 3).

Discussion

Effect of nitrogen addition on bacterial and fungal gene abundance and

diversity

Previous studies have showed that N enrichment has positive [55, 56], neutral [47, 57], or neg-

ative [58, 59] impacts on soil microbial biomass (MBC/MBN) in tropical or subtropical forest

ecosystems. Several studies have also reported that the F/B ratio increases in tropical or sub-

tropical forest ecosystems under short-term N enrichment [33, 59, 60]. However, a recent

meta-analysis illustrated that N enrichment enhanced MBC and reduced F/B in tropical or

subtropical forests [28]. This suggests that there is no overall consensus regarding the effects of

N addition on soil microbial diversity and biomass. In the present study, MBN was signifi-

cantly increased by N addition (Table 1; p< 0.01). As soil microbes are mainly C limited [61],

an increase in labile C input is expected to multiply microbial biomass. Hence, owing to CN

coupling, the increase in MBN in our study is consistent with such expectations.

Previous studies have also demonstrated that N addition decreases microbial abundance

and diversity [5, 24, 27, 38, 62]. In contrast, bacterial and fungal abundances in the present

study were increased in the LN plots, although the increases were not significant. However,

bacterial abundance estimated based on copy numbers of 16S rDNA and fungal abundance

Fig 3. Relative abundance of dominant phyla of bacteria and fungi in the topsoil and subsoil under different N addition treatments. Control treatment in topsoil is

represented by CT_A, low nitrogen addition in topsoil is represented by LN_A, high nitrogen addition in topsoil is represented by HN_A; control treatment in subsoil is

represented by CT_B, low nitrogen addition in subsoil is represented by LN_B, and high nitrogen addition in subsoil is represented by HN_B.

https://doi.org/10.1371/journal.pone.0246263.g003
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estimated based on ITS gene copy numbers were reduced in the HN plots, which is consistent

with the findings of recent studies [27, 63, 64]. Pearson’s correlation analysis revealed that the

abundance of bacterial 16S rDNA gene and the F/B ratio were strongly correlated with soil pH

in the present study, suggesting that soil pH may be a key factor influencing microbial diversity

(S3 Table). Bacterial abundance was considerable influenced by edaphic pH, potentially due to

the low tolerance of most bacterial groups to variation in pH (mostly within 4−7 pH) [27, 31,

40, 65]. Soil parameters that can be drastically affected by C and N supply to the soil play a

vital role in determining soil bacterial diversity in global terrestrial ecosystems [66, 67]. Previ-

ous studies have shown that soil pH is a major factor influencing microbial diversity in ecosys-

tems [35, 42, 68, 69]. However, in the present study, DOC exerted the strongest effect on soil

bacterial and fungal diversity (Fig 2), and AN significantly affected soil fungal diversity. Addi-

tionally, bacterial 16S rDNA gene abundance was closely related to AN, suggesting that N

availability is a major factor regulating the abundance of soil bacteria [5, 70, 71].

Influence of nitrogen addition on bacterial and fungal community

structure

In the present study, high-throughput sequencing analysis revealed that Acidobacteria, Proteo-

bacteria, Actinobacteria, Firmicutes, and Chloroflexi are the dominant bacterial phyla present

in the soils of tropical/subtropical forests, consistent with results from previous studies [5, 72].

The relative abundance of Proteobacteria and Actinobacteria decreased in the topsoil of the

LN and HN plots compared to in the controls, while that of Acidobacteria and Chloroflexi

increased upon N addition. These findings are not consistent with the copiotrophic hypothesis

Fig 4. Redundancy discriminate analysis (RDA) plots illustrating the relationships between the dominant

bacterial (A) and fungal (B) phyla and soil physicochemical properties and microbial biomass.

https://doi.org/10.1371/journal.pone.0246263.g004

Table 3. Mantel test analysis of soil physicochemical properties and soil microbial biomass and community composition in topsoil and subsoil under different

nitrogen addition treatments.

environment variable Topsoil (0–10 cm) Subsoil (10–20 cm)

Bacterial community

composition

Fungal community

composition

Bacterial community

composition

Fungal community

composition

r p r p r p r p

pH 0.005 0.378 0.162 0.165 -0.186 0.930 -0.063 0.700

SMC -0.046 0.475 0.295 0.112 0.4382 0.010�� 0.101 0.256

NH4
+-N -0.137 0.784 0.253 0.093 0.016 0.424 0.127 0.238

NO3
--N 0.004 0.448 0.202 0.139 0.217 0.136 -0.136 0.739

AN -0.048 0.543 0.307 0.041� 0.145 0.206 0.105 0.301

DOC -0.155 0.738 0.207 0.130 0.1401 0.253 -0.130 0.684

SOC 0.016 0.380 0.295 0.096 0.201 0.130 -0.122 0.761

TN 0.033 0.351 0.383 0.080 0.222 0.160 -0.129 0.722

TP -0.187 0.853 -0.076 0.572 0.112 0.250 -0.149 0.736

MBC -0.013 0.449 0.070 0.299 -0.148 0.821 -0.207 0.913

MBN -0.142 0.853 0.306 0.018� -0.206 0.878 0.349 0.049�

SMC, soil moisture content; CEC, soil cation exchange capacity; NH4+-N, ammonium N; NO3—N, nitrate N; AN, available N; DOC, dissolved organic carbon; SOC,

soil organic carbon; TN, total nitrogen; TP, total phosphorus; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen.

�p < 0.05

��p < 0.01.

https://doi.org/10.1371/journal.pone.0246263.t003

PLOS ONE Nitrogen addition influences microbial community structure via nutrient availability

PLOS ONE | https://doi.org/10.1371/journal.pone.0246263 February 23, 2021 12 / 20

https://doi.org/10.1371/journal.pone.0246263.g004
https://doi.org/10.1371/journal.pone.0246263.t003
https://doi.org/10.1371/journal.pone.0246263


as advocated by Fierer et al. [71]. However, the relative abundance of Proteobacteria and Acti-

nobacteria increased in the subsoil of HN plots compared to those of the controls, while that of

Acidobacteria and Firmicutes decreased upon N addition. Our results with regard to the rela-

tive abundance of different phyla in the subsoil (10−20 cm) are consistent with the copio-

trophic hypothesis. Moreover, no apparent divergence was observed in the relative abundance

of Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Verrucomicrobia, Firmicutes,

and Planctomycetes between the LN and HN plots. This may be explained by the fact that soil

pH remained at around 4.22−4.35 in the topsoil (Table 1), and most microbes are inhibited

when pH is below 4.5 [73–75]. Since short-term N addition did not cause significant soil acidi-

fication in our experiment, we may conclude that pH was not the major factor regulating soil

microbial community structure in the present study.

Actinobacteria and Proteobacteria are known to display more rapid growth rates under

high C availability conditions, while Acidobacteria are oligotrophic bacteria that exist in nutri-

ent-deficient and strongly acidic environments, and are capable of degrading recalcitrant and

complex C compounds [76]. Zhang et al. [66] reported high Acidobacteria abundance under

very low SOC conditions (2.66 g kg-1). In addition, Acidobacteria have been reported to

exhibit negative correlations with soil C availability [37]. The Ktedonobacteria is a distinctive

class of prokaryotes that exhibits morphology similar to actinomycetes, and is thought partici-

pate in C cycling. The Ktedonobacteria class of bacteria was first reported by Cavaletti et al.

[77], and classified within the phylum Chloroflexi [78], which is a diverse group of bacteria.

The class Acidimicrobiia belongs to the phylum Actinobacteria, which plays a pivotal role

in the soil nutrient cycle by generating extracellular enzymes and forming symbiotic interac-

tions with plants [79–81]. These extracellular enzymes can decompose plant litter, thus regu-

lating C availability in the soil [82]. Several bacterial groups isolated from Actinobacteria also

have a capacity to fix N and remove P from the soil [82–84]. Fungal communities are less

affected by N addition than bacterial communities are, potentially because bacteria exhibit

more copiotrophic characteristics [15, 29]. Soil fungal communities are a functionally diverse

groups [85] that mediate numerous ecological processes and influence plant growth and soil

health [86, 87]. ITS sequencing analysis results indicated that Ascomycota and Basidiomycota

were the dominant fungal phyla in the acidic forest soil, supporting the copiotrophic hypothe-

sis. Since soil nutrients decrease with an increase in soil depth, the relative abundance of Basi-

diomycota, which is the representative phylum of oligotrophic taxa, was lower than that of

Ascomycota in the topsoil (Fig 3). Previous studies have shown that N addition enhances the

relative abundance of copiotrophic phyla such as Ascomycota and reduces that of oligotrophic

phyla such as Basidiomycota, which is consistent with the prediction of the copiotrophic

hypothesis [34, 88–90]. The family Myxotrichaceae and the genus Oidiodendron participate in

the decomposition of cellulose [91]. Although no significant impact of N addition on the soil

fungal community structure was observed (Fig 3), RDA and Mantel test analysis results

revealed that soil fungal community composition was related to AN and MBN in the soil (Fig

4, Table 3). The results suggest that N addition potential affects species diversity directly via

increase of N availability.

Other physicochemical properties may also influence soil microbial community structure.

For example, RDA analysis results suggested that soil bacterial community composition was

significantly related to DOC concentrations, but not significantly correlated with soil pH in

the subtropical acidic forests (Fig 4A). DOC is the most preferred nutrient by the vast majority

of bacteria. Urea is the primary mode of N application, and its hydrolysis can consume H+ and

increase pH. NH4
+ is often formed after urea is applied to the soil, which counteracts the H+

enrichment caused by NO3
- leaching; this may why soil pH remained unchanged after short-

term N application in the present study. N addition could also influence soil microbe structure
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indirectly by altering soil C availability, C:N, and soil pH [19, 92]. When N addition accelerates

C consumption, C supply becomes a limiting factor and the rate of lignin decomposition

reduces [93]. This leads to a decline in C storage in the soil, which facilitates the metabolic

activities of other heterotrophic microorganisms [94]. According to the concept of resource

allocation, adequate N supply can activate C-related microbial growth, resulting in the rapid

putrefaction of plant cellulose-rich litter [30, 95, 96]. The N saturation hypothesis proposes

that N addition may diminish the microbial demand for additional N in terrestrial ecosystems,

resulting in C or P limitation for soil microorganisms [97–99]. RDA and Mantel test analysis

results showed that soil fungal community composition was correlated with soil AN and MBN

(p< 0.01) (Fig 4B, Table 3), probably due to the dominant role of fungi in the rapid minerali-

zation of N as well as microbial retention of available N [100, 101].

In the present study, PLS-DA results demonstrated that fungi and bacteria inhabited dispa-

rate ecological niches and were partitioned across different treatments (S2 Fig). We believe

that shifts in available C and N, rather than the alteration of soil pH, caused the changes in

microbial diversity in response to N addition. The finding is consistent with those of recent

studies showing that nutrient availability is mainly responsible for the responses of the soil

microbial community structure to N addition [24, 25, 102].

Conclusion

Overall, in the present study, we showed that the composition, and diversity of soil bacterial

and fungal communities were weakly influenced by short-term N addition. High-N addition

reduced soil bacterial diversity in the subsoil and increased the relative abundance of oligotro-

phic bacteria in the soils of extremely acidic subtropical forests. Notably, N addition had posi-

tive impacts on some bacterial groups (e.g., Ktedonobacteria and Acidobacteria) involved in C

cycling. Soil microbial community composition was also associated with soil physicochemical

properties such as DOC, AN, NH4
+, and NO3

-. N addition influence soil microbial community

structure mainly by increasing nutrient availability rather than via edaphic acidification. Soil

microbes are critical components of biogeochemical cycles, and possess the capacity to trans-

form soil nutrients (non-available N and C) into usable forms (available N and C). Microbial

community responses to N addition are long-lived and gradual processes, which may vary

over time. Hence, the effects of chronic N addition on microbial communities and their inter-

actions with biogeochemical cycles in such subtropical forest ecosystems should be examined

further. Moreover, studies on the effects of N addition on biogeochemical cycles would also

greatly benefit from linking such functions with microbial community structure.
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treatments. The variation in community composition was determined based on the abundance
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