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Antimicrobial resistance (AMR) is a global health and development threat. In particular, multi-drug resis-
tance (MDR) is increasingly common in pathogenic bacteria. It has become a serious problem to public
health, as MDR can lead to the failure of treatment of patients. MDR is typically the result of mutations
and the accumulation of multiple resistance genes within a single cell. Machine learning methods have a
wide range of applications for AMR prediction. However, these approaches typically focus on single drug
resistance prediction and do not incorporate information on accumulating antimicrobial resistance traits
over time. Thus, identifying multi-drug resistance simultaneously and rapidly remains an open challenge.
In our study, we could demonstrate that multi-label classification (MLC) methods can be used to model
multi-drug resistance in pathogens. Importantly, we found the ensemble of classifier chains (ECC) model
achieves accurate MDR prediction and outperforms other MLC methods. Thus, our study extends the
available tools for MDR prediction and paves the way for improving diagnostics of infections in patients.
Furthermore, the MLC methods we introduced here would contribute to reducing the threat of antimicro-
bial resistance and related deaths in the future by improving the speed and accuracy of the identification
of pathogens and resistance.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Antimicrobial resistance (AMR) is rapidly increasing and is,
therefore, one of the greatest threats to global health and also
causes significant economic problems. According to WHO esti-
mates, without countermeasures, up to 10 million deaths will be
caused by AMR in the future, with immense costs to the healthcare
system of approximately $100 trillion by 2050 [1]. In particular,
infection due to multi-drug resistance (MDR) pathogens has
become most threatening to public health, as MDR can lead to fail-
ure of treatment of patients [2,3]. For instance, the emergence of
MDR in Escherichia coli (E. coli) has become one of the global health
concerns [4–6]. In general, bacteria are resistant to antibiotics by
spontaneous mutations in existing genes or by the acquisition of
extraneous genes [6,7]. Many previous studies investigating AMR
have focused on well-known resistance genes or mutations in
well-known genes, such as mutations in the gyrA gene and parC
gene in E. coli [8,9]. However, there is a lack of AMR studies based
on overall mutations without previous knowledge.

While antimicrobial susceptibility testing (AST) is widely used
for AMR profiles in clinical practice, machine learning models have
been shown to produce highly reliable predictions in a shorter
turnaround time. Typically, these machine learning models com-
bine sequencing data with antibiotic resistance databases with
phenotypic information [10,11]. For instance, Yang et al., [12] and
Kouchaki et al., [13] used different machine learning algorithms,
namely support vector machine (SVM), logistic regression (LR),
and random forest (RF) to predict AMR from whole-genome
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sequencing data and achieved high accuracy prediction. Other
approaches also included deep learning to predict new antibiotic
drugs, AMR genes, and AMR peptides [14–20]. However, all of
these studies are based on single drug resistance information and
do not take into account the MDR information of the bacteria.

Multi-label classification (MLC) offers a potential solution for
AMR prediction based on MDR information. Traditionally, multi-
label problems are transformed into single-label problems [21].
For instance, the widely known binary relevance (BR) approach,
is a simple and straightforward method that treats each label as
an independent binary problem [22]. One of the limitations of
the BR approach is that it does not take into account the dependen-
cies between the labels [23]. Unlike BR, the classifier chain (CC)
takes into account the correlation among labels and uses the pre-
dicted results from the previous classifiers as an additional input
for the following classifier [24]. Obviously, the order of the CC
affects the prediction accuracy. Thus, the ensemble of classifier
chains (ECC) was proposed, which contains several CCs with differ-
ent orders and can be applied to study the dependencies between
labels [23,24]. CCs and ECCs have been used for cross-resistance
prediction in HIV based on protein sequences of the HIV-1 reverse
transcriptase [25] and protease [26], however, it has never been
used with genomic data and MDR of bacteria. Other multi-label
approaches include the label powerset (LP) method, which consid-
ers the dependency among labels, and each label combination is
considered as a class [21]. Random label space partitioning with
label powerset (RD) method is another effective ensemble method,
which is based on label powerset with a random subset of k labels
[23,24].

In our study, we gave the applications of MLC methods on
multi-drug resistance prediction. We aimed at identifying sec-
ondary mutations that contribute to the resistance directly or indi-
rectly, e.g., compensatory mutations. We did not include the
known resistance genes. Our approach does not need any AMR
expert knowledge and can also predict resistance even without
knowing the resistance genes by identifying secondary mutations.
The results demonstrated that the ECC model can significantly
improve overall resistance prediction in bacteria compared to the
other four MLC methods. MLC models will improve patient care,
in particular the treatment of patients, reduce the threat of antimi-
crobial resistance and related deaths in the future, and improve the
speed and accuracy of the identification of pathogens and
resistance.
2. Materials and methods

2.1. Dataset

In our analysis, we used 987 whole-genome sequencing (WGS)
data of E. coli strains with resistance information for four antibi-
otics, namely ciprofloxacin (CIP), cefotaxime (CTX), ceftazidime
(CTZ), and gentamicin (GEN). These data were collected by our
partner institution, the University of Giessen. The isolates were
obtained from human and animal clinical samples. Antimicrobial
susceptibility testing was performed using the VITEK� 2 system
(bioMérieux, Nürtingen, Germany) and interpreted following
EUCAST guidelines. DNA isolation and whole-genome sequencing
was performed as described in Falgenhauer et al. [27].

In order to use MLC, the isolates need to be filtered for missing
antibiotic resistance information. The final dataset with complete
MDR information contains 809 E. coli strains (see Table 1). CIP is
a fluoroquinolone and is widely used to treat infections with
Gram-negative bacteria, e.g., gastroenteritis, respiratory tract
infections, or urinary tract infections [28]. CTX and CTZ are
broad-spectrum antibiotics from the class of cephalosporins and
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are widely used to treat infections of Gram-positive and Gram-
negative bacteria, such as meningitis, pneumonia, urinary tract
infections, sepsis, and gonorrhea [29,30]. GEN is an aminoglycoside
and is widely used to treat various infections of Gram-negative
bacteria, including meningitis, pneumonia, urinary tract infections,
and sepsis [31].

2.2. Dataset pre-processing and encoding

The pre-processing step of raw WGS data refer to our previous
study [20]. Briefly, we filtered bad quality reads by fastp (v0.23.2)
software [32] and then mapped the clean reads to E. coli reference
genome (E. coli K-12 strain. MG1655) through BWA-MEM with
default parameters [33]. We called single nucleotide polymor-
phisms (SNPs) variants using bcftools (v1.14) via ‘call’ function
with default parameters [34,35]. We extracted reference alleles,
variant alleles and their positions, and merged all isolates based
on the position of reference alleles. We retained the alleles existing
variant more than half in samples. Finally, we got an SNP matrix,
where the rows represent the samples and columns are the variant
alleles. We utilized one-hot encoding to transform the SNP matrix
into a binary matrix for subsequent machine learning.

2.3. Multi-label classification

In the current study, we used BR, CC, ECC, LP, and RD for the
multi-label classification of MDR in bacteria. BR is typically used
as a baseline model to compare multi-label classification models.
Let L :¼ fk1; :::; kmg with m > 1 be a finite set of class labels (here:
resistance for the four antibiotics), and let X be the instance space,
i.e., the SNPs. The training set S in MLC is then defined as
S :¼ fðx1; y1Þ; :::; ðxn; ynÞg, generated independently and identically
according to a probability distribution PðX; Þ on X � Y . Y is the set
of possible label combinations, i.e., the powerset of L (Fig. 1A).

BR divides the dataset with L labels into L binary classification
problems (Fig. 1B). Accordingly, we split the data into four binary
classification problems, one for each antibiotic (CIP, CTX, CTZ,
and GEN). In contrast, the CC approach links the L binary classifiers
into a ‘‘chain” such that the output prediction of one classifier is
used as an additional input for all subsequent classifiers, which
overcomes the disadvantage of not considering dependencies
between labels and captures possible dependencies between the
labels (Fig. 1C). The performance of CC depends heavily on the
order of the chain, thus, Read et al., [23] proposed the use of ECC,
which aggregates several chains with different orders by majority
vote (Fig. 1D). The LP approach transforms a multi-label problem
into a single-label multi-class problem, which is trained on all
unique label combinations found in the training data [36]
(Fig. 1E). The RD method divides the label space into partitions of
size k, trains an LP classifier per partition, and predicts the testing
data by aggregating the result of all LP classifiers (Fig. 1F). It is
important to note that any standard method for binary classifica-
tion can be used in these multi-label approaches. In the current
study, we evaluated RFs, LR, and SVMs for multi-label classification
of MDR in bacteria.

2.4. Evaluation metrics

In MLC, the predictions for each instance are a collection of
labels, and the performance of classifiers can be calculated through
the average score of an evaluation metric or directly by comparing
the scores for each class. In this study, we employed seven differ-
ent metrics that are widely used to evaluate the performance of
the classifiers including hamming loss, 0/1 loss, F-score, accuracy,
precision, recall, and Jaccard similarity.



Table 1
Overview of the dataset.

Antibiotics CIP CTX CTZ GEN

Resistant 366 358 276 188
Susceptible 443 451 533 621

Fig. 1. Transformation methods of multi-label classification problems. (A) One multi-label dataset. vi 2 xis a training instance. (B) Binary relevance (BR) transforms the multi-
label dataset with m labels into m independent binary datasets. (C) The process of classifier chain (CC) for multi-label data. (D) The possible number of label orders for
ensemble classifier chains (ECC). (E) The transformation of the multi-label dataset by label powerset (LP). Labels with different colors represent the different combinations of
labels. (F) The transformation of a multi-label dataset by random label space partitioning with label powerset (RD). Labels with different colors represent the different
combinations of labels.
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The Hamming loss and 0/1 loss are commonly used for the eval-
uation of MLC models [37]. For Hamming loss, it is defined as the
fraction of labels that are incorrectly predicted. The 0/1 loss simply
checks whether the complete label subset is predicted correctly or
not, represented as the percentage of incorrectly predicted labels.

Accuracy is defined as the proportion of correct predictions,
while precision is defined as the number of resistant samples
divided by the overall number of samples that are predicted to
be resistant. Recall (also called sensitivity) is defined as the num-
ber of correctly predicted resistant samples divided by the total
number of resistant samples. The F-score can be calculated as the
weighted average of precision and recall. Jaccard similarity indi-
cates the overlap between the ground truth and the predictions,
focusing on true positives and ignoring true negatives [38]. The
classifiers were trained and evaluated based on five-times 5-fold
cross-validation, which means the dataset is randomly divided into
5 equal sub-groups, and one of the groups is used as the test set
and the rest are used as the training set. The model is trained on
the training set and scored on the test set. Then the process is
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repeated until each unique group has been used as the test set. Sta-
tistical significance has been calculated based on the Wilcoxon
signed-rank test and T-test.
3. Results

3.1. Performance of different MLC methods on RF base classifier

We firstly constructed five MLCmodels (BR, CC, ECC, LP, and RD)
based on RF base classifier for MDR prediction of four antibiotics
(CIP, CTX, CTZ, and GEN). We compared the performance by F-
score, Precision and Recall, and Jaccard score. As shown in Fig. 2,
the ECC model has the highest F-score, Precision and Recall, and
Jaccard score for resistance prediction against four antibiotics.
For instance, the ECC model reached a F-score, precision, recall,
and Jaccard score on the CIP dataset of 0.93 ± 0.04, 0.94 ± 0.05,
0.98 ± 0.03, and 0.92 ± 0.06, respectively. Especially, the ECC model
significantly outperformed the BR, CC, LP, and RD for predicting



Fig. 2. Performance of different MLC methods with RF base classifiers for resistance prediction for each antibiotic. (A) F-scores, (B) Precision, (C) Recall, and (D) Jaccard score
of five MLC methods with RF base classifiers for predicting resistance against each antibiotic. ⁄ p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no significance.
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resistance against CIP, CTZ, and GEN based on the F-score metric.
Moreover, we observed from the Recall metric that the perfor-
mance of the ECC model is significantly better than other models,
which represents the ECC model has a better sensitivity to detect
resistant samples. Besides, the ECC model reached, in general, the
highest accuracy, as well as, lowest hamming loss, and 0/1 loss
for RF (Table 2). Taken together, our results indicated that the
ECC models can significantly improve the prediction performance
for MDR prediction in E. coli.

3.2. Performance of different MLC methods on LR base classifier

We also compared the performance of the five MLC methods
(BR, CC, ECC, LP, and RD) on the LR base classifier. We found the
ECC model still got a higher F-score, precision, recall, and Jaccard
score (Fig. 3), which showed the consistent performance of the
ECC model on LR with RF base classifier. The results on F-score sug-
gested that ECC model is significantly better than other models for
CIP, CTZ, and GEN drug, reached 0.94 ± 0.04, 0.80 ± 0.15, and
Table 2
Accuracy, hamming loss, and 0/1 loss of five MLC methods with RF base classifier for
predicting resistance against four antibiotics. Mean ± standard deviations (signifi-
cance label of p-value) are shown in table. The statistical significances were compared
each group to all (base-mean). ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no significance.

MLC Accuracy Hamming Loss 0/1 Loss

BR 0.51 ± 0.07 (ns) 0.20 ± 0.03 (ns) 0.49 ± 0.07 (ns)
CC 0.52 ± 0.07 (ns) 0.20 ± 0.04 (ns) 0.48 ± 0.06 (ns)
ECC 0.72 ± 0.13 (ns) 0.11 ± 0.05 (*) 0.28 ± 0.13 (ns)
LP 0.53 ± 0.08 (ns) 0.11 ± 0.05 (ns) 0.47 ± 0.08 (ns)
RD 0.51 ± 0.09 (ns) 0.21 ± 0.04 (ns) 0.49 ± 0.09 (ns)
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0.64 ± 0.13 (p-value < 0.05). We also found a similar trend in recall
results of the ECC model, and the ECC model achieved a higher sen-
sitivity performance for MDR prediction. Moreover, ECC model sig-
nificantly outperformed other four MLC methods on CIP and GEN
drug based on recall results (0.98 ± 0.03, 0.87 ± 0.23, p-
value < 0.05) and Jaccard score (0.89 ± 0.07, 0.48 ± 0.14, p-
value < 0.05). As well, the ECC model got the highest accuracy, low-
est hamming loss, and 0/1 loss on the LR base classifier (Table 3).
These results demonstrated that the ECC model still has robust
performance for MDR prediction.
3.3. Performance of different MLC methods on SVM base classifier

For SVM, the F-score of ECC model is significantly better than
BR, CC, LP, and RD only for CIP (Fig. 4A) (F-scores of 0.93 ± 0.04,
0.86 ± 0.03, 0.86 ± 0.03, 0.88 ± 0.03, and 0.87 ± 0.04, respectively).
There are, however, no significant differences between BR, CC, LP,
and RD models. In comparison, CC, LP, and RD did not improve
the precision or recall significantly, and in some cases even per-
formed worse compared to the BR (Fig. 4B-C). For the CCs, this
might be due to the known problem of error propagation [39].
We found the same conclusion from Jaccard score that the ECC
model got better performance than the other four MLC methods,
and the Jaccard score of the ECC ranged from 0.42 ± 0.18 for the
drug GEN to 0.88 ± 0.07 for the drug CIP (Fig. 4D). Moreover, the
ECC model based on the SVM base classifier reached consistent
performance with the highest accuracy, lowest hamming loss,
and 0/1 loss for RF (Table 4). In summary, the results based on
the SVM classifier also demonstrated that the ECC models can sig-
nificantly improve the prediction performance for MDR prediction
in E. coli.



Fig. 3. Performance of different MLC methods with LR base classifiers for resistance prediction for each antibiotic. (A) F-scores, (B) Precision, (C) Recall, and (D) Jaccard score
of five MLC methods with RF base classifiers for predicting resistance against each antibiotic. ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no significance.

Table 3
Accuracy, hamming loss, and 0/1 loss of five MLC methods with LR base classifier for
predicting resistance against four antibiotics. Mean ± standard deviations (signifi-
cance label of p-value) are shown in table. The statistical significances were compared
each group to all (base-mean). ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no significance.

MLC Accuracy Hamming Loss 0/1 Loss

BR 0.45 ± 0.08 (ns) 0.24 ± 0.04 (ns) 0.55 ± 0.08 (ns)
CC 0.47 ± 0.08 (ns) 0.23 ± 0.04 (ns) 0.53 ± 0.08 (ns)
ECC 0.65 ± 0.11 (ns) 0.14 ± 0.05 (*) 0.35 ± 0.11 (ns)
LP 0.50 ± 0.08 (ns) 0.23 ± 0.04 (ns) 0.50 ± 0.08 (ns)
RD 0.47 ± 0.07 (ns) 0.24 ± 0.05 (ns) 0.53 ± 0.07 (ns)
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4. Discussion

In our study, we compared five MLC models (BR, CC, ECC, LP,
and RD) based on three base classifiers (RF, LR, and SVM) for
MDR predictions in E. coli and evaluated the performance with
seven different metrics. Our results illustrated that the ECC model
outperforms the other MLC methods and can effectively predict
MDR.

The ECC multi-label classification model has a wide range of
applications, e.g., for cancers, chronic diseases, and viruses. For
instance, Zhou et al., [40] reported that the ECC performed best
in the diagnosis of four diabetic complications. ECCs have also been
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used for cross-resistance prediction in viral infections, e.g., in HIV-
1 [25,26]. Here, we firstly applied ECC models on multi-label drug
resistance prediction based on all mutations, which could con-
tribute to improving the MDR prediction in other model organisms
or poorly known organisms.

Our results also showed that ECC obtained the highest accuracy
in all three base classifiers compared to the other four MLC meth-
ods, which indicates that the ECC model has good scalability, and
can be combined with multiple base classifiers, such as neural net-
works. Among them, the ECCmodel based on RF base classifier per-
forms best compared to LR and SVM, which is consistent with our
previous research results [20].

The performance of five MLC methods on each drug is different.
In general, all MLC methods performed well on CIP drug, and worse
on GEN drug. The comparatively lower performance for GEN may
be based on the fact that bacterial resistance to GEN is predomi-
nantly mediated by plasmids carrying the resistance genes. We
focused here solely on chromosomal sequences of the bacteria
and did not take into account the effect of alterations in other
genetic components on the MDR, like the plasmids, transposons,
and integrons [41,42]. This is one of the limitations of our study.
The other limitation in our study is our MLC models are built only
on four drugs, and we should integrate more types of antibiotics to
further investigate the MDR prediction in the future.



Fig. 4. Performance of different MLC methods with SVM base classifiers for resistance prediction for each antibiotic. (A) F-scores, (B) Precision, (C) Recall, and (D) Jaccard
score of five MLC methods with RF base classifiers for predicting resistance against each antibiotic. ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no significance.

Table 4
Accuracy, hamming loss, and 0/1 loss of five MLC methods with SVM base classifier
for predicting resistance against four antibiotics. Mean ± standard deviations
(significance label of p-value) are shown in table. The statistical significances were
compared each group to all (base-mean). ⁄p < 0.05, ⁄⁄p < 0.01, ⁄⁄⁄p < 0.001, ns: no
significance.

MLC Accuracy Hamming Loss 0/1 Loss

BR 0.37 ± 0.08 (ns) 0.28 ± 0.05 (ns) 0.63 ± 0.08 (ns)
CC 0.39 ± 0.08 (ns) 0.28 ± 0.05 (ns) 0.61 ± 0.08 (ns)
ECC 0.57 ± 0.12 (ns) 0.18 ± 0.07 (ns) 0.43 ± 0.12 (ns)
LP 0.47 ± 0.07 (ns) 0.24 ± 0.03 (ns) 0.53 ± 0.07 (ns)
RD 0.41 ± 0.09 (ns) 0.26 ± 0.05 (ns) 0.59 ± 0.09 (ns)
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5. Conclusions

In summary, our study illustrates five MLC methods based on
three base classifiers that achieved accurate MDR prediction. Our
results suggest ECC is a promising MLC method for MDR identifica-
tion, which could be used as a reference approach for clinical staff
to improve the diagnostics and patient treatments and thus con-
tribute to reducing the threat of antimicrobial resistance and
related deaths in the future.
Data availability

Source codes for data preparation and model training are pro-
vided at Github website https://github.com/YunxiaoRen/Multi_
Label-Classification.
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And the final SNP matrix datasets we used for model training in this
paper are also available at https://github.com/YunxiaoRen/Multi_
Label-Classification.
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