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Abstract

Many proteins exist in natures as oligomers with various quaternary structural attributes

rather than as single chains. Predicting these attributes is an essential task in computational

biology for the advancement of proteomics. However, the existing methods do not consider

the integration of heterogeneous coding and the accuracy of subunit categories with limited

data. To this end, we proposed a tool that can predict more than 12 subunit protein oligo-

mers, QUATgo. Meanwhile, three kinds of sequence coding were used, including dipeptide

composition, which was used for the first time to predict protein quaternary structural attri-

butes, and protein half-life characteristics, and we modified the coding method of the func-

tional domain composition proposed by predecessors to solve the problem of large feature

vectors. QUATgo solves the problem of insufficient data for a single subunit using a two-

stage architecture and uses 10-fold cross-validation to test the predictive accuracy of the

classifier. QUATgo has 49.0% cross-validation accuracy and 31.1% independent test accu-

racy. In the case study, the accuracy of QUATgo can reach 61.5% for predicting the quater-

nary structure of influenza virus hemagglutinin proteins. Finally, QUATgo is freely

accessible to the public as a web server via the site http://predictor.nchu.edu.tw/QUATgo.

Introduction

A considerable number of proteins actually consist of numerous polypeptide chains assembled

together. That is, rather than existing as individual chains, a large number of proteins take the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0232087 April 29, 2020 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Tung C-H, Chien C-H, Chen C-W, Huang

L-Y, Liu Y-N, Chu Y-W (2020) QUATgo: Protein

quaternary structural attributes predicted by two-

stage machine learning approaches with

heterogeneous feature encoding. PLoS ONE 15(4):

e0232087. https://doi.org/10.1371/journal.

pone.0232087

Editor: Mingyang Lu, Jackson Laboratory, UNITED

STATES

Received: July 26, 2019

Accepted: April 7, 2020

Published: April 29, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0232087

Copyright: © 2020 Tung et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: QUATgo is freely

accessible to the public as a web server via the site

at http://predictor.nchu.edu.tw/QUATgo.

http://orcid.org/0000-0002-7232-312X
http://orcid.org/0000-0002-5525-4011
http://predictor.nchu.edu.tw/QUATgo
https://doi.org/10.1371/journal.pone.0232087
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232087&domain=pdf&date_stamp=2020-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232087&domain=pdf&date_stamp=2020-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232087&domain=pdf&date_stamp=2020-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232087&domain=pdf&date_stamp=2020-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232087&domain=pdf&date_stamp=2020-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232087&domain=pdf&date_stamp=2020-04-29
https://doi.org/10.1371/journal.pone.0232087
https://doi.org/10.1371/journal.pone.0232087
https://doi.org/10.1371/journal.pone.0232087
http://creativecommons.org/licenses/by/4.0/
http://predictor.nchu.edu.tw/QUATgo


form of oligomers in vivo, with these oligomers having a variety of quaternary structural char-

acteristics. These oligomers serve as the structural bases for a range of biological functions,

including ion-channel gating, allosteric mechanisms, and various cooperative effects [1]. The

oligomers have a fourth-level structure termed the quaternary structure, even as the majority

of proteins only consist of a primary structure (i.e., an amino acid sequence), a secondary

structure (i.e., alpha-helices and beta-sheets), or a tertiary structure such as a structure with

three-dimensional folding). In any case, the term “quaternary structure” refers to both the

number of protein subunits and the arrangement of those subunits with one another. Ion

channel proteins, hemoglobin, and DNA polymerase are just a few examples of proteins that

have quaternary structures [2]. As indicated above, the protein quaternary structure is itself

composed of more than one tertiary structure, with the quaternary structure being part of the

protein’s overall three-dimensional structure, and X-ray crystallography or NMR studies can

be used to determine a given quaternary structure. Relatedly, in the field of structural bioinfor-

matics, the prediction of the quaternary structural characteristics of proteins plays a critical

role.

As far as we know, the earliest experiments to study the type of protein quaternary structure

were in 2001 [3]. In a study in 2003, Garian et al. and Zhang et al. [4] used a support vector

machine (SVM) as a classifier to identify whether an unknown sequence was a homo-dimer by

using the random amino acid composition and integrating the AAindex as a feature to predict

the quaternary structure of proteins. These studies confirmed the importance of protein sec-

ondary structure for quaternary structures, and Zhang et al. also used virtual PseAAC to

improve the accuracy of quaternary structure prediction. Then, in 2006, Shi et al. [5] predicted

homo-oligomers based on the amino acid composition distribution, also known as AACD,

and proposed a two-dimensional principal component analysis. A good method called

2DPCA can effectively solve high-dimensional special vectors. Levy proposed the PiQSi data-

base, which took 15,000 annotated protein quaternary structure sequences from the PDB as a

benchmark dataset to test the accuracy of different methods for predicting the quaternary

structure of proteins [6]. In 2009, Xiao et al. proposed a 2-layer predictor to predict protein

quaternary structure and constructed a prediction website called Quat-2L [7]. In recent years,

Shen et al. have also proposed coding methods based on functional domain composition [1].

Protein functional domains are related to molecular evolution. Such domains are used as

building blocks and reorganized in different arrangements to regulate protein function. Pro-

teins usually consist of multiple functional domains, so we define the conserved domain as a

repeat unit in molecular evolution, and its range can be determined by sequence and structure

analysis. If the protein sequence has similar functional domains, it may represent an evolution-

arily relationship [8, 9]. Comparing similarities can be performed with RPS-BLAST through

the Conserved Domain Database (CDD) [10]. This method has also been confirmed to

improve the accuracy of predicting quaternary structures, but the disadvantage is that some

proteins may not match the functional domains in the database. This may be caused by the

fact that the database is not yet complete; defining each functional domain as a different

dimension may make the feature vector too large. The inspection algorithm causes too much

noise in the decision-making process. In 2012, Sun et al. used the discrete wavelet transform

based on Chou’s PseAAC to identify the quaternary structure properties of proteins [11].

These abovementioned methods are based on a set of features and are also two-tier system

architectures [12].

The purpose of constructing a quaternary structure prediction system is to quickly identify

the type of oligomeric protein from unknown protein sequences. For proteins of different

functions, sources and species, in addition to verifying structural information, it is more diffi-

cult to find the protein aggregation rules using the alignment method if the homology between
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the sequences is low. Therefore, it is necessary to develop a prediction system that can provide

users with quick and reliable answers [13]. The experimenter often obtains the expected pro-

tein sequence through amino acid sequencing. The resulting sequence is the amino acid

sequence of the intact protein rather than the sequence registered in UniProt, so based on the

experimenter’s point of view, the input sequence provided by the system is a complete protein

sequence. We also consider the concept of protein interactions, use the pseudo amino acid

composition, linking the protein-binding surface and the solvent accessibility to calculate the

sequence of amino acids exposed on the surface of the protein and calculated the amino acid

hydrophilicity and hydrophobicity value of the protein, which has an important influence on

folding and interaction. We added the encoding method that is used for the first time in pro-

tein interaction, including the dipeptide composition that has been shown to improve the

accuracy of the protein secondary structure prediction. Also, we have modified the coding

method of functional domain composition, which has reduced the problem regarding the fea-

ture vector being too large, and this is the first time the half-life prediction (HLP) has been

used to predict the issues of protein quaternary structure prediction. HLP is a characteristic

coding that was used to predict the half-life of proteins in the small intestine environment.

Peptides have been suggested to be good drug candidates, and their usage is still hindered

mainly because of their high susceptibility towards protease degradation. Therefore, peptides

are cited as a coding feature of the four-level structure regarding this topic.

The existing systems are based on a set of features, and they are also two-layer system archi-

tectures. QUATgo is a two-stage prediction model with 10-fold cross validation. The first stage

prediction model separates each subunit of a homologous hetero-oligomer into 16 subsets and

uses the random tree forest algorithm to perform model training, which uses a single model to

obtain 16 results. Because the number of hetero-decamer is too small, category X is defined

together with the hetero- more than dodecamer, and we obtain 49.0% cross-validation accu-

racy and 31.1% independent test accuracy. If the predicted result is category X, the system will

send the data to the second stage prediction model to further distinguish whether the sequence

is hetero-decamer or hetero- more than dodecamer. The second stage of the prediction model

uses the support vector machine as the algorithm and can achieve 100% accuracy in cross-vali-

dation and 95.9% accuracy in independent testing. The entire system will eventually have

49.0% cross-validation accuracy and 31.1% independent test accuracy. To verify whether the

system has sufficient predictive ability in biological research on other topics, we have made a

prediction of hemagglutinin proteins of influezna A and B. QUATgo can reach 61.5% of

accuracy.

Materials and method

Dataset preparation

The data for the oligomeric protein sequences were obtained from 3D Complex (http://www.

3dcomplex.org/) [14] and PiQSi (http://www.PiQSi.org/) [6]. Each downloaded FASTA

sequence was sent to the Protein Data Bank (PDB) (https://www.rcsb.org/) for protein quater-

nary structure confirmation, and the dataset was subdivided into 9 subcategories according to

the number of subunits (monomer, dimer, trimer, tetramer, hexamer, octamer, decamer,

dodecamer, more than dodecamer). The protein sequence was then processed using CD-HIT

[15] for acquaintance processing. If the sequence number of the subset was more than 2,000,

the sequence with similarity greater than 50% was eliminated. If the sequence number of the

subset was between 200 and 2,000, the sequence with similarity greater than 60% was elimi-

nated for reducing module learning with high similarity data and the system operating time. If

the number of the same oligosaccharide protein sequence data is less than 200, no similarity
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removal will be carried out to avoid the loss of sufficient statistical significance due to the low

number of machine learning data. The results of CD-HIT are presented in Table 1. The system

could not predict oligomers of 5-mer, 7-mer, 9-mer, or 11-mer because they are too small for

training data.

Encoding method

Amino acid base. The amino acid base coding method was based on the binary compila-

tion method, which divides 20 common amino acids into 20 different vector dimensions. The

purpose was to distinguish the differences in the actual physicochemical properties of the

amino acids. It was not possible to represent the differences in physicochemical properties.

Therefore, 20 common amino acids were defined in different dimensions, and the frequency

and occurrence of each amino acid in the sequence were calculated.

Dipeptide feature composition is an important parameter of protein structure, and previous

experiments have confirmed that it can improve the accuracy of protein secondary structure

prediction [16], construct a 400-dimensional feature vector with bi-amino acid composition,

and calculate dipeptide groups with its frequency and number of occurrences of acid in the

sequence [17, 18].

Amino acid index. AAindex is a database of numerical indices representing various phys-

icochemical and biochemical properties of amino acids and pairs of amino acids. Another

important feature of amino acids that can be represented numerically is the similarity between

them. Thus, a similarity matrix, also called a mutation matrix, is a set of 20 x 20 numerical val-

ues used for protein sequence alignments and similarity searches. The AAindex consists of

three parts: AAindex1 represents the 20-value amino acid index, AAindex2 represents the

amino acid mutation matrix, and AAindex3 represents the statistical protein contact potential.

All data come from published literature [19–22]. Twenty AAindex indices were used in this

study, which included side chain orientational preference, isoelectric point, ratio of average

and computed composition, polarizability parameter, steric parameter, solvation free energy,

normalized frequency of turn, normalized frequency of beta-sheet, normalized frequency of

Table 1. Data numbers of each subunit before and after CD-Hit processing.

Before CD-hit After CD-hit

Homomer Heteromer Homomer Heteromer

Monomer 10461 10461 1815 1815

2 mer 5995 993 2115 278

3 mer 747 245 312 96

4 mer 1907 486 655 156

5 mer 64 7 63 7

6 mer 474 91 201 91

7 mer 20 9 20 9

8 mer 170 51 170 51

9 mer 0 32 0 32

10 mer 53 20 53 20

11 mer 4 1 4 1

12 mer 98 78 98 78

mt12 mer� 74 79 74 79

Total 20067 12553 5580 2713

� = more than 12 mer

https://doi.org/10.1371/journal.pone.0232087.t001
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beta-turn, normalized frequency of alpha-helix, hydrophobicity index, flexibility parameter,

transfer free energy to surface, alpha-NH chemical shifts, alpha-CH chemical shifts, polarity,

secondary structure, molecular size or volume, codon diversity, and electrostatic charge. The

encoding method was based on the probability of amino acid occurrence in the sequence mul-

tiplied by the index.

Functional Domain (FunD) composition. The Conserved Domains Database [23] is a

part of NCBI’s Entrez query and retrieval system for providing the conserved functional

domains of annotated protein sequences. Most proteins contain more than one functional

domain, which represents highly similar structures and functions. We can derive whether the

proteins may have evolved from the same ancestor from the results of these proteins, and such

highly conserved characteristics become important clues to study protein functions or related

mechanisms. In contrast to previous research that defined the protein feature as a

50369-dimensional vector, we define each database as a number of feature dimensions and

encode the resulting E-value and Bitscore as the average value. We also calculate the number

of the three hit types (specific, non-specific, superfamily) of the CDD searching results in this

study. The purpose of reducing the space vector was to decrease the system operation time,

and a large number of feature dimensions may cause noise in the prediction results.

Parallel correlation pseudo amino acid composition. The parallel correlation pseudo

amino acid composition (PC-PseAAC) under Pse-in-One (http://bioinformatics.hitsz.edu.cn/

Pse-in-One/home/) was used [24, 25]. Pse-in-One is a web-based tool that uses virtual compo-

nents and different virtual amino acid calculation formulas to calculate user-entered DNA,

RNA, and protein sequences and position correlation coefficients to generate feature vector

encoding in SVM format. Parallel correlation pseudo amino acid composition (PC-PseAAC)

is a method that combines local sequence-order information and global sequence-order infor-

mation into a feature vector code of a protein sequence. Peptides have been indicated to be

reliable drug candidates, and their use is still hindered mainly because of their high susceptibil-

ity towards protease degradation.

HLP encoding. In the past, a number of peptides have been reported to possess highly

diverse properties ranging from cell penetrating, tumour homing, anticancer, anti-hyperten-

sive, anti-viral to antimicrobials. Owing to their excellent specificity, low toxicity, rich chemi-

cal diversity and availability from natural sources, we used HLP (http://crdd.osdd.net/raghava/

hlp/index.html) [26] as one of the feature coding methods. The life span of a protein is related

not only to the folding structure and size of the protein but also to the protein action and cell

state. HLP is a server developed for predicting the half-life of peptides in intestine-like environ-

ments. It generates all possible mutants (single mutation at each position per cycle) for a pep-

tide and predicts/calculates the half-life and physicochemical properties (e.g., charge, polarity,

hydrophobicity, volume, pK) of mutant peptides [27]. From the results page returned by the

HLP server, because the input amino acid length is different, the number of cuts obtained is

also different; so, we take the average of the 20 values on the results page as the code, including

the half-life, stability, HPLC parameter, hydrophobicity, pKa, pKb, residue volume, molecular

weight, isoelectric point, surface accessibility, flexibility, charge, polarity, relative mutability,

free energy of solution, optical rotation, entropy of formation, heat capacity, and relative

stability.

Feature selection method

In this study, we used three different feature selected tools, including the LIBSVM feature

selection tool [28], mRMR [29], and Weka attribute selection [30, 31]. Each feature selection

method is different for their purpose in feature coding. Therefore, the results of the LIBSVM
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feature selection tool and the results of mRMR were integrated and specifically ranked. The

combined method was accumulated by the ranking of the feature numbers. For example, fea-

ture number 9 was ranked first in libsvm_fs, mRMR was ranked seventh, and its integration

score was 1+7 = 8. Finally, the feature with a ranking score of 0 was removed, and the lower

the integration score was, the higher the ranking was.

Evaluation measures

To assess the predictive performance of the classifier, we used the formula below, where TP,

FP, FN, and TN, which are true positives, false positives, false negatives, and true negatives,

respectively. The sensitivity (Sn) of this type of protein oligomer reflects the percentage of cor-

rect predictions for that category. Specificity (Sp) on behalf of non-protein oligomers of this

type indicates the percentage of correct predictions of non-class. Precision evaluates the cor-

rect rate of true positive data in forward-looking data. Accuracy (ACC) is used to assess the

overall predictive power of the prediction accuracy. Matthews correlation coefficient (MCC)

values range from −1 to 1, in which the value of 1 represents a completely correct prediction,

the value of 0 represents random prediction, and the value of −1 represents exactly the oppo-

site prediction, were used as well.

Sn ¼
TP

TP þ FN

Sp ¼
TN

TN þ FP

Precision ¼
TP

TP þ FP

ACC ¼
TP þ TN

TP þ FP þ TN þ FN

MCC ¼
ðTP � TNÞ � ðFN � FPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞ � ðTN þ FPÞ � ðTP þ FPÞ � ðTN þ FNÞ

p

Flowchart and system construction

QUATgo is a two-layer architecture. First, a series of feature codes were encoded for each

piece of data recorded by CD-Hit, and various subunits were later defined as one answer.

Because the number of data with hetero decamers was too small, we chose the second small

dataset as the basis of the training set. Fifty sequences from each subunit were used as the first

layer classifier training set. The training data of the hetero-decamer were merged to hetero-

more than dodecamer; so, we took 20 sequences from the hetero-decamer and 30 sequences

from the hetero- more than dodecamer. The purpose of the second-tier architecture was to

further analyse whether the final output was hetero-decamer or hetero- more than dodecamer,

so we took 20 data from each of the two hetero-oligomers as a training set. The remaining data

were serve as independent data. The two layers of the classifier used the different feature selec-

tion ranking to filter the best accuracy of the model. (Fig 1)

Result and discussion

To find the best classifier for this issue, we compared a total of 11 different learning algorithms

and evaluated the validity of the model with 10-fold cross validation. Including LIBSVM,
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developed by Professor Lin Chih-Jen of Taiwan University, Simple Logistic, Hoeffding, Ran-

dom Forest, Random Tree, REP Tree, Decision Stump, DecisionTable, LogitBoost, J48, and

OneR; these learning algorithms all belong to Weka.

We chose the top three classifiers for the next feature selection. Table 2 shows that the top

three were Random Forest with 46.8% accuracy, Simple Logistic with 41.0% accuracy, and

LogitBoost with 38.1% accuracy.

Then, the three classifiers were filtered through five different feature selection methods, as

shown in Table 3. The best result was the Random Forest classifier, and the selection method

was through Weka attribute selection. The final result was an accuracy of 49%, a total improve-

ment of 2.2% over the total selection.

To further evaluate the effectiveness of the model, see Table 4, we further calculated the sen-

sitivity, specificity, precision, accuracy (ACC), and MCC and evaluated the prediction model

for each subunit. As shown in Table 4, for homo-oligomers with subunit numbers greater than

8 and in hetero-oligomers with subunit numbers greater than 6, the prediction accuracy of the

above model was greater than the average accuracy. In the independent tests as Table 5, these

Fig 1. System flow.

https://doi.org/10.1371/journal.pone.0232087.g001
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oligomers have significant higher accuracy. This result indicates that the features left after fea-

ture selection have a greater correlation for the above subunits and that the data in the training

set are easier to distinguish, such as homo-dimer, homo-trimer, homo-tetramer, homo-hex-

amer, hetero-dimer, hetero-trimer, hetero-tetramer units, probably because of the quantifica-

tion of the coding that results in a low subunit number of protein oligomers that are not easy

to predict. Since the ratio of the training data is to achieve for each subunit is 1:1, the total

amount of subunits such as homo-dimers would be 2115, and only 50 data per training data

may be selected for certain data volumes. This situation may be further improved by filtering

the training set to achieve high accuracy.

In the second-level classifier, as shown in Table 6, there are seven classifiers with 95% accu-

racy. So we used these seven classifiers with different feature selection methods. The accuracy

of two classifiers, Random Forest and LogitBoost, with feature selection methods in Weka

attribute selection are both 100% (as shown in Table 7). For selecting the best model, the classi-

fiers of Random Forest and LogiBoost were further tested in an independent dataset. Random

Forest has better performance than LogiBoost (as shown in Table 8). Therefore, QUATgo uses

Random Forest for model construction. On the other hand, there are three kinds of features

were used in the first and second layer in the same time, the features are occurrence frequency

of dipeptides, such as Proline (P) and Asparagine (N), dipeptide Serine (S) and Arginine (R),

and Tyrosine (Y) and Threonine (T). However, there are not relevant data that can confirm

this phenomenon in academic papers yet. Perhaps it can be used as a starting point for struc-

tural exploration and further verification using structural biology experiments. Most worthy of

mention is the five kinds of features were used in QUATgo model construction, the feature

selection algorithm reserved some coding for each feature. In other words, the features we

adopted are useful for protein quaternary structural attributes prediction.

Table 2. The cross-validation results of each step 1 classifier compared with different learning algorithms.

Algorithms ACC

LIBSVM 0.203

Simple Logistic 0.410

Hoeffding 0.343

Random Forest 0.468

Random Tree 0.351

REPtree 0.315

Decision Stump 0.101

DecisionTable 0.280

LogitBoost 0.381

J48 0.350

OneR 0.243

https://doi.org/10.1371/journal.pone.0232087.t002

Table 3. The cross-validation results of each classifier in stage 1 with different feature selection methods.

Selection method/classifier Simple Logistic LogitBoost Random Forest

libsvm_fs 0.388 0.379 0.486

mid_maxrel 0.373 0.383 0.458

mid_mrmr 0.235 0.340 0.391

miq_maxrel 0.373 0.383 0.458

miq_mrmr 0.391 0.388 0.485

all_fs_rk 0.479 0.376 0.386

Weka attribute selection 0.368 0.371 0.490

https://doi.org/10.1371/journal.pone.0232087.t003

PLOS ONE Protein quaternary structural attributes prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0232087 April 29, 2020 8 / 14

https://doi.org/10.1371/journal.pone.0232087.t002
https://doi.org/10.1371/journal.pone.0232087.t003
https://doi.org/10.1371/journal.pone.0232087


Comparing with different prediction tools

We compared QUATgo with other quaternary structure prediction tools by independent test

set, and calculated precision, sensitivity, specificity, accuracy (ACC), and MCC. Because some

categories in the independent test set have a small amount of data, in order not to let the data

Table 4. Predicting results of the best classifier of the stage 1 classifier with cross verification.

Sn Sp Precision ACC MCC

Monomer 0.480 0.927 0.304 0.899 0.330

Homo-2 mer 0.320 0.945 0.281 0.906 0.250

Homo-3 mer 0.220 0.945 0.212 0.900 0.162

Homo-4 mer 0.060 0.960 0.091 0.904 0.024

Homo-6 mer 0.360 0.955 0.346 0.918 0.309

Homo-8 mer 0.480 0.971 0.522 0.940 0.469

Homo-10 mer 0.760 0.980 0.717 0.966 0.720

Homo-12 mer 0.660 0.975 0.635 0.955 0.623

Homo-mt12 mer� 0.760 0.992 0.864 0.978 0.798

Hetero-2 mer 0.540 0.937 0.365 0.913 0.399

Hetero-3 mer 0.360 0.955 0.346 0.918 0.309

Hetero-4 mer 0.140 0.959 0.184 0.908 0.112

Hetero-6 mer 0.420 0.979 0.568 0.944 0.459

Hetero-8 mer 0.620 0.995 0.886 0.971 0.727

Hetero-12 mer 0.780 0.993 0.886 0.980 0.821

Hetero-mt12 mer� 0.880 0.989 0.846 0.983 0.854

Avg 0.490 0.966 0.503 0.936 0.460

� = More than 12 mer

https://doi.org/10.1371/journal.pone.0232087.t004

Table 5. Predicting results of best classifier of stage 1 classifier with independent testing.

Sn Sp Precision ACC MCC

Monomer 0.472 0.818 0.381 0.752 0.269

Homo-2 mer 0.218 0.882 0.304 0.755 0.114

Homo-3 mer 0.271 0.922 0.278 0.856 0.195

Homo-4 mer 0.154 0.955 0.450 0.802 0.174

Homo-6 mer 0.245 0.952 0.239 0.911 0.195

Homo-8 mer 0.483 0.951 0.320 0.929 0.358

Homo-10 mer 0.667 0.990 0.071 0.990 0.216

Homo-12 mer 0.500 0.963 0.202 0.954 0.298

Homo-mt12 mer� 0.750 0.987 0.353 0.985 0.508

Hetero-2 mer 0.285 0.962 0.417 0.903 0.294

Hetero-3 mer 0.370 0.936 0.093 0.926 0.158

Hetero-4 mer 0.104 0.950 0.081 0.916 0.048

Hetero-6 mer 0.512 0.981 0.304 0.974 0.382

Hetero-8 mer 1.000 0.988 0.030 0.988 0.173

Hetero-12 mer 0.893 0.993 0.595 0.992 0.726

Hetero mt12 mer� 0.776 0.995 0.731 0.990 0.748

Avg 0.481 0.951 0.303 0.914 0.303

� = More than 12 mer

https://doi.org/10.1371/journal.pone.0232087.t005
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of a single category excessively affect the overall accuracy, a maximum of 100 pieces of data are

selected in each category for testing. In Table 9, the overall average MCC of QUATgo is higher

than other tools, and the MCC is greater than zero in each category. Because there is no data

predicted as homo-decamer, the precision and MCC of QuarIdent in the homo-decamer test

set are not applicable (N/A). Besides, QuarBingo also shows the non-applicable results in three

categories.

Case study

To understand the ability of QUATgo to predict the quaternary structure of different func-

tional proteins, we conducted a case study using influenza virus proteins. The influenza

virus is an RNA virus belonging to the orthomyxoviridae family [32]. According to its

Table 6. The cross-validation results of each stage 2 classifier with each comparing learning algorithms.

Algorithms ACC

LIBSVM 0.700

Simple Logistic 0.925

Hoeffding 0.950

Random Forest 0.950

Random Tree 0.950

REPtree 0.950

Decision Stump 0.950

DecisionTable 0.925

LogitBoost 0.950

J48 0.950

OneR 0.900

https://doi.org/10.1371/journal.pone.0232087.t006

Table 7. The cross-validation results of each stage 2 classifier with different feature selection methods.

10-fold cross-validation Hoeffding Random Forest Random Tree REPtree Decision stump LogitBoost J48

libsvm_fs 0.95 0.925 0.9 0.9 0.85 0.9 0.875

mid_maxrel 0.925 0.95 0.95 0.975 0.95 0.95 0.95

mid_mrmr 0.95 0.925 0.925 0.95 0.95 0.925 0.95

miq_maxrel 0.925 0.95 0.95 0.975 0.95 0.95 0.95

miq_mrmr 0.95 0.95 0.925 0.975 0.975 0.975 0.95

all_fs_rk 0.95 0.95 0.95 0.975 0.975 0.975 0.95

Weka attribute selection 0.95 1 0.95 0.975 0.975 1 0.975

https://doi.org/10.1371/journal.pone.0232087.t007

Table 8. Predicting results of the best classifier of stage 2 classifiers with cross-validation and independent

testing.

Independent testing Random Forest LogitBoost

Sn 0.959 0.796

Sp - -

Precision 1.000 1.000

ACC 0.959 0.796

MCC - -

https://doi.org/10.1371/journal.pone.0232087.t008
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nucleoproteins, the influenza virus is classified as genera A, B, C and D [33]. Influenza viruses

infect people, pigs, horses, and poultry. Influenza A infects a variety of species is zoonotic and

influenza B infects only humans, however, both of them often cause seasonal influenza. Influ-

enza A can be further classified according to the surface hemagglutinin and neuraminidase.

Hemagglutinin has 18 subtypes [33] that are responsible for identifying and binding to host

cell membranes. Neuraminidase has 11 subtypes that destroy host receptor proteins. Influenza

viruses migrate from host to host through hemagglutinin mutations, and it is not yet possible

to accurately predict the virus subtypes that will become prevalent. We collected seven sub-

types of hemagglutinin protein sequences for quaternary structure prediction, with PDB iden-

tifier 1RUZ, 2FK0, 2IBX, 2VIU, 3BT6, 3EYJ, 3ZNM, 4BSG, 4D00, 4UO0, 4UO4, 5HMG and

6CF7, respectively. The sequence identity between the 13 protein sequences and our train data

set is less than 40%. The QUATgo prediction results showed that the classification accuracy of

the 13 quaternary structures was 61.54% (8/13), while the other two tools, QuatIdent and Qua-

Bingo, could not correctly predict the quaternary structures.

Conclusions and future work

Proteins contain both single-chain proteins and multi-chain proteins. According to the number

of constituent chains, proteins can be classified into many different quaternary structural attri-

butes, such as monomer, dimer, and trimer. Each of these oligomers can be further classified as

a homo-oligomer formed by identical chains (subunits) or a hetero-oligomer by different

chains. These properties are closely related to the function of the protein. For example, some

ligands bind only to dimers, but not to monomers, and some exotic allosteric transitions occur

only in homotetramers, such as the CArG-box gene region in the MADS-box gene of plants.

Proteins composed of different numbers of protein quaternary structural subunits reflect

the evolution of structure and function in protein composition. Therefore, it is of great signifi-

cance to use the hybrid feature encoding method to complete the prediction of protein quater-

nary structure.

This study proposes the use of mixed feature coding to predict the quaternary structure of

proteins. Although the overall prediction result in the independent set was better than other

tools, there is potential for predicting lower subunit sets. Because numerically coded protein

sequences may have different protein sequences, they have similar feature codes, resulting in

misjudgement of the prediction system. This result is reflected in homo-dimer, homo-trimer,

homo-tetramer, homo-hexamer, hetero-dimer, hetero-trimer, and hetero-tetramer units;

however, there is a minimum of 91.6% accuracy to a maximum of 99.2% accuracy in homo-

octamer, homo-decamer, homo-dodecamer, hetero-hexamer, hetero-octamer, hetero-dodeca-

mer. The current prediction tools only predict the dodecahedron but the proteins above the

dodecamer. Based on the results of this study, it is feasible to use this hybrid feature encoding

method to predict protein oligomers with high subunit numbers.

Many proteins exist as monomers whether they interact with another protein to form poly-

mers, and whether the protein dimer will be further assembled into biologically relevant tetra-

mers or octamers. Currently, most of these problems have not been addressed by scientific

research and verified by enough information. In the future, more and more data will be added

to the database, providing more useful information to establish a prediction system and assist

relevant research development.

Acknowledgments

The authors would like to thank Professor Jyung-Hurng Liu who provided the suggestions for

case study.

PLOS ONE Protein quaternary structural attributes prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0232087 April 29, 2020 12 / 14

https://doi.org/10.1371/journal.pone.0232087


Author Contributions

Conceptualization: Chi-Hua Tung, Yen-Wei Chu.

Formal analysis: Lan-Ying Huang, Yu-Nan Liu.

Investigation: Yu-Nan Liu.

Methodology: Chi-Wei Chen.

Project administration: Chi-Hua Tung, Yen-Wei Chu.

Software: Ching-Hsuan Chien.

Supervision: Chi-Hua Tung, Yen-Wei Chu.

Validation: Ching-Hsuan Chien, Chi-Wei Chen, Lan-Ying Huang.

Visualization: Ching-Hsuan Chien.

Writing – original draft: Chi-Hua Tung, Ching-Hsuan Chien, Yu-Nan Liu, Yen-Wei Chu.

Writing – review & editing: Chi-Hua Tung, Ching-Hsuan Chien, Yen-Wei Chu.

References

1. Shen HB, Chou KC. QuatIdent: a web server for identifying protein quaternary structural attribute by fus-

ing functional domain and sequential evolution information. J Proteome Res. 2009; 8(3):1577–84. Epub

2009/02/20. https://doi.org/10.1021/pr800957q PMID: 19226167.

2. Chou KC, Cai YD. Predicting protein quaternary structure by pseudo amino acid composition. Proteins.

2003; 53(2):282–9. Epub 2003/10/01. https://doi.org/10.1002/prot.10500 PMID: 14517979.

3. Garian R. Prediction of quaternary structure from primary structure. Bioinformatics. 2001; 17(6):551–6.

Epub 2001/06/08. https://doi.org/10.1093/bioinformatics/17.6.551 PMID: 11395433.

4. Zhang SW, Pan Q, Zhang HC, Zhang YL, Wang HY. Classification of protein quaternary structure with

support vector machine. Bioinformatics. 2003; 19(18):2390–6. Epub 2003/12/12. https://doi.org/10.

1093/bioinformatics/btg331 PMID: 14668222.

5. Shi J, Pan Q, Zhang S, Cheng Y. Classification of protein homo—oligomers using amino acid composi-

tion distribution. Shengwu Wuli Xuebao. 2006; 22(1):49–56.

6. Levy ED. PiQSi: protein quaternary structure investigation. Structure. 2007; 15(11):1364–7. Epub

2007/11/14. https://doi.org/10.1016/j.str.2007.09.019 PMID: 17997962.

7. Xiao X, Wang P, Chou KC. Quat-2L: a web-server for predicting protein quaternary structural attributes.

Mol Divers. 2011; 15(1):149–55. Epub 2010/02/12. https://doi.org/10.1007/s11030-010-9227-8 PMID:

20148364.

8. Levy ED, Boeri Erba E, Robinson CV, Teichmann SA. Assembly reflects evolution of protein com-

plexes. Nature. 2008; 453(7199):1262–5. Epub 2008/06/20. https://doi.org/10.1038/nature06942

PMID: 18563089; PubMed Central PMCID: PMC2658002.

9. Chen Z, Alcayaga C, Suarez-Isla BA, O’Rourke B, Tomaselli G, Marban E. A "minimal" sodium

channel construct consisting of ligated S5-P-S6 segments forms a toxin-activatable ionophore. J Biol

Chem. 2002; 277(27):24653–8. Epub 2002/04/26. https://doi.org/10.1074/jbc.M111862200 PMID:

11973330.

10. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, et al.

CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 2007; 35

(Database issue):D237–40. Epub 2006/12/01. https://doi.org/10.1093/nar/gkl951 PMID: 17135202;

PubMed Central PMCID: PMC1751546.

11. Sun XY, Shi SP, Qiu JD, Suo SB, Huang SY, Liang RP. Identifying protein quaternary structural attri-

butes by incorporating physicochemical properties into the general form of Chou’s PseAAC via discrete

wavelet transform. Mol Biosyst. 2012; 8(12):3178–84. Epub 2012/09/20. https://doi.org/10.1039/

c2mb25280e PMID: 22990717.

12. Sheng Y, Qiu X, Zhang C, Xu J, Zhang Y, Zheng W, et al. Quad-PRE: a hybrid method to predict protein

quaternary structure attributes. Comput Math Methods Med. 2014; 2014:715494. Epub 2014/06/26.

https://doi.org/10.1155/2014/715494 PMID: 24963340; PubMed Central PMCID: PMC4052169.

PLOS ONE Protein quaternary structural attributes prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0232087 April 29, 2020 13 / 14

https://doi.org/10.1021/pr800957q
http://www.ncbi.nlm.nih.gov/pubmed/19226167
https://doi.org/10.1002/prot.10500
http://www.ncbi.nlm.nih.gov/pubmed/14517979
https://doi.org/10.1093/bioinformatics/17.6.551
http://www.ncbi.nlm.nih.gov/pubmed/11395433
https://doi.org/10.1093/bioinformatics/btg331
https://doi.org/10.1093/bioinformatics/btg331
http://www.ncbi.nlm.nih.gov/pubmed/14668222
https://doi.org/10.1016/j.str.2007.09.019
http://www.ncbi.nlm.nih.gov/pubmed/17997962
https://doi.org/10.1007/s11030-010-9227-8
http://www.ncbi.nlm.nih.gov/pubmed/20148364
https://doi.org/10.1038/nature06942
http://www.ncbi.nlm.nih.gov/pubmed/18563089
https://doi.org/10.1074/jbc.M111862200
http://www.ncbi.nlm.nih.gov/pubmed/11973330
https://doi.org/10.1093/nar/gkl951
http://www.ncbi.nlm.nih.gov/pubmed/17135202
https://doi.org/10.1039/c2mb25280e
https://doi.org/10.1039/c2mb25280e
http://www.ncbi.nlm.nih.gov/pubmed/22990717
https://doi.org/10.1155/2014/715494
http://www.ncbi.nlm.nih.gov/pubmed/24963340
https://doi.org/10.1371/journal.pone.0232087


13. Tung CH, Chen CW, Guo RC, Ng HF, Chu YW. QuaBingo: A Prediction System for Protein Quaternary

Structure Attributes Using Block Composition. Biomed Res Int. 2016; 2016:9480276. Epub 2016/09/10.

https://doi.org/10.1155/2016/9480276 PMID: 27610389; PubMed Central PMCID: PMC5005774.

14. Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA. 3D complex: a structural classification of protein

complexes. Plos Comput Biol. 2006; 2(11):e155. Epub 2006/11/23. https://doi.org/10.1371/journal.pcbi.

0020155 PMID: 17112313; PubMed Central PMCID: PMC1636673.

15. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide

sequences. Bioinformatics. 2006; 22(13):1658–9. Epub 2006/05/30. https://doi.org/10.1093/

bioinformatics/btl158 PMID: 16731699.

16. Lin H, Li QZ. Using pseudo amino acid composition to predict protein structural class: approached by

incorporating 400 dipeptide components. J Comput Chem. 2007; 28(9):1463–6. Epub 2007/03/03.

https://doi.org/10.1002/jcc.20554 PMID: 17330882.

17. Chou KC, Zhang CT. Prediction of protein structural classes. Crit Rev Biochem Mol Biol. 1995; 30

(4):275–349. Epub 1995/01/01. https://doi.org/10.3109/10409239509083488 PMID: 7587280.

18. Liu W, Chou KC. Prediction of protein secondary structure content. Protein Eng. 1999; 12(12):1041–50.

Epub 1999/12/28. https://doi.org/10.1093/protein/12.12.1041 PMID: 10611397.

19. Kawashima S, Kanehisa M. AAindex: amino acid index database. Nucleic Acids Res. 2000; 28(1):374.

Epub 1999/12/11. https://doi.org/10.1093/nar/28.1.374 PMID: 10592278; PubMed Central PMCID:

PMC102411.

20. Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M. AAindex: amino

acid index database, progress report 2008. Nucleic Acids Res. 2008; 36(Database issue):D202–5.

Epub 2007/11/14. https://doi.org/10.1093/nar/gkm998 PMID: 17998252; PubMed Central PMCID:

PMC2238890.

21. Kawashima S, Ogata H, Kanehisa M. AAindex: Amino Acid Index Database. Nucleic Acids Res. 1999;

27(1):368–9. Epub 1998/12/10. https://doi.org/10.1093/nar/27.1.368 PMID: 9847231; PubMed Central

PMCID: PMC148186.

22. Tomii K, Kanehisa M. Analysis of amino acid indices and mutation matrices for sequence comparison

and structure prediction of proteins. Protein Eng. 1996; 9(1):27–36. Epub 1996/01/01. https://doi.org/

10.1093/protein/9.1.27 PMID: 9053899.

23. Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH. CDD: a data-

base of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids

Res. 2002; 30(1):281–3. Epub 2001/12/26. https://doi.org/10.1093/nar/30.1.281 PMID: 11752315;

PubMed Central PMCID: PMC99109.

24. Liu B, Liu F, Wang X, Chen J, Fang L, Chou KC. Pse-in-One: a web server for generating various

modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015; 43(W1):

W65–71. Epub 2015/05/11. https://doi.org/10.1093/nar/gkv458 PMID: 25958395; PubMed Central

PMCID: PMC4489303.

25. Liu B, Wu H, Chou KC. Pse-in-One 2.0: An Improved Package of Web Servers for Generating Various

Modes of Pseudo Components of DNA, RNA, and Protein Sequences. Natural Science. 2017; 9(4):67.

26. Gorris HH, Bade S, Rockendorf N, Albers E, Schmidt MA, Franek M, et al. Rapid profiling of peptide sta-

bility in proteolytic environments. Anal Chem. 2009; 81(4):1580–6. Epub 2009/01/23. https://doi.org/10.

1021/ac802324f PMID: 19159331.

27. Sharma A, Singla D, Rashid M, Raghava GP. Designing of peptides with desired half-life in intestine-

like environment. BMC Bioinformatics. 2014; 15:282. Epub 2014/08/22. https://doi.org/10.1186/1471-

2105-15-282 PMID: 25141912; PubMed Central PMCID: PMC4150950.

28. Chen YW, Lin CJ. Combining SVMs with various feature selection strategies, in Feature extraction.

Springer. 2006:315–24.

29. Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency,

max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005; 27(8):1226–38. Epub

2005/08/27. https://doi.org/10.1109/TPAMI.2005.159 PMID: 16119262.

30. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software:

an update. ACM SIGKDD explorations newsletter. 2009; 11(1):10–8.

31. Peng Y, Kou G, Ergu D, Wu W, Shi Y. An Integrated Feature Selection and Classification Scheme.

Studies in Informatics and Control. 2012; 21(3):241–8.

32. Arbeitskreis Blut U. Influenza Virus. Transfus Med Hemother. 2009; 36(1):32–9. Epub 2009/01/01.

https://doi.org/10.1159/000197314 PMID: 21048819; PubMed Central PMCID: PMC2928832.

33. Kirkpatrick E, Qiu X, Wilson PC, Bahl J, Krammer F. The influenza virus hemagglutinin head evolves

faster than the stalk domain. Sci Rep. 2018; 8(1):10432. Epub 2018/07/12. https://doi.org/10.1038/

s41598-018-28706-1 PMID: 29992986; PubMed Central PMCID: PMC6041311.

PLOS ONE Protein quaternary structural attributes prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0232087 April 29, 2020 14 / 14

https://doi.org/10.1155/2016/9480276
http://www.ncbi.nlm.nih.gov/pubmed/27610389
https://doi.org/10.1371/journal.pcbi.0020155
https://doi.org/10.1371/journal.pcbi.0020155
http://www.ncbi.nlm.nih.gov/pubmed/17112313
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/bioinformatics/btl158
http://www.ncbi.nlm.nih.gov/pubmed/16731699
https://doi.org/10.1002/jcc.20554
http://www.ncbi.nlm.nih.gov/pubmed/17330882
https://doi.org/10.3109/10409239509083488
http://www.ncbi.nlm.nih.gov/pubmed/7587280
https://doi.org/10.1093/protein/12.12.1041
http://www.ncbi.nlm.nih.gov/pubmed/10611397
https://doi.org/10.1093/nar/28.1.374
http://www.ncbi.nlm.nih.gov/pubmed/10592278
https://doi.org/10.1093/nar/gkm998
http://www.ncbi.nlm.nih.gov/pubmed/17998252
https://doi.org/10.1093/nar/27.1.368
http://www.ncbi.nlm.nih.gov/pubmed/9847231
https://doi.org/10.1093/protein/9.1.27
https://doi.org/10.1093/protein/9.1.27
http://www.ncbi.nlm.nih.gov/pubmed/9053899
https://doi.org/10.1093/nar/30.1.281
http://www.ncbi.nlm.nih.gov/pubmed/11752315
https://doi.org/10.1093/nar/gkv458
http://www.ncbi.nlm.nih.gov/pubmed/25958395
https://doi.org/10.1021/ac802324f
https://doi.org/10.1021/ac802324f
http://www.ncbi.nlm.nih.gov/pubmed/19159331
https://doi.org/10.1186/1471-2105-15-282
https://doi.org/10.1186/1471-2105-15-282
http://www.ncbi.nlm.nih.gov/pubmed/25141912
https://doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262
https://doi.org/10.1159/000197314
http://www.ncbi.nlm.nih.gov/pubmed/21048819
https://doi.org/10.1038/s41598-018-28706-1
https://doi.org/10.1038/s41598-018-28706-1
http://www.ncbi.nlm.nih.gov/pubmed/29992986
https://doi.org/10.1371/journal.pone.0232087

