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Abstract

Annual variations in biogeochemical and physical processes can lead to nutrient variability
and seasonal patterns in phytoplankton productivity and assemblage structure. In many
coastal systems river inflow and water exchange with the ocean varies seasonally, and al-
ternating periods can arise where the nutrient most limiting to phytoplankton growth
switches. Transitions between these alternating periods can be sudden or gradual and this
depends on human activities, such as reservoir construction and interbasin water transfers.
How such activities might influence phytoplankton assemblages is largely unknown. Here,
we employed a multispecies, multi-nutrient model to explore how nutrient loading switching
mode might affect characteristics of phytoplankton assemblages. The model is based on
the Monod-relationship, predicting an instantaneous growth rate from ambient inorganic nu-
trient concentrations whereas the limiting nutrient at any given time was determined by Lie-
big’s Law of the Minimum. Our simulated phytoplankton assemblages self-organized from
species rich pools over a 15-year period, and only the surviving species were considered as
assemblage members. Using the model, we explored the interactive effects of complemen-
tarity level in trait trade-offs within phytoplankton assemblages and the amount of noise in
the resource supply concentrations. We found that the effect of shift from a sudden resource
supply transition to a gradual one, as observed in systems impacted by watershed develop-
ment, was dependent on the level of complementarity. In the extremes, phytoplankton spe-
cies richness and relative overyielding increased when complementarity was lowest, and
phytoplankton biomass increased greatly when complementarity was highest. For low-com-
plementarity simulations, the persistence of poorer-performing phytoplankton species of in-
termediate R*s led to higher richness and relative overyielding. For high-complementarity
simulations, the formation of phytoplankton species clusters and niche compression en-
abled higher biomass accumulation. Our findings suggest that an understanding of factors
influencing the emergence of life history traits important to complementarity is necessary to
predict the impact of watershed development on phytoplankton productivity and
assemblage structure.
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Introduction

Coastal lagoons, estuaries and bays represent some of the most productive ecosystems on the
planet and are comprised of habitats important to many of the world’s species [1]. The high
productivity and biodiversity found in these coastal systems are influenced, in part, by phyto-
plankton productivity and assemblage composition. In turn, phytoplankton are influenced by a
complex interplay among many factors that sometimes include inorganic nutrients, light, tem-
perature, stratification, grazing and allelopathy [2-4]. Thus, factors acting at the base of the
food web, such as these, can ultimately influence ecosystem form and functioning.

Regarding inorganic nutrients, annual variations in freshwater inflow to coastal systems are
known to influence their availability. Similarly, annual variations in water exchange with the
ocean are known to influence the availability of nutrients. The net effect of annually varying
freshwater inflows and ocean water exchanges can lead to alternating periods where the nutri-
ent most limiting to reproductive growth switches [5-10]. Shifts in nutrient availabilities, like
this, can influence productivity and composition of phytoplankton. This phenomenon has
been observed regularly in inland water bodies, and an understanding of the underpinning
mechanisms has been well developed through empirical and theoretical research [11-14].

In coastal systems where it occurs, the mode of switching between which nutrient is most
limiting to reproductive growth likely differs. For example, in systems characteristic of abrupt
changes in nutrient loadings, sudden transitions in which nutrient is the most limiting might
arise. Abrupt changes in nutrient loadings might follow short-period runoff events associated
with precipitation [15-17] or short-period vertical mixing events associated with winds [18-
20]. On the other hand, in systems that are characteristic of seasonally developing wet and dry
periods or annually occurring periods of upwelling [21, 22], gradual changes in nutrient avail-
abilities might arise.

Human activities might also influence the mode of switching between limiting nutrients.
For example, coastal systems receiving inflows from watersheds with many reservoirs might
experience gradual changes in nutrient availabilities. This would occur because during reser-
voir operations peak in-stream flows tend to be lower relative to historical (pre-dam) condi-
tions and low in-stream flows tend to be elevated, resulting in a less dynamic flow regime [23,
24]. Another human activity that might influence the mode of switching between limiting nu-
trients is interbasin water transfers to basins with water shortages from basins with water sur-
pluses. During interbasin water transfers flow through the watershed receiving the water can
be elevated, while flow through the watershed donating the water can be reduced, with both
scenarios resulting in a less dynamic condition.

While phytoplankton productivity is linked to nutrient loading associated with inflows and
ocean water exchanges, it is better characterized by cellular nutrient uptake and conversion to
biomass, which is the process of resource exploitation. As an ecological principle, the level of
complementarity in an assemblage influences the degree of resource exploitation. Here, com-
plementarity refers to greater resource exploitation facilitated by the interaction between co-oc-
curring species [25-27]. Sometimes the level of complementarity can lead to overyielding. This
is a condition where the productivity of the assemblage is greater than the average productivity
of all members of the assemblage when they are each considered in monoculture [28, 29]. In
the extreme, overyielding can be transgressive. This is a special condition where the productivi-
ty of the assemblage is greater than the productivity of the most productive member of the as-
semblage when it is considered in monoculture [30].

In this research, we employ a multispecies, multi-nutrient mathematical model to explore
how nutrient loading switching mode, i.e., sudden vs. gradual, might effect notable phytoplank-
ton assemblage characteristics. These included time-averaged richness, evenness, total biomass,
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degree of overyielding, species interactions, length of the resource trade-off space exploited,
and resource utilization. These characterizations are focused upon because they are often used
to describe ecosystem form and functioning. In addition, we investigated the influence of the
level of complementarity and the amount of noise in the resource supply concentration on
these assemblage characteristics. Such information will increase our understanding of how
phytoplankton systems might respond to increased landscape alterations driven by human de-
velopment and population growth. To keep our model tractable, we focus solely on competi-
tion for nutrients limiting to reproductive growth and its relationship with assemblage
characteristics. Other notable factors, such as temperature, stratification, light, grazing and alle-
lopathy, are not studied here. This is not to say that these other factors are unimportant to the
phytoplankton assemblage characteristics studied here. Indeed, the compounding affects of
these other factors should be a focus of future studies.

Methods

Our multispecies, multi-nutrient model was governed by the widely-used Monod-relationship,
which predicts an instantaneous reproductive growth rate from ambient inorganic nutrient
concentrations [31]. This relationship is defined by two life history traits. The first is the maxi-
mum specific reproductive growth rate (¢,,,,,). The second is the half-saturation coefficient for
reproductive growth (ks). Together, these life history traits enable construction of a curve that
asymptotically approaches a species-specific maximum reproductive growth rate as nutrient
concentrations increase. The rate at which this curve approaches the maximum reproductive
growth rate is determined by the initial slope of this curve, which is defined by 0.5, divided
by ks. Because our model employed two reproductive growth-limiting nutrients, we used Lie-
big’s Law of the Minimum to determine which inorganic nutrient was limiting to each species
at any point during model simulations [31]. As we will describe in the sections below, we com-
bined these relationships with a population loss factor, i.e., hydraulic displacement of cells asso-
ciated with inflows, to characterize each species’ niche using the R* conceptual model [11],
thus enabling an ecological interpretation of our modeling results.

The phytoplankton assemblages employed in our analyses were the result of self-organiza-
tion processes where surviving species emerged from initial species-rich pools [32]. The initial
species pools varied in their level of complementarity among species (discussed further below).
Which species survived the self-organization process was determined, in part, by their compet-
itive abilities for the two reproductive growth-limiting nutrients, which is reflected by their R*
values (lower R* values indicate better competitive abilities). Here, the half-saturation coeffi-
cients for resource-limited reproductive growth (ks) and the fixed cellular content of resources
(Qs) were the life history traits that differentiated competing species. During self-organization,
two modes of resource supply fluctuation were explored, where resource supply transitions
were either sudden or gradual (discussed further below). Once self-organized phytoplankton
assemblages emerged under these fluctuation modes, we compared characteristics of the as-
semblages that included time-averaged richness, evenness, total biomass, degree of overyield-
ing, species interactions, length of the resource trade-off space exploited, and
resource utilization.

Mathematical model and numerical solution

We employed a well-known mathematical model developed by Tilman [11] for depicting pop-
ulation dynamics of primary producers, i.e., plants, macroalgae and phytoplankton [11, 13,
32]. We structured the model to simulate a phytoplankton assemblage where new resources ar-
rived with inflow, and loss of cells and ambient nutrients occurred through hydraulic flushing.
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For each species, population dynamics were simulated using an equation of the form:

dN
e UN — vN (1)
where N was population density (cells liter "), i was specific reproductive growth rate (d"),
and v was hydraulic flushing defined as the inflow divided by the system volume (d™"). For the
purposes of this research, we assume that carbon content per cell is constant, so N becomes an
analog of biomass.

As mentioned above, specific reproductive growth rate for each population was determined
using the Monod equation and Liebig's "Law of the Minimum" [33] following the form:

= min St 82 (2)
H= Honex SL+ k' S2 + kg,

where f4,,,, was the maximum specific reproductive growth rate for a species (d'), S and S2
were the concentration of resources necessary for reproductive growth (uM), and kg; and kg,
were the half-saturation coefficients for resource-limited reproductive growth (uM) specific to
each species. A function ‘min’ was used to determine which resource was more strongly limit-
ing to reproductive growth at each time step of the simulation.

For the two resources necessary for reproductive growth, changes in concentration were
simulated using an equation of the form:

ds -
E - V(Ssaurcz - S) - ; Q:lluiNi (3)

where S Was the fixed concentration of the resource in the source (uM), Q, was the fixed
cellular content of the resource (umole cell ") for a species, 1 was the total number of species,
and other parameters were the same as previously described.

Differential equations were solved numerically using ordinary differential equation solving
routines that were a part of a commercial software package (The Math Works, Inc.). The rou-
tines were based on fourth-order Runge-Kutta procedures, and used a variable time step that
was based on a local error tolerance set at 107,

Fluctuations in the resource supply

Assemblages self-organized under an annually fluctuating resource supply (Ssource)- Simula-
tions were initiated with the first resource having a concentration of 2 yM and the second re-
source a concentration of 20 M. These are within the range of resource concentrations
observed for river discharges into coastal lagoons, estuaries and bays where anthropogenic eu-
trophication is not as prevalent [34]. Over a period of ~182 days, the concentrations of the re-
sources in the supply reversed. That is, at day 182 the first resource had a concentration of 20
uM and the second resource a concentration of 2 yM.

We explored two modes of this resource supply reversal. The first mode was a sudden
change, where resource supply concentrations were 2 and 20 yM for days 1 to 182, then
abruptly switched to 20 and 2 uM on day 182 and remained at those concentrations through
day 365. On day 365, they abruptly switched back to concentrations of 2 and 20 yM (see
Fig. 1a). The second mode of resource supply reversal was a gradual change, where the first re-
source progressively increased from 2 yM on day 1 to 20 uM on day 182, while the concentra-
tion of the second resource progressively decreased from 20 uM on day 1 to 2 uM on day 182.
From days 182 through 365 the resources progressively changed back to their initial values (see
Fig. 1b). Thus, the fluctuation period for both modes of resource supply reversal occurred over
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40 a b = Resource 1
=== Resource 2

Concentration in source (uUM)

Time (months)

Fig 1. Sudden and gradual modes of reversal in the resource supply concentration. The sudden mode
of reversal went from a resource supply of 2 and 20 uM for resources 1 and 2 to a resource supply of 20 and 2
UM with an abrupt transition on day 182. Three levels of noise in the resource supply were explore, which
were no noise (a), 0—20% noise (c) and 0-80% noise (e). The gradual mode of reversal also went from a
resource supply of 2 and 20 uM for resources 1 and 2 to a resource supply of 20 and 2 yM, but with a slow
change that reversed direction on day 182. Again, three levels of noise in the resource supply were explore,
which were no noise (b), 0-20% noise (d) and 0-80% noise (f).

doi:10.1371/journal.pone.0120673.g001

an interval of 365 days. As mentioned previously, switching between limiting resources over a
period of a year is observed in many natural systems, especially when the year is characterized
by wet and dry seasons [5-10].

In natural settings, however, it is unlikely that resource supply reversals are quite so regular.
Consequently, we performed additional simulations with added noise to the resource supply.
We created a function that randomly altered the resource concentration in the supply by add-
ing or subtracting a value equivalent to some percentage of the resource supply concentration
that was used for the ‘regular’ scenarios (described in the preceding paragraph and shown in
Fig. 1a, b). The function also accounted for the duration that the resource supply was altered.
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More specifically, the adjusted resource concentration in the supply was randomly varied in
magnitude over the interval (-20%, 20%) (see Fig. 1c, d for representative simulations) or over
the interval (-80%, 80%) (see Fig. le, f for representative simulations). This resource supply ad-
justment, or amount of noise in the resource supply concentration, occurred over periods that
randomly varied in duration from 1 to 14 days. The noise pattern did not repeat with each an-
nual cycle. In other words, each simulation year of each 15-year period simulated was unique.
The noise pattern was also unique between each of the 100 replicate simulations per scenario
(discussed below). We selected these intervals for noise because they generated simulation re-
sults for resource supply variability similar to what is observed in multiple coastal systems [15,
35-37].

Parameterization of populations to produce self-organized, species-rich
assemblages

We generated phytoplankton assemblages using a numerical approach that involved self-
organization from a species-rich pool under fluctuating resource supply conditions, where the
number of species in the initial pool was 300 and they were distributed throughout the resource
trade-off space (Fig. 2). The authors have worked in a variety of aquatic ecosystem types that
include lakes, rivers, bays and coastal oceans [35, 38-40]. Field sampling in these systems usu-
ally spanned multiple seasons, with sampling frequencies ranging from weekly to quarterly.
Phytoplankton species richness in these ecosystems ranged from one to ~80, with 15-20 spe-
cies being the norm. Thus, we considered the initial species pool of 300 used in these simula-
tions as “species rich”. The simulated period of self-organization was 15 years. Surviving
species after this simulated period (those with biomass >0.05% of the total biomass, a level

0.16

Resource 2 (LM)

Resource 1 (uM)

Fig 2. R*s of phytoplankton in the initial species pool and the recurrently fluctuating environmental
conditions from which assemblages self-organized.

doi:10.1371/journal.pone.0120673.g002
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chosen because oscillating populations at this point in the model did not decrease to levels
below this [41] were then used to initiate a second 15-year simulation. The surviving species
from this second simulation were considered members of a self-organized assemblage. In this
way, we assured ourselves that the processes underlying coexistence in our simulations fol-
lowed from life history traits and not potential effects from an initial species-rich pool.

Parameterization of life history traits in the species-rich pool, i.e., reproductive growth-
related factors in our simulations, were not random. We used our knowledge of physiological
traits and basic ecological principles as a guide. For example, competitive ability for a specific
resource was inversely proportional to a species’ cellular resource content [42]. In other words,
the resource-specific, half-saturation coefficient for reproductive growth (kg) and the cellular
resource content (Qs) varied proportionally. To illustrate, kg was selected randomly from num-
bers within the range 0.04-1. When in units of 4M this range represents what is typically ob-
served in phytoplankton for half-saturation coefficients [14, 43]. Following the principle of
proportionality mentioned above, Qg was then set equal to ks. When in units of 10" umole
cell' the range of 0.04-1 represents typical resource contents measured in phytoplankton [14,
43]. Therefore, species with relatively low ks and Qg in our simulations represented populations
with high competitive ability and low demand for that resource. Conversely, species with rela-
tively high kg and Qg represented populations with low competitive ability and high demand
for that resource.

Our parameterization of reproductive growth-related factors was further guided by a trade-off
between competitive abilities for the two resources used in the model. A species being a good
competitor for one resource meant that it was a poor competitor for the other resource; and a spe-
cies being an intermediate competitor for one resource meant that it was also an intermediate
competitor for the other resource [11, 44]. This prevented any single species from being a superior
competitor for both resources. To illustrate, a species with kg; and Qg; values of 0.15 for resource
1 would then have kg, and Qg values of 0.85 for resource 2. This species would be characterized
as a good competitor for resource 1 and a poor competitor for resource 2. A species with kg; and
Qg; values of 0.45 for resource 1 would then have kg, and Qg, values of 0.55 for resource 2. This
species would be characterized as an intermediate competitor for resources 1 and 2.

Complementarity level in the initial species pool and the R* model
framework

Initial species pools were generated with varied levels of complementarity (twelve total). Here,
complementarity refers to time-averaged resource use by a self-organized assemblage under
conditions of resource supply fluctuation over an annual cycle. Assemblages that are able to
use more resources, i.e., draw down ambient resource concentrations to lower levels, are con-
sidered more complementary.

To provide a mechanistic understanding of how complementarity in the assemblage affect-
ed other characteristics of the self-organized assemblage (discussed further below), species
were analyzed based on one of their life-history traits, kg (recall that the other life history trait
that varied among species was Qg, which was proportional to kg). Along with p,,,,, and v, which
were the same for all species in the assemblage, knowledge of kg enabled determination of R*
values for each species [11, 12, 45]. This was achieved following the equation:

R+ = vk (4)
Hinax =V
Our simulations employed two resources therefore the resource trade-oft space was two-
dimensional.
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Resource 2 (1LM)

As mentioned previously, we employed a proportional resource trade-off when assigning
species specific values of kg for the two resources. Consequently, the distribution of species’ R*s
through a two-dimensional resource trade-off space was linear (see Fig. 3a). Linear distribu-
tions of R*s were not commonly observed in plankton systems, rather distributions of R*s with
a downward curve were more commonly observed [42]. To generate assemblages with a down-
ward-curved distribution of R*s (see representative assemblages in Fig. 3b, c), we transformed
the R*s from a linear distribution into a downward-curved distribution following a simple pro-
cedure described in the next section.

Conceptually, assemblages with linear distributions of R*s through the resource tradeoff
space should use less resources over time compared to assemblages with downward-curved dis-
tributions of R*s through the resource tradeoff space. As mentioned above, we defined comple-
mentarity as the time-averaged resource use by a self-organized assemblage under conditions
of resource supply fluctuation over an annual cycle. Consequently, we now refer to assemblages
with linear distributions of R*s as having the lowest level of complementarity and assemblages
with the greatest downward-curved distributions of R*s as having the highest level
of complementarity.

Shape function and levels of complementarity
The shape function used for manipulating the level of complementarity within an assemblage

followed the form:

y=- (5)
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Fig 3. Representative R* species distributions in the initial pool of 300 populations at the lowest (a), intermediate (b) and highest (c) level of
complementarity.

doi:10.1371/journal.pone.0120673.9g003
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where a was a user defined coefficient that controlled the shape of the curve for the region de-
fined over the intervals x[0,1] and y[0,1]. To illustrate, when a = 0.5 a range of y values from 1
to 0.5 are possible in the interval x[0,1]. The curve of the line in this region dips towards the or-
igin (for example, compare Fig. 3b where the line is “dipped” with Fig. 3a where the line is line-
ar). As a decreases, the lower range of possible y values also lowers, and the grade to which the
curve dips towards the origin becomes more pronounced (for example, compare Fig. 3¢ with
Fig. 3b). Using a polynomial fitting function that was a part of a commercial software package
(The Math Works, Inc.), the life-history traits of the populations in the initial species pool were
transformed so that their distribution through the trade-off space matched the curve of the
shape function.

In this research, 12 levels of assemblage complementarity were explored. These corre-
sponded to a values of 0.99 (lowest complementarity level), 0.82, 0.66, 0.50, 0.39, 0.28, 0.17,
0.13,0.09, 0.05, 0.03 and 0.01 (highest complementarity level). These values for a resulted in
regular spaced resource trade-off curves through the resource trade-off space. For each comple-
mentarity level, 100 self-organized assemblages were generated. Here, the number of replica-
tions was determined by calculating the average and standard deviation of our assemblage
characteristics of interest (see further below) with each additional simulation. We stopped rep-
lication at 100 because the means and standard deviations for the assemblage characteristics of
interest no longer varied with additional simulations. In total, 1200 simulations
were performed.

Prior to the simulations mentioned above, a low amount of noise was added to each life his-
tory trait not exceeding 0.04. This is why the species’ R*s do not line up exactly along the re-
source trade-off curves shown in Fig. 3. In a natural system, it is not likely that R*s would line
up exactly on a line through the resource trade-off space. Adding some noise to ks and Qg
added realism to the model. In this research, we did not explore the relationship between the
amount of noise added to the life history traits and the assemblage characteristics of interest.

Model initialization

Initial population densities for each species were the same for all simulations, i.e., N = 0.1 (x10°
cells liter ). Initial resource concentrations were 2 M for resource 1 and 20 yM for resource 2.
Parameter constants included total flushing and maximum specific reproductive growth rate,
which were v = 0.25 d™" and p,,ux = 2 d”'. As mentioned previously, values for ks were within
the range 0.04 and 1.0 (uM), and values for Qg ranged within 0.04 and 1.0 (10°° pmole cell ™).
All parameterizations were within the range of what is typical for phytoplankton assemblages
and pelagic environments [14, 43].

Assemblage characteristics of interest

For purposes of this research, eight characteristics were determined for each self-organized
phytoplankton assemblage. These included time-averaged richness (number of coexisting spe-
cies), evenness (based on biomasses of co-occurring populations), total biomass (a sum of co-
existing populations’ cell density, in units of x10° cells liter™"), degree of overyielding, species
interactions, length of the resource trade-off space exploited, and resource utilization. Here,
‘time-averaged’ means that the characteristic of interest was based on either the population
densities or ambient resource concentrations averaged over the last year of the 15-year period.
The simulated period on which to focus our analyses (15" year) was determined by observing
a recurrent annual cycle in population dynamics [41], thus minimizing potential effects of tran-
sient dynamics common during the initial years of the simulations.
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Total biomass (O7) and species richness (S) were the total number of cells present and the
number of coexisting species respectively. An evenness index (J) was determined following Pie-
lou [46], which was:

H/

= 1n(s)

(6)

H =— Zpi ln(Pi) (7)

where H’ was a diversity index and p; was the probability that any given cell was species i [47],
and other parameters were the same as previously defined.

The maximum deviation yield (D,,,,,), an indicator of transgressive overyielding when >0
(i.e. the yield of the mixture exceeds that of the most productive monoculture), was determined
following:

Oy — max(M,)

D =
max max(M,)

(8)
where Or was the same as previously defined and max(Mi) was the population density of spe-
cies i observed in the most productive monoculture under the same conditions as the self-orga-
nized assemblage [30].

Not all species in an over-yielded assemblage contributed to the overyielding. To determine
which species contributed to overyielding in our self-organized assemblages, and the degree to
which they contributed, the species-specific yield exponent (y;) was calculated using:

=105 (1) ©)

i

where O; was the population density for species i observed in the self-organized assemblage
and M; was the population density for species i observed in a monoculture under the same con-
ditions as the self-organized assemblage [48, 49].

The deviation yield total (D7) is a measure of the proportional deviation of the observed
total yield from its expected value. This is a standardized way to compare the overall perfor-
mance of a mixture with its expectation in the absence of species interactions. Thus larger val-
ues indicate greater species interactions. This metric was determined following:

_0,—E,

E, :‘f)Mi (12)
.1
P=3 (13)

where O was the same as previously defined, Er was the sum of the expected probabilities
from monocultures, E; was the expected probability for each species based on monoculture, p
was the expected probability that any given cell belongs to a population assuming all
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populations were evenly represented in the total number of coexisting populations, and M; was
the same as previously defined [30].

The length of the resource trade-off space exploited was defined simply as the distance be-
tween the two species at either extreme of the resource trade-off curve, which we will now call
R*distance. This was calculated using the Pythagorean Theorem. Here, R*distance was simply
the hypotenuse of the triangle formed when the distance between the R*s for resource 1 of the
two extreme species and the distance between the R*s for resource 2 of the two extreme species
formed the legs of the triangle.

Finally, resource utilization was determined by averaging the concentration of a resource
over the last year of the simulation, where lower averaged resource concentration reflected
greater use of that resource. We calculated this for resource 1 and 2.

Statistics

We employed 3-way ANOVAs to partition the variance of each of the assemblage characteris-
tics (time-averaged richness, evenness, total biomass, degree of overyielding and species inter-
actions) between the explanatory variables (resource supply reversal mode, noise level,
complementarity level, and their interactions). This analysis was not used for hypothesis test-
ing as p-values are bound to be minuscule due to increased sample sizes. Instead the F-ratios
were used as a quantitative measure of the amount of variability explained by each explanatory
variable (Table 1). Guided by ANOVA results, we performed two principal component analy-
ses, the first using simulation results from the sudden reversal scenarios and the second using
simulation results from the gradual reversal scenarios.

Results

In almost all simulations, species-rich assemblages emerged from the process of self-organization
(Fig. 4a). Here, species-rich refers to a condition where the number of coexisting populations
was greater than the number of limiting resources. This occurred regardless of the mode of rever-
sal in the resource supply concentrations, and in general, regardless of the amount of noise ap-
plied to the resource supply concentrations. Exceptions occurred in the sudden reversal
scenarios when complementarity level was low and the amount of noise in the resource supply
was 0-80%.

Table 1. F-ratios resulting from Analysis of Variance on the effects of fluctuation type, noise and complementarity levels and their interactions on
multiple assemblage characteristics (e.g. biomass, richness, etc).

Df
Main effects A:Reversal mode 1
B:Noise 2
C:Complementarity 11
Interactions AB 2
AC 11
BC 22
ABC 22

F-Ratio
Species richness Evenness Biomass Dmax Dy R* distance R1 min R2 min
5094 809 76284 1774 1762 1004 831 628
1202 326 260 482 703 227 5262 13216
161 11 14366 2718 364 1207 21 11
8 154 24 30 439 136 404 252
223 115 5256 241 349 69 6 8
88 22 21 8 66 14 6 13
13 81 7 32 95 20 11 14

Reversal mode refers to the sudden and gradual mode of reversal of the two resources, noise refers to the three noise levels employed (zero, 0-20%, and
0-80%), and complementarity refers to the 12 complementarity levels.

doi:10.1371/journal.pone.0120673.t001
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doi:10.1371/journal.pone.0120673.9g004

The mode of reversal in the resource supply concentration explained the most variation in
time-averaged richness and evenness. This was followed by the amount of noise in the resource
supply concentrations, with the level of complementarity explaining the least amount of vari-
ability in these assemblage characteristics (Table 1).

For time-averaged richness, when the mode of reversal in the resource supply concentra-
tions was sudden, the highest time-averaged richness was ~12. When the mode of reversal was
gradual, the highest time-averaged richness was ~19 (Fig. 4a). Adding noise to the resource
supply concentrations at the 0-20% amount had little effect. But adding noise at the 0-80%
amount reduced the time-averaged richness by as much as 50%. The greatest differences be-
tween sudden and gradual reversal modes in resource supply concentrations occurred when
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complementarity level was low, where time-averaged richness was 2- to 3-fold greater in the
gradual resource supply reversal.

The relationship between complementarity level and time-averaged richness also varied be-
tween sudden and gradual reversal modes in the resource supply concentrations (Fig. 4a). For
scenarios where the mode of reversal was sudden, the relationship was unimodal. In those sce-
narios, the complementarity level where time-averaged richness maxima occurred shifted to-
wards higher levels of complementarity as the amount of noise increased. This shift came
about because of the large decreases in richness that occurred at lower complementarity levels
with the 0-80% added noise. This latter trend weighted heavily on principal component 2
(~28% of total variability) in the PCA analysis focused on sudden reversal scenarios (Fig. 5).

For scenarios where the mode of reversal in the resource supply concentrations was gradual,
and with no noise or 0-20% noise in the resource supply concentrations, the relationship with
complementarity level was linear with a negative slope (Fig. 4a). That is, lower time-averaged
richness occurred at higher levels of complementarity. When noise in the resource supply con-
centrations was 0-80%, the relationship became curvilinear (or weakly unimodal) where the
high time-averaged richness values previously observed at low complementarity levels did not
occur. This trend weighted heavily on principal component 1 (~48% of total variability) in the
PCA analysis focused on gradual reversal scenarios (Fig. 6).

For time-averaged evenness, the highest and lowest values of ~0.85 and ~0.50 occurred
when the mode of reversal in the resource supply concentrations was sudden (Fig. 4b). When
the mode of reversal was gradual, the highest time-averaged evenness observed was ~0.75 and
the lowest observed was ~0.55. Only addition of noise to the resource supply concentrations at
the 0-80% amount had a pronounced effect, and this was only observed when the mode of re-
versal in the resource supply concentrations was sudden and complementarity level low to in-
termediate. Under these scenarios, an ~73% increase in time-averaged evenness occurred
compared to similar sudden reversal scenarios with no noise and 0-20% noise in the resource
supply concentrations.

The shape of the curve describing the relationships between complementarity level and
time-averaged evenness varied depending on the mode of reversal in the resource supply con-
centrations (Fig. 4b). When resource supply reversals were sudden, the relationship was con-
caved. The higher evenness values at higher levels of complementarity in these simulations
weighted heavily on principal component 1 (Fig. 5, ~57% of total variability). When resource
supply reversals were gradual, the relationship was unimodel. This resulted in ~45% greater
time-averaged evenness when the mode of reversals were gradual and the level of
complementarity intermediate.

Concerning time-averaged biomass, the mode of reversal in the resource supply concentra-
tion again explained the most variance. But different from above, the mode of reversal was fol-
lowed by the level of complementarity, then the amount of noise in the resource supply
concentrations, as variance explanatory factors (Table 1). In scenarios where the mode of re-
versal in the resource supply concentrations was sudden, maximum time-averaged biomass
was ~28 x10° cells liter". When the mode of reversal was gradual, the time-averaged biomass
maximum was ~85% greater, ~52 x10° cells liter ! (Fig. 7a). In all scenarios, the shape of the
curve describing the relationship between complementarity level and time-averaged biomass
was exponentially increasing where minima of ~18-20 x10° cells liter ' occurred at the lowest
levels of complementarity. This trend weighted heavily on the first principal component in the
PCA analyses for sudden and gradual reversal scenarios (~57% and ~48% of total variability,
respectively) (Figs. 5 and 6).

Different from three assemblage characteristics mentioned above, the level of complemen-
tarity explained the most variance in time-averaged overyielding. The level of complementarity
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Simulation scenarios are identified using a numbering scheme where the first two digits identify the level of
complementarity (‘99 lowest level, ‘01’ highest level) and the second two digits identify the level of noise in
the resource supply concentrations (‘00’ means no noise, ‘20’ means 0 to 20% noise, and ‘80’ means 0 to

80% noise).

doi:10.1371/journal.pone.0120673.g005
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80% noise).

doi:10.1371/journal.pone.0120673.g006
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doi:10.1371/journal.pone.0120673.9g007

was followed closely by the mode of reversal in the resource supply concentrations, then the
amount of noise in the resource supply concentrations, as variance explanatory factors

(Table 1). The lowest levels of complementarity resulted in the greatest values of time-averaged
overyielding, where at the most they were 6- to 7-fold greater than time-averaged overyielding
at the highest levels of complementarity (Fig. 7b). This trend weighted heavily on the first prin-
cipal component in the PCA analyses for sudden and gradual reversal scenarios (~57% and
~48% of total variability, respectively) (Figs. 5 and 6). The mode of reversal in the resource sup-
ply concentrations influenced the shape of the curve describing the relationship between com-
plementarity level and time-averaged overyielding, where scenarios with sudden reversals
showed a curvilinear relationship with maxima ~0.25-0.32, and scenarios with gradual rever-
sals showed a linear relationship with a negative slope and maxima ~0.45-0.47. These maxima
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occurring in scenarios with gradual reversals were ~75% greater than those occurring in the
sudden reversal scenarios. The amount of noise in the resource supply concentrations only no-
tably influenced time-averaged overyielding (decreased by ~28%) in scenarios where the mode
of reversal was sudden and complementarity was low, and only when the amount of noise was
0-80%.

Like richness and evenness, the mode of reversal in the resource supply concentration ex-
plained the most variance in time-averaged species interactions, followed by the amount of
noise in the resource supply concentrations, then followed by the level of complementarity
(Table 1). The highest and lowest time-averaged species interaction values of ~1.3 and ~0.2 oc-
curred when the mode of reversal in the resource supply concentrations was sudden. When the
mode of reversal was gradual, values were relatively unchanging, ~0.5 (Fig. 8a). Only addition
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doi:10.1371/journal.pone.0120673.9008
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of noise to the resource supply concentrations at the 0-80% amount had a pronounced effect,
and this was only observed when the mode of reversal in the resource supply concentrations
was sudden and complementarity level low to intermediate. Under these scenarios, an ~66%
decrease in time-averaged species interactions occurred compared to similar sudden reversal
scenarios with no noise and 0-20% noise in the resource supply concentrations. This trend of
higher species interactions at lower levels of complementarity when there was no noise or
0-20% noise in the resource supply concentrations weighted heavily on principal component 1
(~57% of total variability) in the PCA analysis focused on sudden reversal scenarios (Fig. 5).
When the mode of reversal in resource supply concentrations was sudden, the relationship be-
tween complementarity level and time-averaged species interactions was either linear with a
decreasing slope (no noise and 0-20% noise amounts) or unimodel (0-80% noise amount).
When the mode of reversal in resource supply concentrations was gradual, time-averaged spe-
cies interactions was insensitive to complementarity level.

Like time-averaged overyielding, the level of complementarity explained the most variance
in time-averaged R*distance. The level of complementarity was followed closely by the mode of
reversal in the resource supply concentrations, then the amount of noise in the resource supply
concentrations, as variance explanatory factors (Table 1). The lowest levels of complementarity
resulted in the greatest values of time-averaged R*distance (Fig. 8b), where at the most they
were 19-fold greater than time-averaged R*distance at the highest levels of complementarity
(Fig. 8b). This trend weighted heavily on the second principal component in the PCA analyses
for sudden reversal scenarios (~28% of total variability, Fig. 5), and on the first principal com-
ponent in the PCA analyses for gradual reversal scenarios (~48% of total variability, Fig. 6).
The shape of the curve describing the decreasing relationship between complementarity level
and time-averaged R*distance was similar between the two mode of reversal scenarios, and the
amount of noise in the resource supply had little effect.

The amount of noise in the resource supply explained the most variance in time-averaged
resource exploitation (RImin and R2min), followed by the mode of resource reversal, then by
the level of complementarily (Table 1). Resource exploitation was greatest when noise in the re-
source supply was highest (Fig. 9a, b), a relationship showed strongly on the second principal
components for both sudden and gradual resource supply reversal scenarios (Figs. 5 and 6).
When considering each of the noise levels independently, resource drawdown was more con-
sistent and lower in the sudden resource reversal scenarios compared to the gradual resource
reversal scenarios. A trend between resource drawdown and complementarity level was only
observed at the highest noise level in simulations where resource reversals were gradual.

Finally, the level of complementarity influenced the distribution of species along the re-
source trade-off curve (Fig. 10). For example, a more even distribution of species across the
resource trade-off curve tended to emerge during self-organization at low levels of comple-
mentarity, while species tended to cluster at either extreme of the resource trade-off curve
when complementarity was high. Lastly, species with R*s positioned closer to the origin
produced higher yields when in monoculture under these recurrently fluctuating resource
supplies.

Discussion

High species richness resulted in almost all of our simulations, which is consistent with theory
regarding fluctuating environments [11, 12] and many previous studies focused on phyto-
plankton [50-52]. Exceptions only occurred when transitions in the resource supply were sud-
den, noise level in resource supply concentration was high, and complementarity was low. In
those exceptional simulations, two species emerged from the self-organization process. Because
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high richness was the norm in our simulations, it is likely that in coastal systems characteristic
of multiple limiting resources [5-10] the process of recurrent resource fluctuations contributes
to species richness.

Richness was higher in our simulations when transitions in resource supply concentrations
were gradual compared to sudden. Intuitively, slower change in resource supply concentrations
would lead to a slower progression of the system condition along the resource trade-off curve.
In other words, available resources would occur at ratios other than the conditions at the ex-
tremes of the resource trade-off curve for greater periods. This likely enabled species character-
istic of intermediate R*s to perform better in simulations where transitions in resource supply
concentrations were gradual.

Interestingly, richness was lower when complementarity among the members of an assem-
blage was high. The reasons for this were two-fold. First, species clusters emerged at either
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extreme of the resource trade-off curve when complementarity was high. As shown previously
[33, 53], and also in our model, species occurring within clusters have similar competitive abili-
ties for at least one of the resources. Species unassociated with a cluster experience intense com-
petition with species associated with clusters, and are frequently excluded [53]. That is also
what happened in our simulations during the period of self-organization when complementari-
ty was high. Our model adds to this understanding by showing that the emergence of species
clusters leads to an overall decrease in competitive interactions after the process of self-
organization is completed, especially when transitions in resource supply concentrations are
sudden. The second reason for lower richness at high complementarity is a compression of the
niche. The distance between R*s of species at the extremes of the resource trade-off curve de-
creased through the process of self-organization, thereby lessening the chance for niche-
partitioning.

In simulations where transitions in resource supply were sudden, lower richness occurred
with low complementarity. Lower richness also occurred with low complementarity in simula-
tions where noise was applied to the resource supply concentration. This relationship can be
explained by the poorer performance in monoculture of species with intermediate R*s from as-
semblages with lower complementarity compared to those of higher complementarity. For ex-
ample, time-averaged biomass was ~5 x 10° cells liter for species of intermediate R*s when
complementarity was at its lowest level, while time-averaged biomass was ~20 x 10° cells liter !
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for species of intermediate R*s when complementarity was at its highest level. Species with in-
termediate R*s that are poor performers in monoculture would not likely do well in a mixed as-
semblage exposed to dynamic shifts in the supply of resources. This explains why richness was
lower in our simulations with sudden transitions in resource supply concentrations, and in our
simulations with noise applied to the resource supply concentrations.

The differing processes acting to lower richness at either extreme of the complementarity
gradient explored here (emergence of species clusters and niche compression when comple-
mentarity was highest, and poor-performing species of intermediate R*s when complementari-
ty was lowest) led to a unimodel relationship between species richness and complementarity
level. The exception to this observation was when transitions in resource supply concentrations
were gradual and no noise was applied to the resource supply concentrations. Our theoretical
observation of a unimodel relationship between species richness and complementarity in most
of our scenarios is not consistent with some previous studies reporting a positive relationship
[28, 54, 55]. It may be, however, that those previous studies did not investigate this relationship
in systems characteristic of species clusters or where the niche is compressed. In other words,
our theoretical observations may have extended the level of complementarity beyond what
those previous studies addressed.

The highest biomasses occurred when complementarity levels were highest. Interestingly,
only in the scenarios were transitions in resource supply concentration were gradual and noise
in the resource supply concentration high did accumulated biomass relate to resource draw-
down. This demonstrates that in recurrently fluctuating environments the effect of comple-
mentarity among members of an assemblage can be realized even when resources are not fully
exploited. To the best of our knowledge, this is the first reporting of this phenomenon.

In all of our simulations, transgressive overyielding resulted. Two conditions contributed to
this finding. First, the recurrent environmental fluctuations did not favor accumulation of bio-
mass in monocultures. And second, matured assemblage structures likely have a greater inci-
dence of overyielding than immature assemblages. Regarding monoculture performance, a
fluctuating ratio in the resource supply creates an environment where ambient nutrients oscil-
late towards and away from the monoculture’s optimal resource ratio. Accumulation of bio-
mass would likely lessen over time if the ambient resource ratio diverged a great distance from
the monoculture’s optimum. In an assemblage, however, there are many species distributed
along a resource gradient. As the ambient resource ratio changes, a succession of species ensues
allowing optimal use of resources [41]. Because of this, resources would be used to a greater ex-
tent and biomass accumulation of the assemblage would be greater over time. This mechanism
contributed to the consistent observation of transgressive overyielding in our simulations. Re-
garding the state of assemblage maturation, long-term field experiments suggested comple-
mentarity effects grew stronger through time as communities developed [25-27]. It was also
suggested that strong diversity effects and resource partitioning may not fully develop over
short periods, thus reducing the magnitude of overyielding [56]. In our simulations, transgres-
sive overyielding emerged as a result of self-organization over a period of 15 years, encompass-
ing many 1000s of generations. It seems, therefore, that overyielding may be more likely in
systems characterized by recurrent environmental fluctuations that have been acting in the
long term, such as coastal lagoons, estuaries and bays.

Paradoxically, transgressive overyielding in the self-organized assemblage was least at the
highest levels of complementarity in the initial species pool, and consequently least when bio-
mass was highest. Recall, few to no species of intermediate R*s comprised these assemblages.
The assemblage members were mostly species within clusters located nearer to the extremes
of the resource trade-off curve. These species were characteristic of lower R* for either of the
resources and thus performed better in monoculture relative to species with intermediate R*s
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(this led to higher values of M; in equation 8, thereby reducing the values of D,,,,,). Conse-
quently, the degree of transgressive overyielding was lessoned. These model observations, i.e.,
inverse relationship between overyielding and biomass, underscores the challenges of using
the overyielding metric to compare assemblages self-organized from different initial

species pools.

Our findings illustrate how the mode of transition between reproductive growth limiting
nutrients in fluctuating environments might be important to various aspects of phytoplankton
assemblages. Furthermore, our findings illustrate how the effects of human population growth
and associated watershed development (i.e., construction of dams and increased interbasin
water transfers) might be complex. For example, with human population growth and develop-
ment a shift from sudden towards gradual transitions in resource supplies is anticipated [23,
24]. As mentioned previously, this would occur because during reservoir operations peak in-
stream flows tend to be lower relative to historical (pre-dam) conditions and low in-stream
flows tend to be elevated, resulting in a less dynamic flow regime [23, 24]. Similarly, during in-
terbasin water transfers flow through the watershed receiving the water can be elevated, while
flow through the watershed donating the water can be reduced, with both scenarios resulting in
a less dynamic condition.

The possible effects of shifts towards gradual resource supply fluctuations from sudden fluc-
tuations on phytoplankton assemblages will be dependent, in part, on the level of complemen-
tarity among species comprising assemblages. For example, if complementarity is low, then an
increase in species richness with a possible decrease in species interactions might ensue, with
biomass remaining nearly the same and an increase in the level of overyielding. If complemen-
tarity is high, then slight increases in richness along with slight decreases in species interactions
might follow, but now with large increases in biomass and similar levels of overyielding. If
complementarity is intermediate [42], then similar richness (sometimes slight increases) along
with decreases in species interactions might result, along with an increase in biomass and simi-
lar levels of overyielding.

While these findings provide insights into how the mode of fluctuation in resource supply
influences phytoplankton, there is still much to be learned by building into this model frame-
work the influences of temperature, stratification, light, grazing and other processes important
to phytoplankton assemblage structure. It would also be beneficial to include variable maxi-
mum reproductive growth rates and more dynamic inflows. There will certainly be interaction
effects, as many of these processes are not independent from each other, which underscores the
importance of applying numerical models to aid in unraveling this complexity. From the work
presented here, it seems very likely that an understanding of the processes that influence the
level of complementarity in phytoplankton assemblages will be paramount, enabling a better
understanding of how human population growth and watershed development will impact envi-
ronments of the coastal zone, such as lagoons, estuaries and bays. This information will also
likely be useful for landscape-scale management approaches aimed at promoting healthy coast-
al ecosystems, as the timing and magnitude of in-stream flows in watersheds replete with reser-
voirs can be regulated, to a degree.

Supporting Information

S1 Assemblage Data. Shown in Figs. 4, 7, 8 and 9 where the level of complementarity was
determined: a) with a = 0.99, b) with a = 0.82, ¢) with a = 0.66, d) with a = 0.50, e) with
a=0.39, f) with a = 0.28, g) with a = 0.17, h) with a = 0.13, i) with a = 0.09, j) with a = 0.05,
k) with a = 0.03, and 1) with a = 0.01.

(XLSX)
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