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Abstract

Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory pro-

teins such as transcription factors and chromatin remodelers. These domains play important

roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a

prion-forming yeast transcription factor that contains two homorepeat domains, a polygluta-

mine and a polyasparagine domain. In this work, we report a new phenotype for Azf1p and

identify a large set of genes that are regulated by Azf1p during growth in glucose. We show

that the polyasparagine (polyN) domain plays a subtle role in transcription but is dispensable

for Azf1p localization and prion formation. Genes upregulated upon deletion of the polyN

domain are enriched in functions related to carbon metabolism and storage. This domain

may therefore be a useful target for engineering yeast strains for fermentation applications

and small molecule production. We also report that both the polyasparagine and polygluta-

mine domains vary in length across strains of S. cerevisiae and propose a model for how

this variation may impact protein function.

Introduction

Repeat domains are prevalent in the eukaryotic proteome and are found in 13% of proteins in

yeast, 17% in humans, and 21% in Drosophila. Repeats are commonly found within intrinsi-

cally disordered regions (IDRs), which are protein domains that do not have a single native

fold corresponding to a lowest energy state. Instead, these domains dynamically sample a

number of conformations with similar energies [1]. Despite being historically dismissed as

unimportant due to their lack of three-dimensional structure, repetitive protein domains are

essential for binding, signaling, and functional phase separation. Across eukaryotes, repeats

are enriched in cell-surface and regulatory proteins, such as transcription factors (TFs) and

chromatin remodelers [2]. Repeats enriched in a single amino acid are deemed homorepeats.

Polyglutamine (polyQ) is the most common type of homorepeat in eukaryotic proteins, fol-

lowed by polyasparagine (polyN). While polyQ domains are found across eukaryotes, polyN

domains are rare in vertebrates and found almost exclusively in more primitive invertebrates
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[3]. Synthetic polyN peptides have been shown to mediate aggregation [4,5], but the role of

natural polyN domains in protein function has only been explored in a few cases. For example,

the polyN domain of Pdr1p has been shown to be important for transcriptional activation [6].

Whether or not this function expands to other polyN-containing TFs, such as CCR4, MIT1,

ASG1, HAP4, ABF1, MOT3, AZF1, and RLM1, has not been investigated.

Several polyQ and polyN-containing TFs in yeast (HAP4, AZF1, MOT3, RLM1, CYC8,

MGA1, and SWI1) have been demonstrated to form prions. Prions are proteins that have mul-

tiple conformations, at least one of which is self-templating and epigenetically heritable. Prion-

forming domains (PrDs) are characterized by low-complexity amino acid sequences that are

often rich in N and Q, insensitive to scrambling, and intrinsically disordered in their native

state [7]. Many prion-forming proteins contain repeats that are important to the function of

both the prion and the native protein. Although there is only one bona fide prion in mammals,

PrPSc, screens to identify yeast prions have revealed that they are common in both lab and wild

strains of yeast [8–11]. While the mammalian PrPSc and prion-like proteins are well docu-

mented to cause both infectious diseases and age-related neurodegeneration in mammals [12–

18], there is mounting evidence that yeast prions act as adaptive strategies, especially during

environmental stress. Yeast prions are well-suited to mediate adaptation due to their enrich-

ment in TFs and other regulatory proteins [10,11,19–29]. A screen conducted by Chakrabortee

and colleagues identified nearly 50 novel prion-like proteins in yeast that conferred epigeneti-

cally heritable phenotypes after transient overexpression. In many cases, the prion state

improved yeast growth rate in different environmental stresses, including osmotic and acidic

stress. Like previously identified prions, many of the proteins identified in this screen are TFs

and RNA-binding proteins [10].

Prion-forming TFs have the capacity to impact yeast growth through multiple mechanisms.

These proteins can alter gene expression in both their native and prion states, leading to

changes cellular functions such as metabolism, surface display, and stress tolerance. These pro-

teins are therefore important targets for yeast metabolic engineering. Yeast are used in a wide

range of applications in research, food and drink production, and small molecule production.

Because homorepeat domains are at the intersection of TFs and prions, these domains are par-

ticularly interesting targets for engineering. Target genes of Q-rich TFs in yeast have signifi-

cantly higher levels of expression divergence, expression variability, mutational variance, and

expression noise when compared to targets of non-repeat-containing TFs [30]. These results

highlight the importance of repeat domains in modulating gene expression.

The yeast TF Azf1p was recently shown to form a prion [10]. Azf1p has a largely nonover-

lapping set of target genes during growth in fermentable and non-fermentable carbon sources,

and the null mutant has been shown to have a severe growth defect in glycerol. AZF1 is also

important for cell wall integrity [31]. The prion conformer, designated [AZF1+], confers resis-

tance to the drug radicicol in a gain-of-function manner but decreases the expression of

Azf1p’s target genes [10]. Azf1p contains a polyN and polyQ domain, and the frequency of

homorepeats in yeast TFs and PrDs predicts a role for these domains in transcription as well as

prion formation. In this work, we investigated the function of the polyN domain of Azf1p and

find that this domain plays a subtle role in transcription but is not required for Azf1p localiza-

tion or prion formation.

Methods

Yeast strains and plasmids

Plasmids used in this work are summarized in S1 Table. The ΔN mutant plasmid was con-

structed by QuikChange site-directed mutagenesis using pBY011-AZF1 (Harvard PlasmID) as
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a template with the primers described in S2 Table. Yeast were grown on synthetic complete

(SC) dropout medium, YPD (yeast extract, peptone, 2% dextrose), or YPG (yeast extract, pep-

tone, 4% glycerol) at 30˚C. Plasmids were freshly transformed into yeast and maintained on

SC media lacking uracil (SC-Ura). Strains used in this study are summarized in S3 Table and

were derived from BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0). The WT strain is from

the yeast GFP collection in which the AZF1 open reading frame is C-terminally tagged with

GFP [32,33]. AZF1ΔN was constructed in this background using CRISPR [34]. A guide RNA

sequence designed to target the polyQ domain of AZF1 was cloned into the Cas9-expressing

plasmid pML104. A ~1 kb fragment of AZF1 containing the polyN deletion was amplified by

PCR with 8 identical reactions using the AZF1 F/R primers (S2 Table) and pBY011-ΔN as a

template. Ethanol-precipitated PCR products were co-transformed with pML104-polyQ, and

cells were plated on SC-Ura. After 5 days, individual transformants were selected and grown

overnight in 1 mL YPD in a 96 deep-well plate to allow for loss of the Cas9 plasmid. Overnight

cultures were diluted ten-fold four times and spotted on FOA. Fast-growing FOA-resistant

colonies were selected and characterized by colony PCR with the AZF1 F/R primers to identify

yeast with the polyN deletion. This strain is referred to as ΔN in the text. azf1-Δ1::URA3 was

constructed in BY4741 using heterologous gene replacement with the URA3 gene as a select-

able marker. This strain was intended to be a full deletion of the AZF1 open reading frame;

however, URA3 is instead integrated between AZF1 and its promoter, abolishing AZF1 expres-

sion (S4 Table). In the text, this strain is referred to as azf1Δ because it mimics the phenotypes

associated with deletion of the AZF1 open reading frame.

Spotting assays

For phenotypic growth assays, yeast were grown overnight in YPD. Saturated overnight cul-

tures were used to start fresh cultures in the same medium at an OD600 of 0.2. The cells were

allowed to double at least two times before approximately 1.0 x 107 cells were harvested and

resuspended in sterile water in a 96-well plate. Cells were serially diluted five-fold five times

and then spotted onto YPD or YPG plates using a 48-pin replicating tool. Plates were incu-

bated at 30˚C and imaged after three (YPD) to seven (YPG) days.

Growth curve assays

Each pBY011-AZF1 plasmid (WT and ΔN) was transformed into the matched background

and maintained on SC-Ura (i.e. the ΔN plasmid was transformed into AZF1ΔN). Three biolog-

ical replicates of each strain were grown overnight in SCRaff-Ura (2% raffinose). 2 μL of each

culture were then transferred to 200 μL of four types of fresh media in a 96-well plate: SCGal-

Ura (2% galactose), SCGal-Ura+Radicicol (75 μM), SC-URA, and SC-Ura+Radicicol. Growth

was measured for 24 hours by OD600 in a Molecular Devices SpectraMax M5 plate reader at

30˚C with shaking prior to each reading. Readings were taken every 30 minutes. 10 μL of each

SCGal-Ura and SC-Ura culture were then transferred to 1 mL fresh SC-URA and allowed to

grow to saturation overnight. The plate reader assay was then repeated in SC-URA media with

and without radicicol. We compared the growth of cells whose ancestors had experienced

AZF1 overexpression to those that did not in order to determine the role of the polyN domain

in [AZF1+] prion formation and activity.

A modified version of this plate reader assay was also performed with the WT, ΔN, and

azf1Δ strains without the galactose-inducible plasmids. Three biological replicates were grown

overnight in YPD. 2 μL of each saturated culture were then transferred to 200 μL of SC media,

and growth was measured for 24 hours in the plate reader.
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RNA-seq

Three biological replicates were grown overnight in either YPD or YPG. Saturated overnight

cultures were diluted to OD600 0.2. Cells were grown to OD600 0.6–1.0 and collected by centri-

fugation. Total RNA was isolated using the GE Healthcare RNAspin Mini RNA Isolation Kit

per the manufacturer’s guidelines and was quantified by NanoDrop (Thermo Fisher Scien-

tific). mRNA was isolated using a NEBNext poly(A) mRNA magnetic isolation module (New

England Biolabs). mRNA was used to generate RNA-seq libraries using a NEBNext Ultra II

RNA library prep kit for Illumina (New England Biolabs) following the manufacturer’s recom-

mended protocol with the following parameters: 15 minutes at 42˚C for the RNA fragmenta-

tion time, a 1:25 dilution of the adapter, no size selection, and 15 cycles of denaturation/

annealing/extension during the PCR enrichment step. After quantifying the library concentra-

tion with a Qubit HS DNA assay and determining the average peak size using a Fragment Ana-

lyzer, equimolar concentrations of each library were pooled together and sequenced on an

Illumina NextSeq 550 at the Tufts University Genomics Core using a high output run with 150

cycles.

Data analysis was performed using Geneious Prime v. 2020.2.4 (Biomatters Ltd.). Sequenc-

ing reads were aligned to the s288c genome using the Geneious RNA Mapper with Medium-

Low Sensitivity/Fast settings. Multiple best matches were mapped randomly. Expression levels

were then calculated, and ambiguously mapped reads were counted as multiple full matches.

To identify differentially expressed genes, expression levels were compared between strains in

each carbon source using DEseq2 with a parametric fit type. Expression levels were also com-

pared between carbon sources for each strain. Genes that are statistically significantly differen-

tially expressed (p<0.001) in azf1Δ compared to WT were selected for GO Enrichment

Analysis. The genes in this subset all have log2 ratios with a magnitude of 0.30 or greater.

Because very few genes are statistically significantly differentially expressed in ΔN, genes with

log2 fold ratios of ±0.30 or more were selected for analysis. GO Enrichment Analysis was per-

formed using PANTHER v. 14 [35–37]. The PANTHER Overrepresentation Test (Released

20200728) employs a Fisher’s exact test and reports significant enrichment in biological pro-

cesses (p<0.05).

Target gene expression measurements by RT-qPCR

RNA was isolated as described above, and cDNA synthesis was performed using the Super-

Script™ First-Strand Synthesis System (Invitrogen) following the manufacturer’s guidelines

with an oligo-dT(20) primer and 300 ng of RNA per sample. cDNA was diluted 1:5 and stored

at -20˚C. Each 20 μL reaction was prepared using the Brilliant II SYBR Green QPCR system

(Agilent) following the manufacturer’s guidelines with the primers listed in S2 Table. Samples

were contained in MicroAmp 96-Well Reaction Plates (Applied Biosystems) sealed with

MicroAmp Optical Adhesive Film (Applied Biosystems). Amplification was performed using

an Applied Biosystems 7300 Real-Time PCR System with the following cycling conditions: 5

minutes at 95˚C and 40 cycles of 10 seconds at 95˚C followed by 30 seconds at 55˚C. The refer-

ence gene ACT1 was used for relative quantification. Gene expression changes were calculated

using the 2-ΔΔCt method. Two independent experiments were performed with three technical

replicates for each biological replicate.

Microscopy

Cells in which AZF1 is tagged with GFP were imaged on a Leica Thunder Imager in the log

and stationary phases of growth with either glucose or glycerol as the carbon source. WT and

ΔN cells were grown overnight in YPD or YPG. 100 μL of saturated YPD overnight cultures

PLOS ONE Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p

PLOS ONE | https://doi.org/10.1371/journal.pone.0247285 May 21, 2021 4 / 20

https://doi.org/10.1371/journal.pone.0247285


were spun down and imaged to study cells in stationary phase with glucose as the carbon

source. Saturated overnight YPD cultures were also diluted to an OD600 of 0.2 and grown to

mid-log phase. 1.0 mL of these cultures was spun down and imaged to study cells growing in

log phase with glucose as the carbon source. YPG cultures reached mid-log phase after about

24 hours. 1.0 mL of these cultures were spun down and imaged to study cells growing in log

phase with glycerol as the carbon source. YPG cultures were also allowed to grow for 48 hours,

at which time 100 μL were spun down and imaged to study cells growing in stationary phase

with glycerol as the carbon source. Each condition was imaged two independent times, and at

least 50 cells were imaged for each strain in each condition. Images were processed using Leica

LAS X Instant Computational Clearing.

Evaluation of AZF1 repeat variation

Variation within AZF1 was measured using the data available from 93 recently sequenced S.

cerevisiae genomes [38] as described in Babokhov et al. 2018 [47].

Results

Azf1p is a prion-forming yeast TF that has been shown to activate genes involved in carbon

metabolism and energy production during growth in glucose [10,31]. Previous work on Azf1p

has been limited, so we began by monitoring the activity of azf1Δ in different carbon sources.

A null mutant has previously been shown by spotting assay to produce a severe growth defect

on non-fermentable carbon sources [31]. Slattery and colleagues also investigated the impact

of the null mutant on growth on glucose by spotting assay, which did not reveal any differences

between azf1Δ and the WT. We sought to further explore the role of Azf1p in glucose by moni-

toring growth in liquid media by optical density in a plate reader. We find that the null mutant

has a shortened lag phase and reaches the log phase of growth more quickly when compared to

the parent strain (Fig 1A). To further investigate the role of Azf1p during growth in glucose,

we performed RNA-seq with RNA isolated from azf1Δ and WT cells grown in glucose and

found many genes that are differentially expressed in the null mutant (Fig 1B, S1 Fig, S5

Table).

Genes downregulated by azf1Δ have not been previously reported, and we hypothesized

that Azf1p may act as a co-repressor for these genes. The general co-repressor Cyc8p contains

two Q-rich domains, one of which has been shown to mediate binding with cofactors [30].

Azf1p contains a polyQ and polyN domain (Fig 2A), and we hypothesized that one or both of

these domains may be important for transcriptional repression by Azf1p. We first deleted the

polyN domain using CRISPR (Fig 2A). We attempted to delete the polyQ domain using the

same approach; however, deletion of the polyQ domain using this strategy was never success-

ful. In an effort to probe the role of the polyQ domain, we deleted this domain from diploid

BY4743. While the heterozygous mutant was viable, the strain did not sporulate. Null mutants

are known to be sporulation deficient [31], and the sporulation deficiency observed in the het-

erozygous mutant suggests a fundamental role for the polyQ domain in Azf1p function.

Differential roles of the polyN domain during growth in different carbon

sources

PolyQ domains have been extensively studied due to their involvement in a number of mam-

malian neurodegenerative diseases. Despite being the second most common type of homore-

peat in the eukaryotic proteome, the function of polyN repeats has been underexplored. We

were therefore interested in characterizing the role of the polyN domain of Azf1p. The severe

growth defect in glycerol media produced by the null mutant is one of Azf1p’s most well-
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characterized phenotypes. We therefore measured the impact of deleting the polyN domain on

growth in glycerol by spotting assay (Fig 2B). Deletion of the polyN domain produces a mod-

erate growth defect on glycerol when compared to the parent strain. WT, ΔN, and azf1Δ

Fig 1. azf1Δ shortens lag phase during growth in glucose. A) Growth of WT and azf1Δ with glucose as the carbon source. Growth was measured by OD600 in a

plate reader for 24 hours. The first 8 hours are highlighted to show the differences in growth more clearly and due to the reduced accuracy of the plate reader at

high optical densities. azf1Δ has a dramatically shorter lag phase than WT. Growth curves are the average of three biological replicates, and error bars indicate

standard deviation. B) Volcano plot showing genes that are differentially expressed in azf1Δ compared to WT.

https://doi.org/10.1371/journal.pone.0247285.g001
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appear to grow similarly on glucose, which is consistent with the finding by Slattery and col-

leagues that AZF1 is not essential for growth in fermentable carbon sources. In order to detect

any more subtle differences in growth between these strains in glucose, we monitored growth

for 24 hours by optical density in a plate reader (Fig 1C). We find that deletion of the polyN

Fig 2. The polyN domain of Azf1p impacts growth in different carbon sources. A) Schematic of WT and ΔN Azf1p.

Azf1p contains a polyQ (teal), polyN (orange), and a zinc-finger DNA-binding domain (ZnF) (green). To probe the

role of the polyN domain, we deleted this domain in AZF1-GFP [32,33]. B) Spotting assay measuring the growth of

WT, ΔN, and azf1Δ on glucose and glycerol. On glycerol, deletion of the polyN domain produces a mild growth defect,

while azf1Δ produces a severe growth defect. Images are representative of 3 independent experiments. C) Growth of

WT, ΔN, and azf1Δ with glucose as the carbon source. Growth was measured by OD600 in a plate reader for 24 hours.

The first 8 hours are highlighted to show the differences in growth more clearly and due to the reduced accuracy of the

plate reader at high optical densities. Deletion of the polyN domain moderately shortens the lag phase, and azf1Δ
dramatically shortens the lag phase compared to WT. Growth curves are the average of three biological replicates, and

error bars indicate standard deviation.

https://doi.org/10.1371/journal.pone.0247285.g002
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domain also reduces the length of the lag phase, although not to the same extent as the null

mutant. This suggests that the polyN domain plays a fundamental role in Azf1p function,

although deletion of this domain does not completely abolish Azf1p activity. To demonstrate

that the growth phenotype observed in glucose is due to the deletion of the polyN domain, we

repeated the plate reader assay with the WT and ΔN strains expressing a wildtype copy of AZF1
from the pBY011-AZF1 plasmid. Expression of wildtype AZF1 goes beyond rescuing the short-

ened lag phase phenotype and produces a growth defect in ΔN cells compared to WT (S3A Fig).

PolyN domains are prevalent in yeast TFs, but their function has only been explored in a

few cases. In order to evaluate the role of the polyN domain in transcription, we performed

RNA-seq using RNA isolated from WT and ΔN cells grown in both glucose and glycerol. We

find that deletion of the polyN domain alters gene expression in both glucose (Fig 3A, S6

Table) and glycerol (Fig 3B, S7 Table) compared to WT. Notably, there are more statistically

significantly differentially expressed genes in ΔN during growth in glucose compared to glyc-

erol. The number of differentially expressed genes and the magnitudes of these changes, how-

ever, are much less than those observed in the null mutant, which indicates that the polyN

domain plays a subtle Azf1p function.

In order to test the validity of the RNA-seq experiment, we measured relative gene expres-

sion of several of the most differentially expressed genes from each carbon source, as well as

two known Azf1p target genes (MDH2 and GAS1), by qPCR. Overall, the relative gene expres-

sion trends observed in ΔN and azf1Δ compared to WT are consistent with those measured by

RNA-seq (S2 Fig).

In order to gain a better understanding of how the transcriptional changes in ΔN underlie

the growth phenotypes observed in Fig 2B and 2C, we characterized differentially expressed

genes with a log2 ratio of 0.30 or higher for upregulated genes and –0.30 or lower for downre-

gulated genes by GO Enrichment Analysis [35–37]. Genes upregulated by ΔN during growth

in glucose are enriched in two main biological processes: environmental stress tolerance and

carbon metabolism and storage (Fig 3C). There are only 3 genes downregulated –0.30-fold or

more during growth in glucose. As a result, there is no statistically significant biological pro-

cess enrichment. Out of 119 genes upregulated 0.30-fold or higher in ΔN during growth in

glycerol, 5 are involved in gluconeogenesis (17-fold enrichment), 8 are involved in glycolysis

(15-fold enrichment), and 13 are involved in cell wall organization (3-fold enrichment). Out of

56 genes downregulated –0.30-fold or more in glycerol, 12 are involved in rRNA processing

(4-fold enrichment) (Fig 3E).

The polyN domain is dispensable for Azf1p localization

Azf1p has previously been shown to be localized to the nucleus during growth in glucose in

both log and stationary phase, consistent with its function as a TF. Azf1p is also nuclear during

log phase growth in glycerol, but relocalizes to cytoplasmic foci during stationary phase growth

in glycerol [31]. Because polyN domains have previously been shown to promote protein aggre-

gation [4,5], we hypothesized that the polyN domain is important for the formation of these

foci. During growth in glucose, we find that both WT and ΔN localize to the nucleus (Fig 4A).

In glycerol, both WT and ΔN localize to the nucleus during log phase, and both form cyto-

plasmic foci during stationary phase growth (Fig 4B). We therefore conclude that the polyN

domain is not required for Azf1p relocalization during stationary phase growth in glycerol.

[AZF1+] prion formation does not require the polyN domain

Azf1p was recently shown to form a prion, designated [AZF1+], that confers resistance to the

drug radicicol. Both the polyQ and polyN domains are predicted to be capable of promoting
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Fig 3. The polyN domain of Azf1p plays a subtle role in transcription. A) Volcano plot showing genes that are differentially expressed in ΔN compared

to WT in glucose. B) Volcano plot showing genes that are differentially expressed in ΔN compared to WT in glycerol. C) GO Enrichment Analysis of

upregulated genes with a log2 ratio of 0.30 or more in ΔN in glucose compared to WT. Fold enrichment is indicated to the right of each bar. Processes

related to environmental stress tolerance are shown in blue, and processes related to carbon metabolism and storage are shown in green. D) GO

Enrichment Analysis of upregulated genes with a log2 ratio 0.30 or higher in ΔN in glycerol compared to WT. Fold enrichment is indicated to the right of

each bar. Processes related to environmental stress tolerance are shown in blue, and processes related to carbon metabolism and storage are shown in

green. D) GO Enrichment Analysis of upregulated genes with a log2 ratio –0.30 or lower in ΔN in glycerol compared to WT. rRNA processing is the only

process for which this set of genes is statistically significantly enriched (4-fold enrichment).

https://doi.org/10.1371/journal.pone.0247285.g003
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prion formation by the Prion-Like Amino Acid Composition (PLAAC) algorithm [39] (Fig

5A). Prion formation can be driven by overexpression of the constituent protein, and pheno-

types conferred by the prion are stable over many generations after transient overexpression

[10]. In order to measure the impact of deleting the polyN domain on prion formation, we

measured resistance to radicicol of strains that experienced previous overexpression of AZF1.

Consistent with previous reports, overexpression of WT improves growth in radicicol com-

pared to cells that have never experienced overexpression (Fig 5B). Unexpectedly, overexpres-

sion of ΔN also confers increased resistance to radicicol compared to naïve cells (Fig 5C).

Yeast prions have been referred to as a “bet-hedging” strategy due to their ability to confer ben-

eficial phenotypes under some conditions and be deleterious in others [40]. We find that

Fig 4. Role of the polyN domain in localization of Azf1p. A) Representative images of localization of Azf1p in

glucose during growth in log and stationary phase. During growth in glucose, Azf1p is localized to the nucleus. B)

Representative images of localization of Azfp1 during growth in glycerol in log and stationary phase. During log phase,

Azf1p is localized to the nucleus. During stationary phase, both Azf1p and Azf1-ΔNp form cytoplasmic foci. At least 50

cells were imaged for each strain in each condition.

https://doi.org/10.1371/journal.pone.0247285.g004

PLOS ONE Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p

PLOS ONE | https://doi.org/10.1371/journal.pone.0247285 May 21, 2021 10 / 20

https://doi.org/10.1371/journal.pone.0247285.g004
https://doi.org/10.1371/journal.pone.0247285


Fig 5. Role of the polyN domain in prion formation and activity. A) Azf1p domains predicted to be capable of promoting prion formation by

PLAAC. The polyQ and polyN domains of Azf1p are both predicted to have prion-like properties. B) Growth of WT cells that did (red) and did
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transient overexpression of both WT and ΔN do not impact growth in the absence of radicicol

(Fig 5D and 5E), indicating that [AZF1+] is not toxic to cells under normal conditions.

Azf1p exhibits repeat-length variation across strains of yeast

Repeat domains are well known to be genetically unstable, and changes in repeat copy number

can impact protein function. This variation can enable organisms to adapt to different envi-

ronmental conditions and drive evolution [30,41–46]. We therefore examined the homorepeat

domains of Azf1p for length variation. Through a bioinformatic analysis of the genomes of 93

lab and wild isolates of S. cerevisiae [38,47], we determined that the polyN and polyQ domains

of Azf1p vary in repeat copy number across strains of yeast. The polyN domain has 8 alleles

ranging from 17 to 25 N residues (Fig 6A), and the polyQ domain has 3 alleles, 9Q, 12Q, and

17Q (Fig 6B).

Azf1p is a prion-forming yeast TF that contains a polyQ and a polyN domain. To begin to

elucidate how repetitive regions modulate Azf1p function, in this work we sought to investi-

gate the role of the polyN domain in transcription and [AZF1+] prion formation. We find that

the polyN domain plays a subtle role in transcription but is not required for prion formation.

We also report that both the polyQ and polyN domains vary in copy number across strains of

yeast.

Discussion

Azf1p has previously been reported to be a transcriptional activator that is important for

growth on glycerol and other non-fermentable carbon sources [31]. In this work, we report a

new phenotype for AZF1 during growth in glucose and identify a larger set of genes that are

regulated by Azf1p. We monitored growth of WT and azf1Δ cells in glucose by optical density

and find that the null mutant has a shortened lag phase compared to WT (Fig 1A). To further

investigate the role of Azf1p during growth in glucose, we measured differential gene expres-

sion in the null mutant compared to WT by RNA-seq (Fig 1B and S5 Table). To our knowl-

edge, azf1Δ has not been previously shown to upregulate gene expression. Our data suggests

that Azf1p has a repressive function.

Despite being historically dismissed as functionally unimportant, homorepeats, particularly

polyQ and polyN, are conserved across eukaryotic TFs and have been shown to play important

roles in signaling, binding, and protein solubility. N-rich and Q-rich sequences are also char-

acteristic of the prion-forming domains of yeast prions, and many repeat-containing TFs form

prions. Azf1p contains a polyQ and a polyN repeat domain, and we sought to investigate the

roles of these domains in transcription and prion activity. We attempted to delete each of these

domains in the AZF1-GFP strain from the yeast GFP collection [32,33]. While deletion of the

polyN domain was successful (Fig 2A), the polyQ domain could not be deleted using multiple

strategies. This predicts a fundamental role for the polyQ domain of Azf1p in yeast but

requires significant additional exploration that is beyond the scope of this manuscript. Here

we continued the interrogation of the polyN domain as they are thought to serve similar func-

tions to polyQ domains but are not nearly as well studied.

not (blue) experience previous overexpression (OE) of AZF1 in SC-Ura + 75 μM radicicol measured by OD600 in a plate reader. C) Growth of

ΔN cells that did (red) and did not (blue) experience previous overexpression of ΔN in SC-Ura + 75 μM radicicol measured by OD600 in a plate

reader. Previous overexpression of both WT and ΔN confer resistance to radicicol. D) Growth of WT cells in SC-Ura with and without previous

overexpression of AZF1 measured by OD600 in a plate reader. E) Growth ΔN cells in SC-Ura with and without previous overexpression of ΔN

measured by OD600 in a plate reader. Overexpression of AZF1 does not impact growth under normal conditions. All growth curves are the

average of three biological replicates. The first 10 hours are highlighted to show the differences in growth more clearly and due to the reduced

accuracy of the plate reader at high optical densities.

https://doi.org/10.1371/journal.pone.0247285.g005
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Due to the known involvement of a homorepeat domain in the repressive activity of Cyc8p,

we hypothesized that the polyN domain may be important for this function. In order to

address this hypothesis, we first examined the role of the polyN domain in growth in different

carbon sources. We find that deletion of the polyN domain produces a mild growth defect on

glycerol and moderately reduces the length of lag phase during growth in glucose compared to

WT (Fig 2B and 2C). Because each of these phenotypes is less pronounced than the corre-

sponding phenotype observed in the null mutant, we conclude that the polyN domain has a

minor but not essential role in Azf1p function. In order to verify that the shortened lag phase

observed in glucose is due to the deletion of the polyN domain, we attempted to rescue this

phenotype by expressing a wildtype copy of AZF1 from the pBY011-AZF1 plasmid. While this

plasmid encodes AZF1 under the control of a galactose-inducible promoter, we have deter-

mined by qPCR that AZF1 is expressed from this plasmid at a low level in glucose. In the WT

strain, we compared the relative expression of AZF1 in cells transformed with pBY011-AZF1

to cells transformed with pBY011-GFP, which encodes GFP under the galactose-inducible

promoter instead of AZF1. We find that during growth in glucose, pBY011-AZF1 results in

significantly increased expression of AZF1 (S3B Fig). Even with this low level of leaky expres-

sion, we find that the plasmid copy of wildtype AZF1 goes beyond rescuing the shortened lag

phase phenotype and produces a growth defect in ΔN cells compared to WT (S3A Fig). While

we recognize that rescuing the observed ΔN growth phenotypes with a wildtype copy of AZF1
under the native promoter would be more appropriate, the constraints of the COVID-19 pan-

demic prevented us from performing this experiment.

In order to better understand the observed growth phenotypes, we compared gene expres-

sion levels in ΔN to WT as measured by RNA-seq. Consistent with our phenotypic growth

data, we find that deletion of the polyN domain impacts gene expression in both glucose (Fig

3A) and glycerol (Fig 3B), suggesting that this domain is involved in Azf1p’s TF activity. Dur-

ing growth in both carbon sources, more genes are upregulated than downregulated upon

deletion of the polyN domain. This result is consistent with our hypothesis that the polyN

domain plays a role in Azf1p’s repressive function.

In order to explore how the changes in gene expression measured by RNA-seq give rise to

the observed growth patterns in each carbon source, we performed GO Enrichment Analysis

on genes differentially expressed between ΔN and WT. In glycerol, genes upregulated by ΔN are

enriched in gluconeogenesis (17-fold enrichment), glycolysis (15-fold enrichment), and cell

wall organization (3-fold enrichment) (Fig 3D). These processes are consistent with the those

previously reported to be regulated by Azf1p [31]. Genes upregulated by ΔN during growth in

glucose fit into two main categories: environmental stress tolerance and carbon metabolism and

storage (Fig 3C). Upregulation of carbon metabolism genes may underlie the shortened lag

phase observed in ΔN, as cells that can import and utilize glucose more rapidly or efficiently

may be able to enter the log phase of growth more quickly. This result may have implications

for fermentation applications and small molecule production. Yeast are used in the production

of a variety of foods and drinks, as well as natural and non-natural small molecules for pharma-

ceuticals, fuels, and even perfumes [48–50]. Metabolic engineering is a crucial technology

geared towards improving the efficiency and output of these processes, and the new phenotypes

we report for a null mutant and a ΔN mutant indicate that Azf1p may be a useful target.

Fig 6. Repeat variation in the polyQ and polyN domains of Azf1p may impact protein function. A) The distribution of polyN domain

variants across 93 strains of S. cerevisiae. The polyN domain has a range of alleles from 17 to 25 N residues. B) The distribution of polyQ domain

variants across 93 strains of S. cerevisiae. The polyQ domain has 3 alleles: 9Q, 12Q, and 17Q. C) Model for ways that repeat copy number

variation in Azf1p may impact protein function. Repeat variation may impact prion formation and/or stability, target gene expression, or protein

aggregation and/or phase separation.

https://doi.org/10.1371/journal.pone.0247285.g006
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We hypothesized that the transcriptional changes observed in ΔN may result from altered

Azf1p localization. During both log and stationary phase growth, we find that ΔN exhibits the

same localization patterns as WT regardless of the carbon source (Fig 4). Deletion of the polyN

domain therefore does not appear to impact Azf1p localization. This observation is consistent

with the result that deletion of the polyN domain impacts the expression of only a subset of

Azf1p’s target genes, as altered localization would likely affect all of Azf1p’s targets. The polyN

domain may instead act as a binding domain with transcriptional cofactors. This hypothesis is

supported by the different growth and gene expression patterns observed between ΔN and

azf1Δ. Different target genes have different combinations of transcriptional regulators. The

polyN domain may be important for binding with only a subset of Azf1p’s cofactors, causing

deletion of this domain to impact expression of only a subset of Azf1p’s target genes.

In a large-scale screen for yeast prions conducted by Chakrabortee and colleagues, Azf1p

was found to form a prion, [AZF1+], that confers resistance to the drug radicicol. Overexpres-

sion of the constituent protein drives prion formation, and phenotypes conferred by the prion

are stable over many generations after transient overexpression [10]. The PrD of Azf1p has not

been characterized experimentally, but PLAAC predicts that the polyN domain is one of sev-

eral sequences capable of promoting prion formation [39] (Fig 5A). In order to determine if

the polyN domain plays a role in [AZF1+] prion formation or activity, we monitored growth in

radicicol of WT and ΔN cells that previously overexpressed WT and ΔN, respectively. Consis-

tent with Chakrabortee and colleagues’ results, transient overexpression of WT improves

growth in radicicol compared to cells that have never experienced overexpression (Fig 5B).

Surprisingly, overexpression of ΔN also confers resistance to radicicol compared to naïve cells

(Fig 5C), suggesting that the polyN domain is dispensable for prion formation. The polyQ

domain is within a large N-terminal IDR predicted by PLAAC to be PrD-like [39] (Fig 5A).

This domain may therefore be a more relevant candidate for future studies aimed at determin-

ing the PrD of Azf1p.

Finally, we report that the polyN and polyQ domains of Azf1p vary in repeat copy number

across strains of yeast. The polyN domain has 8 alleles ranging from 17 to 25 N residues (Fig

6A), and the polyQ domain has 3 alleles, 9Q, 12Q, and 17Q (Fig 6B). We propose a model out-

lining several ways that repeat-length variation may impact Azf1p function (Fig 6C). First,

repeat variation could alter prion formation and/or stability. In yeast, expanded repeats in

PrDs have been shown to increase prion formation [51–53]. While we find that the polyN

domain does not play a significant role in prion formation, PLAAC predicts that the polyQ

domain is PrD-like (Fig 5A). If the polyQ domain is in fact important for prionogenesis, short

polyQ alleles may reduce prion formation and/or stability of the prion conformer, while long

alleles or abnormally expanded repeats could result in the formation of an irreversible amyloid

fiber.

Repeat variation could also impact expression of Azf1p’s target genes. Another prion-form-

ing yeast TF, Cyc8p, has a naturally variable polyQ domain. Variation in this domain impacts

Cyc8p solubility and interaction with its binding partners, which in turn alters target gene

expression and the associated phenotypes [30]. We find that the polyN domain of Azf1p plays

a subtle role in transcription, possibly by mediating binding to transcriptional cofactors. The

impact of repeat variation in the polyN domain of Azf1p, as well as the variable repeat domains

of many other TFs across eukaryotes, on target gene expression warrants further study. The

gene expression and resulting metabolic changes we observed in ΔN may have implications in

fermentation applications and small molecule production. Deletion of the polyN domain mod-

erately shortens the lag phase in glucose (Fig 1C), a phenotype that can potentially be explained

by the upregulation of genes involved in carbon metabolism and storage (Fig 3C). Repeat vari-

ation may serve as a mechanism to further tune this phenotype by altering gene expression.
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One possible mechanism by which repeat variation could impact Azf1p’s function in tran-

scription is phase separation. Several eukaryotic TFs have been shown to phase separate with

Mediator via their IDRs, and the formation of these droplets was demonstrated to be required

for transcription [54,55]. The polyQ and polyN domains of Azf1p are both intrinsically disor-

dered [47], and length variation within these domains could impact the extent to which Azf1p

can be incorporated into phase separated droplets.

Repetitive domains were historically dismissed as functionally unimportant due to their

lack of three-dimensional structure. These domains are now known to be important for signal-

ing, binding, prion formation, and phase separation. Homorepeats are particularly common

in eukaryotic TFs and often exhibit length variation across organisms. The function of these

domains and the impact of repeat variation, however, has only been minimally explored. We

report a new role for the variable polyN domain of the yeast TF Azf1p in transcription and

highlight repeat copy number variation as a possible driver of target gene expression variance

in this and other eukaryotic TFs. We also report metabolic changes that may be useful for fer-

mentation applications and small molecule production.

Supporting information

S1 Fig. GO Enrichment Analysis of genes differentially expressed in azf1Δ during growth

in glucose. A) GO Enrichment Analysis of genes that are statistically significantly upregulated

by azf1Δ (p<0.001) compared to WT as measured by RNA-seq with RNA isolated from cells

grown in glucose. B) GO Enrichment Analysis of genes that are statistically significantly down-

regulated by azf1Δ compared to WT (p<0.001) as measured by RNA-seq using RNA isolated

from cells grown in glucose.

(TIF)

S2 Fig. Relative gene expression analysis of Azf1p target genes by qPCR. A) Fold change

in expression of Azf1p target genes in AZF1ΔN and azf1Δ compared to WT during growth

in glucose. B) Fold change in expression of Azf1p target genes in AZF1ΔN compared

to WT during growth in glycerol. Error bars represent standard deviation. Statistical signifi-

cance was calculated using an unpaired student’s t test. � indicates p<0.05 and �� indicates

p<0.001.

(TIF)

S3 Fig. Expression of wildtype AZF1 abolishes the shortened lag phase observed in ΔN cells

during growth in glucose. A) Growth of WT (blue) and ΔN (red) cells with glucose as the car-

bon source. Growth was measured by OD600 in a plate reader for 24 hours. Growth curves are

the average of three biological replicates, and error bars indicate standard deviation. B) Fold

change in expression of AZF1 in WT cells expressing pBY011-AZF1 compared to pBY011-

GFP during growth in glucose. Error bars represent standard deviation. Statistical significance

was calculated using an unpaired student’s t test (p = 0.0028).

(TIF)

S1 Table. Plasmids used in this work.
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S3 Table. Yeast strains used in this work.
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