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Investigation of pesticides on honey bee carbonic anhydrase inhibition
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ABSTRACT
Carbonic anhydrase (CA, EC 4.2.1.1) plays crucial physiological roles in many different organisms, such as
in pH regulation, ion transport, and metabolic processes. CA was isolated from the European bee Apis mel-
lifera (AmCA) spermatheca and inhibitory effects of pesticides belonging to various classes, such as carba-
mates, thiophosphates, and pyrethroids, were investigated herein. The inhibitory effects of methomyl,
oxamyl, deltamethrin, cypermethrin, dichlorodiphenyltrichloroethane (DDT) and diazinon on AmCA were
analysed. These pesticides showed effective in vitro inhibition of the enzyme, at sub-micromolar levels.
The IC50 values for these pesticides ranged between of 0.0023 and 0.0385lM. The CA inhibition mechan-
ism with these compounds is unknown at the moment, but most of them contain ester functionalities
which may be hydrolysed by the enzyme with the formation of intermediates that can either react with
amino acid residues or bid to the zinc ion from the active site.
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1. Introduction

Pesticides are chemical compounds that are used against various
pests as a biological control agent. Some pesticides are persistent
organic contaminants in the soil and environment. They also con-
stitute one of the most significant causes of pollution worldwide1.
The rapid growth of agriculture and animal processing has caused
bees to be exposed to such contaminants with which they had
never previously come into contact. Growing food demand has
forced farmers to use more mineral fertilisers and pesticides for
producing higher yields2. In recent decades the increasing concern
about the effect of pesticides on pollinators has been expressed
in the scientific literature3. Fort his reason, some new data were
collected from laboratory and semi-field studies on the toxic
effects of pesticides on bees, especially bumble bees3,4. A variety
of articles have highlighted the significance of bees as natural pol-
linators not only for our crops but also for wildflowers and wood-
land plants, in temperate and tropical habitats5–7. For example, it
has been reported that about 60 crop plant species may not bear
growing fruit without bees as impollinators8; with devastating
economic implications.

Carbonic anhydrases (Cas, EC 4.2.1.1) are found in almost all
living organisms and control pH and CO2/bicarbonate levels9.
Many different CA isoenzymes have been identified in higher ver-
tebrates, although these enzymes are less investigated in other
species, such as the arthropods, including insects10–12. The physio-
logical role of CA isozymes is to promote CO2 to HCO3

� intercon-
version, thus, playing vital functions in various biochemical/
physiological processes, including physiological pH regulation, gas
balancing, calcification, photosynthesis, metabolism, etc9–12.
Additionally, in vertebrates, CAs play a significant role in the eye,
kidneys, central nervous system (CNS), inner ear, and many other

organs, in terms of ion transfer, pH regulation, and
metabolism13–15.

Pesticides and fungicides interfering with rainwater, irrigation
water, or groundwater, plants, can inhibit particular enzymes13–15.
In our group’s previous research, we investigated the effects of
several widely used pesticides, such as tebuconazole, propoxur,
carbaryl, carbofuran, simazine, and atrazine on the recently discov-
ered bee CA, termed AmCA15. However, little is known about the
effects of other chemical agents on this enzyme. Therefore, in this
study, we purified honey bee spermatheca AmCA enzyme and
analysed its interactions with pesticides and fungicides belonging
to other classes.

2. Materials and methods

2.1. Chemicals

All chemicals for the affinity system were provided by Sigma-
Aldrich (St. Louis, MO). Other reagents were obtained from Merck
(Darmstadt, Germany).

2.2. Homogenate

Bee spermatheca samples were washed three times with 50mM
Tris/Sulphate (pH 7.8). Spermatecha samples taken from 200 bees
were combined and homogenised with liquid nitrogen, then
placed in the same buffer and centrifuged at 4 �C, 15,000 g for
30min. The precipitate portion was discarded and the supernatant
portion was separated and used in subsequent studies.
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2.3. Purification of the enzyme

The enzyme was purified using Sepharose-4B-sulfanilamide affinity
gel prepared by our group15. Aniline was used as a spacer arm in
the chromatography column. The column was then equilibrated
with 25mM Tris-HCl/0.1M Na2SO4 (pH 8.7) and the gel was
washed with 25mM Tris-HCl/22mM Na2SO4 (pH 8.7). Finally, elu-
tion was performed with 1M NaCl/25mM Na2HPO4 (pH 6.3). The
temperature was kept at 4 �C during all experiments.

2.4. In vitro inhibition experiments for AmCA enzyme

The effects of methomyl, oxamyl, deltamethrin, dichlorodiphenyl-
trichloroethane (DTT), cypermethrin and diazinon on AmCA activ-
ities were assayed colorimetrically using the CO2 hydrase assay16,
in triplicate at each concentration of inhibitor (ranging from 1nM
to 10mM). Control enzyme activity was taken as 100%. An activity
% versus inhibitor graph was drawn for all pesticides (Microsoft
Office 2000, Excel). Pesticide concentrations that caused 50%
inhibition (IC50) of the enzyme activity were thus obtained graph-
ically using a regression software. The enzyme concentration in
the assay system was 8.9 nM.

3. Results and discussion

The collapse of honeybee (Apis mellifera) colonies poses an
important problem in many developed countries17–20. In fact, bee
colonies are economically important for honey and wax products.
The collapse of hive clones is generally related to two phenom-
ena: (i) parasites, such as virus21, nosema infections22, mites23, and
hive insects24, which attack the colony; and (ii) pesticides use,
which negatively impacts the insects due to their toxicity25.
Furthermore, such low pesticide levels can also make bees an eas-
ier target to biological infections20–28.

The majority of the problems in beehives faced by beekeepers
are due to biological factors27. However, these factors are improb-
able to be the most important reason for the recent decrease of
bumblebees in North America and Europe or the disappearing of
several wild beespecies22,28. Agrochemicals, including pesticides,
are probably the most significant factors that provoke honeybee
and wild bee colonies extinction. Much research has been con-
ducted ultimately in order to understand this problem in North
America29, France30, Spain31 and India32. Such research focussed
on determining the amount and prevalence of pesticide residues
in honey, pollen, wax, and other different beehive matrices (e.g.
combs)29–31. A dataset was thus established for explaining the
effects of pesticide residue both on honeybees and, potentially
wild bees33,34.

Recently, we isolated and characterised the a-CA enzyme from
Apis mellifera spermatheca, AmCA15. In that study, we were able
to purify the enzyme in a single step using Sepharose 4B tyrosine-
sulfanilamide affinity chromatography15. Furthermore, pesticides
such as tebuconazole, carbaryl, carbonfuran, atrazine, simazin, and
propoxur were tested on the amCA enzyme and IC50 values were

determined as 0.0030, 0.0031, 0.0087, 0.0165, 0.0273, and
0.0321 lM, respectively (Table 1)15. The efficiency order of pesti-
cides AmCA inhibition was: tebuconazo-
le> carbaryl> carbofuran> atrazine> simazine>propoxur.

Here we report the inhibitory effects of 6 pesticides belonging
to various classes (Fıgure 1) on AmCA. Indeed, carbamates, thio-
phosphates, and pyrethroids were considered as potential CA
inhibitors in the present study (Figure 1).

Besides the enzyme purification already reported in the previ-
ous work15, the inhibitory effects of six different pesticides on
honeybee spermatheca CA and their IC50 parameters were investi-
gated here. The activity of AmCA was inhibited by pesticides
shown in Figure 1 at low micromolar concentrations. Indeed, the
IC50 values were determined to be: 0.0023± 0.0001,
0.0025 ± 0.0001, 0.0028± 0.0001, 0.0034 ± 0.0001, 0.0078± 0.0003,
and 0.0385± 0.0012 lM for methomyl, oxamyl, deltamethrin,
dichlorodiphenyltrichloroethane (DTT), cypermethrin, and diazinon,
respectively (Table 2).

It should be mentioned that a detailed study on pesticide resi-
dues in bees was conducted by Sanchez-Bayo and Goka20. In this
study, topical LD50 and oral LD50 values of pesticides against
honey bees and bumblebees were reported20. The topical lethal
dose (LD50) rates found in this study20 were as follows: deltameth-
rin 0.02lg/bee, cypermethrin 0.03lg/bee, methomyl 0.49 lg/bee,
and diazinon 0.38 lg/bee. In the same study, the oral dose rates
were as follows: cypermethrin 0.06 lg/bee, methomyl 3.38 lg/bee,
diazinon 0.21lg/bee, and DDT 5.08 lg/bee20. Compared to this lit-
erature results20, the results obtained in the present study show a
low level of IC50 for the inhibition of AmCA with pesticides pre-
sented in Figure 1 and widely used in agriculture (Table 2). Thus,
our results may prove that pesticides as those presented in Figure
1 may induce a strong inhibition on honey bee spermatheca CA
enzyme. It is not known at the moment whether this inhibition
may lead to physiological consequences but studies are ongoing
in the field in our laboratories.

There has been a great interest in recent studies focussed on
the effects of several classes of chemicals on CA enzymes35–37. CA
is a classical metalloenzyme, whose isozymes have significant roles
in many tissues, that has been characterized and purified from
several organisms, including animals35–37. A huge number of pol-
lutants, such as metals, acids, bases, and other toxic compounds38

are being mixed in water sources and also in the atmosphere,
which increasingly damages our environment. The potent AmCA
inhibitory effects of compounds shown in Figure 1 may represent
a potential explanation of why bees (domestic and wild ones) are
under pressure worldwide with an increasing level of extinction of
many diverse such insect species.

This also brings us to the possible mechanism of action of
these pesticides investigated here. The carbamates, thiophos-
phates, and pyrethroids investigated here (Figure 1) possess ester
bonds which can be hydrolysed by the esterase activity of the
a-CAs. In fact, it has been thoroughly documented that these
enzymes are esterases/thioesterases/selenoestearses with carbox-
ylic, phosphoric, thiocarboxylic, and even selenol esters39–42. Only
DDT does not have this functionality, but this compound was
reported by Bitman et al. to act as a CAI in the 70s43.

The two carbamates from Figure 1, methomyl, and oxamyl can
be substrates of CAs which may hydrolyse their ester/thioester
bonds with the formation of small molecules which can bind to
the metal centre (acetate, methyl-thiol, or Me2N–COCOOH in the
case of the second carbamate). The pyrethroids may also be
hydrolysed at their ester functionality, with the generation of car-
boxylic acids and alcohols which were shown to act as CAIs12,13,36.

Table 1. AmCA inhibition data from our previous study15.

Inhibitor IC50 (lM)

Tebuconazole 0.0030
Carbaryl 0.0031
Carbonfuran 0.0087
Atrazine 0.0165
Simazin 0.0273
Propoxur 0.0321
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Diazinon has thiophosphate functionalities which were shown to
be hydrolysed by the esterase activity of CAs in previous work
from this laboratory, leading to suicide inhibitors of the enzyme39.
However, these hypotheses should be verified by X-ray crystallog-
raphy, one of the most powerful techniques useful to assess CA
inhibition mechanisms, especially the innovative ones. This tech-
nique also has its weak points, especially when used in an inatten-
tive manner. The best example is the report by Liljas’ group that
cyanide and cyanate do not coordinate the metal ion from CA
active site44. Subsequent work from other laboratories showed
those data to be false, as both cyanate and cyanide were
observed coordinated to the metal ion, as most other anion inhib-
itors investigated to date45,46. Furthermore, cyanate was also
shown to be a suicide substrate that can be hydrolysed by the CA
activity with the formation of carbamate45. However, bitter and
dubious comments from the above-mentioned crystallography
group continued even 30 years later47.

4. Conclusions

AmCA was purified from Apis mellifera spermatheca by affinity
chromatography. Pesticides such as methomyl, oxamyl, deltameth-
rin, and DDT showed inhibition effects, comparable to those of
cypermethrin and diazinon. The IC50 values were determined as
0.0023 ± 0.0001, 0.0025± 0.0001, 0.0028 ± 0.0001, 0.0034± 0.0001,
0.0078 ± 0.0003 and 0.0385 ± 0.0012lM, respectively (Table 2). Our
results showed that pesticides inhibit AmCA activity with the
following order: methomyl>oxamyl>deltamethrin>DDT>
cypermethrin>diazinon. Our findings indicate these pesticides to
act as potent inhibitors of AmCA, which might cause undesirable
biological effects in bees, by disrupting their acid–base regulation
as well as salt transport. Further studies are warranted in order to
understand whether these inhibition data are relevant for the sig-
nificant diminution of domestic and wild bee species worldwide.
Several studies on bees as well as other organisms showed that
sperm life depends on different parameters, among which the pH.
It was observed that sperm loses its vitality if the pH level
increases. This supports the relevance of the present findings.
However, the data presented here need a careful in vivo (or in the
hive) validation.
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Figure 1. Chemical structures of the pesticides tested as inhibitors of AmCA in this study.

Table 2. AmCA inhibition data for new pesticides shown in Figure 1.

Inhibitor IC50 (lM)

Methomyl 0.0023 ± 0.0001
Oxamyl 0.0025 ± 0.0001
Deltamethrin 0.0028 ± 0.0001
DDT 0.0034 ± 0.0001
Cypermethrin 0.0078 ± 0.0003
Diazinon 0.0385 ± 0.0012
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