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Abstract: Heat stress alters photosynthetic components and the antioxidant scavenging system,
negatively affecting plant growth and development. Plants overcome heat stress damage through an
integrated network involving enzymatic and non-enzymatic antioxidants. This study aimed to assess
physiological and biochemical responses in contrasting thermo-tolerant wheat varieties exposed to
25 ◦C (control) and 35 ◦C (heat stress), during the seedling stage. Our results revealed a substantial
decrease in the photosynthetic pigments, carotenoids, anthocyanin content, and increased membrane
injury index, malondialdehyde, methylglyoxal (MG), H2O2 contents and lipoxygenase activity
compared to non-stress wheat seedlings. The heat-tolerant variety BARI Gom 26 (“BG26”) maintained
higher cellular homeostasis compared to the heat susceptible variety Pavon 76 (“Pavon”), perpetuated
by higher accumulation of proline, glycine betaine, ascorbate-glutathione cycle associated enzymes,
reduced glutathione and ascorbate concentration in plant cells. Significantly lower levels of MG
detoxification and antioxidant activities and ascorbate-glutathione cycle-related enzymatic activities
lead to increased susceptibility in variety “Pavon”. Hierarchical clustering and principal component
analysis revealed that variety “BG26” possess a combination of biochemical responses tailoring
antioxidant activities that induced a higher level of tolerance. Taken together, our results provide
a pipeline for establishing a trade-off between antioxidant capacity and heat tolerance to facilitate
functional genomics and translational research to unravel underlying mechanisms to better adapt
wheat to heat stress.

Keywords: heat stress; oxidative stress; reactive oxygen species; antioxidant; ascorbate-glutathione
cycle; wheat

1. Introduction

Heat stress is one of the major environmental factors that can impact crop plants
negatively, leading to impairment of several physiological and biochemical processes [1].
Global climate models predict that with increasing greenhouse gases, global mean surface
temperatures are projected to increase by 0.3 to 4.8 ◦C by the end of the 21st century [2].
Heat stress events lead to a significant yield loss in crops, including wheat under controlled
environments [3,4] and also field conditions [5,6]. Heat stress is shown to have a significant
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negative impact during reproductive stages in crops, including wheat [7–9]. Comparatively,
heat stress responses at the seedling stage in wheat are poorly understood, despite heat or
combined heat and drought stress are known to adversely affect the early establishment of
the wheat crop and seedling growth [10]. A large amount of wheat growing area in the
north-western Bangladesh [11] and Indian Punjab [12] can be sown early, but early sown
wheat crop suffers from juvenile heat stress which reduces tillers and seedling biomass,
thereby negatively affecting grain yield [11].

To ascertain the degree of sensitivity or tolerance to heat stress in wheat, different
screening techniques have been proposed. The difference in leaf tissue temperature com-
pared to ambient temperature, also known as leaf temperature depression (LTD) has been
recognized as a reliable indicator of heat tolerance [13]. A proportional increase in ion leak-
age with an increase in temperature has provided support to use ion leakage as an index
for screening genotypes against heat and drought stress in wheat [14,15]. Almeselmani
et al. [16] reported that an increase in membrane injury index (MII) in late-planted wheat
genotypes helped capture the damaging effect of high temperature during the reproductive
stage. The integrity and stability of plasma membrane measured in seedlings exposed to
heat and drought stress were established as a reliable physiological marker for determining
stress tolerance during later stages of crop development [17].

On exposure to heat stress, plants accumulate different signaling molecules or oxida-
tive species and the degree to which plants can quench or balance their levels determines
the degree of tolerance. The MG is a highly reactive mutagenic, cytotoxic and genotoxic
αβ-dicarbonyl aldehyde compound, which is highly accumulated under extreme environ-
mental stresses, including heat stress [18–20], which could act as a stress-responsive signal.
MG is synthesized in biological systems via various enzyme-catalyzed and spontaneous
reactions e.g., glycolysis, lipid and protein metabolism and can react with and modify
both proteins and DNA, leading to the generation of advanced glycation end products
(AGEs) [21–23]. At high cellular concentrations, MG inhibits cell proliferation and results in
a number of adverse effects such as increasing the degradation of proteins and inactivating
the antioxidant defense system [24,25].

The MG detoxification system is ubiquitously spread across cellular compartments to
resist MG-mediated damage to the cellular constituents [23]. In plants, MG is detoxified
mainly by the maintenance of GSH homeostasis via glyoxalase pathway containing en-
zymes, namely, glyoxalase I (Gly I) and glyoxalase II (Gly II) [26–28]. The Gly I converts MG
to S-D-lactoylglutathione (SLG), utilizing GSH, while Gly II converts SLG to D-lactic acid
and regenerates glutathione (GSH). Efficient detoxification of excess MG produced during
normal physiological processes or different abiotic stresses is one of the most important
adaptive strategies of plant stress tolerance [24,26,27].

In addition, heat stress accelerates the generation of reactive oxygen species (ROS)
including singlet oxygen (1O2), superoxide anion (O2

•–), hydrogen peroxide (H2O2) and
hydroxyl radical (•OH), inducing oxidative stress in plants [29,30]. The main effects of
ROS include autocatalytic peroxidation of membrane lipids and pigments, modification of
membrane permeability and functions [31]. The level of lipid peroxidation has been widely
used as an indicator of free radical damage to cell membranes under stress conditions.
Malondialdehyde (MDA) is the principal and extensively studied product of polyunsat-
urated fatty acid (PUFAs) peroxidation. This aldehyde is a highly toxic molecule and
needs to be considered more than just a marker of lipid peroxidation [32]. When PUFAs
in bio-membranes are peroxidized, different aldehydes are formed including the highly
reactive aldehyde MDA. The MDA is mostly generated in chloroplasts [33].

In general, responses of plants to heat stress may involve, among others, synthesis of
various osmoprotectants, like proline and glycine betaine, heat shock proteins [34], and
antioxidative enzymes to reduce oxidative damage [35]. To counteract the toxicity of ROS
a highly efficient anti-oxidative defense system, composed of both non-enzymatic and
enzymatic constituents, is required. The enzymatic antioxidant defense mechanisms are
represented by enzymes that include, superoxide dismutase (SOD); four enzymes of the
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ascorbate-glutathione cycle: ascorbate peroxidase (APX), monodehydroascorbate reductase
(MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR); catalase
(CAT); glutathione peroxidase (GPX); and glutathione s-transferase (GST) [36,37]. Non-
enzymatic antioxidants include ascorbate (AsA), glutathione (GSH), tocopherol, flavanones,
carotenoids, anthocyanins etc. [38,39]. Carotenoids and anthocyanins are known to be
efficient quenchers of reactive oxygen species, such as peroxide radicals and singlet oxygen
molecules and thereby alleviate the oxidative damage [40,41].

The generation, effects and activities of ROS, ROS scavengers and their interplay have
been reported in the seedlings of different crop species including wheat exposed to heat
stress. Most studies that have taken this route, have been mostly limited to single or two
wheat genotypes [42]. The genotypes used in the above studies are either not suitable under
current growing conditions or not included in current cropping patterns. Therefore, the
overall aim of this study is to achieve results that are relevant to current cropping systems
of Bangladesh and to address the gap in our understanding of heat stress responses during
the seedling stage of wheat. To achieve this, we have selected four differentially heat-
tolerant (ability of a cultivar to sustain yield under heat stress conditions) wheat varieties
and quantified the physiological and biochemical attributes to gain a mechanistic insight
associated with heat-induced oxidative stress tolerance.

Specific objectives of this study were formulated to: (i) determine changes in morpho-
logical and physiological traits and pigment content in the selected wheat varieties exposed
to heat stress; (ii) measure variation in the accumulation of oxidative stress indicators in
response to heat stress; (iii) determine changes in oxidative stress alleviating antioxidants
in wheat varieties under heat stress; and (iv) determine if an association exists between
antioxidant activities and heat tolerance by comparing the responses in wheat varieties
contrasting for heat stress responses.

2. Materials and Methods
2.1. Plant Materials and Stress Treatment

Four wheat varieties differing in heat stress tolerance viz., a high yielding, widely
cultivated and heat tolerant BARI Gom 26 [“BG26”] [43,44], moderately heat and salinity
tolerant BARI Gom 25 [‘BG25’], moderately heat-tolerant BARI Gom 23 (Bijoy) [‘BG23’] [43]
and a widely used highly heat susceptible variety Pavon 76 [“Pavon”] [44] were used
(Table S1).

Uniform sized seeds of four wheat varieties were selected and surface-sterilized with
70% ethanol followed by washing several times with sterile distilled water. The seeds
were then soaked in distilled water for 10 min and sown in Petri plates (15 cm diameter)
filled with sterile sand moistened with distilled water for germination for 3 days in the
laboratory at a variable temperature of 26 to 32 ◦C. After germination, seedlings were then
moved to controlled environment chamber maintained at 25 ± 1 ◦C during day and night,
relative humidity (RH) of 75–80%, 16 h of photoperiod with a light intensity of 200 µmol
photon m−2 s−1, about 1/10th full light intensity. After 5 days, two sets of seedlings (5 Petri
plates for each variety with 20 seedlings in each plate) were then grown in two growth
chambers with constant temperatures of 25 ± 1 ◦C (control) and 35 ± 1 ◦C (heat stress)
with RH 75–80%, 16 h photoperiod with a light intensity of 200 µmol photon m−2 s−1 for
48 h. Growth chamber temperature and RH were monitored by a digital humidity and
temperature meter (Model: HD-306, HTC Instruments, Taipei, Taiwan). Petri plates were
irrigated every day with half-strength Hoagland’s nutrient solution.

After termination of heat stress, shoot and root length and dry matter was recorded.
Shoot and root length was measured from the root-shoot junction to the tip of the longest
leaf and root, respectively. Dry matter was measured after oven drying the shoot and root
at 60 ◦C for at least 2 days, till a constant weight was achieved. Before harvesting fully
expanded leaves were collected into liquid nitrogen and used for pigment determination
and biochemical assays. Expanded leaves from about 20 seedlings were collected to form
a single replicate and the same repeated twice from an independent set of seedlings to
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obtain three biological replicates. All the measurements and assays were done in triplicate.
Average of three biological replicates are presented in Tables and Figures.

2.2. Determination of Chlorophyll, Carotenoid and Anthocyanin Content

Chlorophyll (Chl) content was determined by taking fresh fully opened leaf samples
(0.2 g) from randomly selected seedlings. The samples were homogenized with 5 mL of
acetone (80% v/v) using pre-cooled pestle and mortar and the homogenate was centrifuged
at 5000× g for 10 min. The absorbance was measured with a UV-visible spectrophotometer
(Genesys 10S UV-VIS, Thermo Fisher Scientific, Waltham, MA, USA) at 663 and 645 nm
and Chl contents were calculated using the equations proposed by Arnon [45].

Carotenoids content was estimated according to the procedure described by Lachman
et al. [46] and Rahman et al. [47] with slight modifications. Briefly, acetone extract was
obtained by mixing 5 mL of HPLC grade acetone with 0.5 g homogenized leaf sample
in a glass vial and allowed to stand for 24 h at 4 ◦C in the dark. The absorbance of
the acetone extract was measured spectrophotometrically (Genesys 10S UV-VIS, Thermo
Fisher Scientific, Waltham, MA, USA) against acetone at 444 nm. Total carotenoids content
(mg g−1 FW of lutein equivalent) was calculated using the molar extinction coefficient
of lutein.

Anthocyanin content was determined according to Hughes and Smith [48] and Rah-
man et al. [47] with some modifications. Briefly, 0.5 g of leaf sample was placed in the 5 mL
solution of methanol, 6 M hydrochloric acid and distilled water (70:7:23) and extracted
at 4 ◦C for 24 h in the airtight vials. To a 2 mL aliquot of the extract, 1 mL distilled wa-
ter and 2 mL chloroform was added, the solution was vortex mixed and centrifuged at
5000× g for 15 min at 4 ◦C. The upper chloroform layer containing extracted anthocyanins
was separated and the absorbance was measured with a UV-visible spectrophotometer
(Genesys 10S UV-VIS, Thermo Fisher Scientific, Waltham, MA, USA) at 530 nm and the
anthocyanin content (µg g−1 FW cyanidin-3-glucoside equivalent) was calculated using
the molar extinction coefficient of cyanidin-3-glucoside.

The stability index (SI) of chlorophyll, carotenoid and anthocyanin was determined ac-
cording to Sairam et al. [49] and calculated as follows- SI = (Pigment under stress/Pigment
under control) × 100.

2.3. Leaf Temperature Depression (LTD)

Leaf temperature was measured by a hand-held infrared thermometer (Model- MT4,
HTC Instruments, Taipei, Taiwan; distance-spot ratio 12:1) just before harvesting the
seedlings for enzymatic assays. Measurements were taken maintaining an angle of approx-
imately 30 ◦C to the horizontal line at a distance of 300 mm from the topmost fully opened
leaf surface. Leaf temperature depression was calculated according to the method of Fischer
et al. [50], as growth chamber temperature minus leaf temperature of the seedlings. Simul-
taneously, the temperature inside as the growth chamber was recorded from the digital
humidity and temperature meter. Data for each replication was the mean of five readings.

2.4. Membrane Injury Index

Membrane injury index was determined by recording the electrical conductivity of
leaf leachates in deionized water described by Deshmukh et al. [51]. Briefly, leaf samples
(0.1 g) were cut into uniformly sized squares and placed in test tubes containing 10 mL of
deionized water in two sets. One set was kept at 40 ◦C for 30 min and another set at 100 ◦C
in boiling water bath for 15 min and their electric conductivities C1 and C2, respectively
were measured by a conductivity meter (Model: EC-400L, Human Lab Instrument Co.,
Suwon, Korea).

Membrane injury index =
C1

C2
×100 (1)
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2.5. Methylglyoxal

Samples were prepared according to Yadav et al. [26] with some modifications. One
gram leaf tissue was homogenized in 5 mL of 0.5 M perchloric acid. After incubating for
15 min on ice, the mixture was centrifuged at 4 ◦C for 10 min at 11,000× g. The supernatant
was decolorized by adding charcoal (10 mg mL−1), kept for 15 min at room temperature,
and centrifuged at 11,000× g for 10 min. Before using this supernatant for MG assay, it was
neutralized with a saturated solution of potassium carbonate keeping at room temperature
for 15 min and centrifuged again at 11,000× g for 10 min. The neutralized supernatant was
used for MG estimation.

MG was estimated according to the method described by Wild et al. [52]. Briefly, 20 µL
of freshly prepared 500 mM N-acetyl-L-cysteine (in 100 mM sodium phosphate buffer, pH
7.0) was added to 980 µL of neutralized supernatant and incubated for 5 min at 22 ◦C. A
control solution was prepared without adding neutralized supernatant. After incubation,
absorbance at 288 nm was measured and control absorbance was subtracted. The final
concentration of MG was calculated from the standard curve and expressed in terms of
µmol g−1 FW.

2.6. Membrane Lipid Peroxidation and H2O2 Content

The level of membrane lipid peroxidation was measured by estimating malondi-
aldehyde (MDA), a decomposed product of the peroxidized polyunsaturated fatty acid
component of the membrane lipid, using thiobarbituric acid (TBA) as the reactive material
following the method of Heath and Packer [53]. The leaf samples (0.5 g) were homoge-
nized in 3 mL 5% (w/v) trichloroacetic acid (TCA) and the homogenate was centrifuged at
11,500× g for 10 min. One mL supernatant was mixed with 4 mL of TBA reagent (0.5% of
TBA in 20% TCA). The reaction mixture was heated at 95 ◦C for 30 min in a water bath and
then quickly cooled in an ice bath and centrifuged at 11,500× g for 15 min. The absorbance
of the colored supernatant was measured at 532 nm and was corrected for non-specific
absorbance at 600 nm. The concentration of MDA was calculated by using the extinction
coefficient of 155 mM−1 cm−1 and expressed as nmol of MDA g−1 fresh weight.

H2O2 was assayed according to the method described by Yu et al. [54]. H2O2 was
extracted by homogenizing 0.5 g of leaf samples with 3 mL of 50 mM K-phosphate buffer
(pH 6.5) at 4 ◦C. The homogenate was centrifuged at 11,500× g for 15 min. Three mL of
supernatant was mixed with 1 mL of 0.1% TiCl4 in 20% H2SO4 (v/v), and the mixture was
then centrifuged at 11,500× g for 12 min at room temperature. The optical absorption of
the supernatant was measured spectrophotometrically at 410 nm to determine the H2O2
content (є = 0.28 µM−1 cm−1) and expressed as µmol g−1 fresh weight.

2.7. Proline and Glycine Betaine

Free proline in leaf tissues was appraised spectrophotometrically using the acid-
ninhydrin method following the protocol of Bates et al. [55]. The proline content was
determined as µmol g−1 FW calculated from a standard curve. Glycine betaine (GB)
content was measured spectrophotometrically by 1,2-dichloroethane method following the
procedure of Valadez-Bustos et al. [56] and expressed as µmol g−1 FW calculated using a
standard curve prepared from the series of known concentrations of betaine.

2.8. Ascorbate and Glutathione

Wheat leaves (0.5 g fresh weight) were homogenized in 3 mL of an ice-cold acidic
extraction buffer containing 5% metaphosphoric acid and 1 mM EDTA using a mortar and
pestle. Homogenates were centrifuged at 11,500× g for 15 min at 4 ◦C, and the supernatant
was used for the analysis of ascorbate and glutathione following the methods described in
Hasanuzzaman et al. [57].
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2.9. Soluble Protein

Fresh leaf tissue (0.5 g) was homogenized in 1 mL extraction buffer containing 1 mM
ascorbic acid, 1 M KCl, 0.5 M K-P buffer (pH 7.0), β-mercaptoethanol and glycerol in
ice-cold mortar and pestle. The homogenate was centrifuged at 11,500× g for 15 min, and
the supernatant was used as a soluble protein solution for enzyme activity. The protein
concentration of each sample was determined following the method of Bradford [58] using
BSA as a protein standard.

2.10. Assays for Antioxidant and Glyoxalase Enzyme Activity

The glyoxalase I (Gly I, EC: 4.4.1.5) assay was carried out according to Hasanuzzaman
et al. [57]. Briefly, the assay mixture contained 100 mM K-phosphate buffer (pH 7.0), 15 mM
magnesium sulphate, 1.7 mM GSH and 3.5 mM MG in a final volume of 700 µL. The
reaction was started by the addition of MG and the increase in absorbance at 240 nm was
recorded after 1 min of reaction. The activity was calculated using the extinction coefficient
of 3.37 mM−1 cm−1.

The glyoxalase II (Gly II, EC: 3.1.2.6) activity was determined according to the method
of Hasanuzzaman et al. [57] by monitoring the formation of GSH by measuring the change
in absorption at 412 nm after 1 min. The reaction mixture contained 100 mM Tris-HCl
buffer (pH 7.2), 0.2 mM DTNB and 1 mM S-D-lactoylglutathione (SLG) in a final volume
of 1 mL. The reaction was started by the addition of SLG and the activity was calculated
using extinction co-efficient of 13.6 mM−1 cm−1.

The superoxide dismutase (SOD, EC: 1.15.1.1) activity was assayed based on the
competition between SOD and NBT for the production of superoxide from xanthine and
xanthine oxidase interaction following Spitz and Oberley [59].

The lipoxygenase (LOX, EC: 1.13.11.12) activity was determined according to the
method of Doderer et al. [60] using linoleic acid as a substrate solution. The increased
absorbance was recorded at 234 nm after 1 min and the activity was calculated using an
extinction coefficient of 25,000 M−1 cm−1.

The catalase (CAT, EC: 1.11.1.6) activity was measured according to the method of
Hasanuzzaman et al. [57] by monitoring the decrease of absorbance at 240 nm after 1 min
caused by the decomposition of H2O2. The reaction mixture contained 50 mM K-phosphate
buffer (pH 7.0), 15 mM H2O2 and enzyme solution in a final volume of 700 µL. The reaction
was initiated with enzyme extract and the activity was calculated using the extinction
coefficient of 39.4 M−1 cm−1.

The guaiacol peroxidase (POD, EC: 1.11.1.7) activity was measured as described by
Castillo et al. [61]. The reaction mixture contained 10 mM phosphate buffer at pH 6.1,
12 mM hydrogen peroxide, 96 mM guaiacol and enzyme extract. The blank contained a
complete reaction mixture without H2O2. Absorbance was recorded at 470 nm after 1 min
and the activity was calculated using the extinction coefficient of 26.6 mM−1 cm−1.

The glutathione peroxidase (GPX, EC: 1.11.1.9) activity was measured as described
by Elia et al. [62] using H2O2 as a substrate. The reaction mixture consisted of 100 mM
Na-phosphate buffer (pH 7.5), 1 mM EDTA, 1 mM NaN3, 0.12 mM NADPH, 2 mM GSH,
1-unit GR, 0.6 mM H2O2 and sample solution. The reaction was started by the addition of
H2O2. The oxidation of NADPH was recorded at 340 nm for 1 min and the activity was
calculated using the extinction coefficient of 6.62 mM−1 cm−1.

The glutathione S-transferase (GST, EC: 2.5.1.18) activity was determined spectropho-
tometrically by the method of Hasanuzzaman et al. [57] with some modifications. The
reaction mixture contained 100 mM Tris–HCl buffer (pH 6.5), 1.5 mM GSH (reduced
glutathione), 1 mM 1-chloro-2,4-dinitrobenzene (CDNB), and enzyme solution in a final
volume of 700 µL. The enzyme reaction was initiated by the addition of CDNB and the
increase in absorbance was measured at 340 nm after 1 min. The activity was calculated
using the extinction coefficient of 9.6 mM−1 cm−1.

The glutathione reductase (GR, EC: 1.6.4.2) activity was measured according to
Hasanuzzaman et al. [57]. The reaction mixture contained 0.1 M K-P buffer (pH 7.0),
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1 mM EDTA, 1 mM GSSG, 0.2 mM NADPH, and enzyme solution in a final volume of
1 mL. The reaction was initiated with GSSG and the decrease in absorbance at 340 nm
was recorded after 1 min. The activity was calculated using an extinction coefficient of
6.2 mM−1cm−1.

The ascorbate peroxidase (APX, EC: 1.11.1.11) activity was assayed following the
method of Hasanuzzaman et al. [57]. The reaction buffer solution contained 50 mM
K-phosphate buffer (pH 7.0), 0.5 mM AsA, 0.1 mM H2O2, 0.1 mM EDTA, and enzyme
extract in a final volume of 0.7 mL. The reaction was initiated by the addition of H2O2 and
activity was measured by observing the decrease in absorbance at 290 nm after 1 min using
extinction co-efficient of 2.8 mM−1 cm−1.

The monodehydroascorbate reductase (MDHAR, EC: 1.6.5.4) activity was determined
by the method of Hasanuzzaman et al. [57]. The reaction mixture contained 50 mM Tris-
HCl buffer (pH 7.5), 0.2 mM NADPH, 2.5 mM AsA, 0.5 unit of AO and enzyme solution
in a final volume of 700 µL. The reaction was started by the addition of AO. The activity
was calculated from the change in absorbance at 340 nm after 1 min using an extinction
coefficient of 6.2 mM−1cm−1.

The dehydroascorbate reductase (DHAR, EC: 1.8.5.1) activity was determined by the
procedure of Hasanuzzaman et al. [57]. The reaction buffer contained 50 mM K-P buffer
(pH 7.0), 2.5 mM GSH, and 0.1 mM DHA. The reaction was started by adding the sample
solution to the reaction buffer solution. The activity was calculated from the change in
absorbance at 265 nm after 1 min using an extinction coefficient of 14 mM−1cm−1.

2.11. Statistical Analysis

All data obtained were subjected to 2-factor (treatment× varieties) analysis of variance
(ANOVA) using the general linear model and the mean differences were compared using
Tukey’s HSD test using the R packages lme4 [63] and agricolae [64]. Differences at p < 0.05
were considered significant. The radar plot was prepared using R packages fmsb and
reshape2. The stress tolerance index (STI) for all physiological and biochemical traits (Table
S2) was calculated using the following formula: STI = [(Xc × Xs)/(X̄c)2] [65], where Xc and
Xs indicate the observed values of a trait in a given variety under non-stress and heat-stress
treatments, respectively, while X̄c is the average value of a particular trait examined in all
varieties under non-stress condition. The library pheatmap of R version 4.0.2 was adapted
to compute normalized mean values for generating heatmap and hierarchical clusters
(distance = euclidean and method = ward.D2) [66]. The principal component analysis
(PCA) was carried out using the packages ggplot2, factoextra and FactoMineR in R version
4.0.2 [67,68]. Correlation coefficient matrices were visualized using the R package corrplot.

3. Results
3.1. Effect of Variety and Heat Stress on the Studied Traits

In the experimental setup including four wheat varieties and two growing conditions,
all traits were significantly affected by both these factors but with different magnitudes
(Table S3). Variation in LTD and Chl a/b were significantly affected by variety but not
treatment. The interaction effect was significant in half the number of measured traits, but
the contribution to the variation was less than the main effects.

3.2. Seedling Length and Dry Matter

Heat stress substantially reduced shoot length (SL) and root length (RL) of all varieties
(Figure 1 and Figure S1). Compared with the control (100%), the reduction was the highest
in Pavon (31% SL and 24% RL) and least in BG26 (12% SL and 15% RL), while in other
two varieties the reduction was intermediate (Table S4). The dry matter of shoot (SDM),
root (RDM) and the total dry matter (TDM) was reduced in all varieties due to heat stress
(Figure 1). As a result of heat stress, the lowest TDM was recorded in “Pavon” (72% of the
control) with the highest in “BG26” (94% of the control), while on average 86% TDM was
recorded in other two varieties (Figure 1).
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Figure 1. Radar plot showing changes in various morphological traits in different wheat varieties
caused by heat stress. The values are expressed as % of the control.

3.3. Chlorophyll, Carotenoid and Anthocyanin Content

The Chl concentration in the wheat leaves decreased markedly under heat stress
compared to control conditions in all varieties (Table 1). Compared to the control, Chl “a”
content was decreased by 14, 16, 14 and 26% in “BG23”, “BG25”, “BG26” and “Pavon”,
respectively, due to heat stress. Similar to Chl ‘a’, total Chl also decreased upon exposure
to heat stress where the reduction was lower in the heat-tolerant “BG26” (13%) compared
to heat susceptible “Pavon” (21%). Chl “b” and Chl a/b, however, remained statistically
unchanged due to heat stress in all varieties. Carotenoid content in the wheat leaves de-
creased markedly due to heat stress in all varieties though the decrease was not statistically
significant (Table 1). Anthocyanin content in the wheat leaves decreased significantly
due to heat stress in all varieties (Table 1). The pigment was decreased by 22, 16, 15 and
29% in “BG23”, “BG25”, “BG26” and “Pavon”, respectively, upon exposure to heat stress.
The stability of the pigments was higher in heat-tolerant “BG26” and lower in “Pavon”
(Table 1).

Table 1. Leaf pigment contents of wheat varieties grown under control and heat stress conditions.

Variety Growing
Condition

Chl a
(mg g−1 FW)

Chl b
(mg g−1 FW)

Total Chl
(mg g−1 FW)

Chl
a/b Ratio

Carotenoid
(mg g−1 FW) }

Anthocyanin
(µg g−1 FW)¶

BG23
Control 0.49 ± 0.01 a,b 0.26 ± 0.01 c,e 0.75 ± 0.01 a–c 1.88 ± 0.13 a 0.09 ± 0.008 b–d 71.51 ± 0.55 b

Heat stress 0.42 ± 0.01 c 0.23 ± 0.01 e 0.65 ± 0.01 d,e 1.83 ± 0.12 a,b 0.07 ± 0.012 c–e 55.73 ± 0.47 d

(85.6 ± 1.45) (88.8 ± 1.58) (86.7 ±1.24) (77.8 ± 5.88) (78.0 ± 1.25)

BG25
Control 0.50 ± 0.02 a 0.32 ± 0.02 a,b 0.83 ± 0.02 a 1.57 ± 0.12 a–c 0.13 ± 0.015 a,b 80.40 ± 0.67 a

Heat stress 0.42 ± 0.01 c 0.28 ± 0.01 b–e 0.70 ± 0.02 c,d 1.50 ± 0.01 b,c 0.11 ± 0.012 b,c 67.40 ± 0.50 c

(83.5 ± 0.83) (87.2 ± 5.61) (84.7 ± 1.67) (84.6 ± 1.04) (83.9 ± 1.26)

BG26
Control 0.44 ± 0.01 b,c 0.35 ± 0.01 a 0.79 ± 0.01 a,b 1.26 ± 0.03 c 0.17 ± 0.009 a 79.25 ± 0.83 a

Heat stress 0.38 ± 0.01 c,d 0.31 ± 0.01 a–c 0.70 ± 0.01 c,d 1.23 ± 0.08 c 0.15 ± 0.014 a,b 67.56 ± 0.59 c

(87.2 ± 2.58) (89.5 ± 2.61) (88.2 ± 0.35) (88.2 ± 8.48) (85.3 ± 0.77)

Pavon
Control 0.43 ± 0.01 b,c 0.30 ± 0.01 a–d 0.73 ± 0.02 b,c 1.42 ± 0.05 c 0.05 ± 0.012 d,e 71.21 ± 0.74 b

Heat stress 0.32 ± 0.02 d 0.25 ± 0.01 d,e 0.58 ± 0.02 e 1.28 ± 0.10 c 0.03 ± 0.009 e 50.74 ± 0.65 e

(75.3 ± 4.41) (83.6 ± 4.88) (78.6 ± 1.62) (60.0 ± 8.45) (71.3 ± 0.91)

Values represent as mean ±SE. Figures in the parentheses indicate stability of that pigment. Values in a column with different letter(s) are
significantly different at p ≤ 0.05. } lutein equivalent, and cyanidin-3-glucoside equivalent.

3.4. Leaf Temperature Depression and Membrane Injury Index

In this study, leaf temperature depression (LTD) in all wheat varieties was decreased
under heat stress (35 ◦C) conditions compared to control (25 ◦C) (Figure 2A). Among the
tested varieties, “BG26” maintained relatively higher LTD (2.15 and 2.07 ◦C in control
and heat stress, respectively) while “Pavon” showed comparatively lower LTD (0.53 and
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0.40 ◦C) under both growing conditions. The LTD were decreased by 14, 6, 4, and 25% in
“BG23”, “BG25”, “BG26” and “Pavon”, respectively, under heat stress compared to their
respective control seedlings, but none of them differed significantly between treatments.
There was a significant increase in membrane injury index (MII) in all wheat varieties
except “BG26” under heat stress conditions. “Pavon” recorded a maximum increase in
MII on exposure to heat stress compared to other varieties whereas, “BG26” had the
lowest increase in MII under heat stress (Figure 2B). The percentage increase in MII under
heat stress compared to control was 19, 16, 9 and 40% in “BG23”, “BG25”, “BG26”, and
“Pavon”, respectively.

Figure 2. (A) Leaf temperature depression (LTD) and (B) membrane injury index (MII) of wheat
varieties grown in the growth chamber under control and heat-stressed conditions. Vertical bars
represent +/− SE values. Different letter(s) indicate significant difference at p < 0.05.

3.5. Membrane Lipid Peroxidation, LOX Activity and H2O2 Level

The membrane lipid peroxidation levels in leaf tissues measured as the MDA content
increased significantly in seedlings exposed to heat stress, irrespective of the wheat variety
(Figure 3A). Under heat stress conditions, the relative increase in MDA content was 42, 39,
38 and 108% in “BG23”, “BG25”, “BG26” and “Pavon”, respectively, compared to control.
A greater increase (108%) of MDA content was recorded in variety “Pavon” compared to
control, indicated higher leakiness, lower heat-stability and higher fluidity of membrane
compared to other varieties. On average, the other three varieties recorded 39.5% increase
in MDA.

The LOX activity of wheat leaves recorded a significant increase in all tested varieties,
upon exposure to heat stress (Figure 3B). As a result of heat stress, the least (23%) increase
in LOX activity was recorded in “BG26” with the highest (114%) in “Pavon”, while on
average 46% increase was recorded in other two varieties.
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Figure 3. Changes in- (A) malondialdehyde (MDA), (B) lipoxygenase (LOX), (C) hydrogen peroxide
(H2O2), (D) methylglyoxal (MG) content and the specific activity of (E) glyoxalase I (Gly I) and
(F) glyoxalase I (Gly II) enzymes of wheat varieties grown under control and heat-stressed conditions.
Vertical bars represent +/− SE values. Different letter(s) indicate significant difference at p < 0.05.

A significant increase in the cellular H2O2 level was observed in wheat leaves in
response to heat stress compared to control (Figure 3C). Upon heat treatment, the amount
of H2O2 increased by 43, 39, 35, and 87% in “BG23”, “BG25”, “BG26” and “Pavon”,
respectively, compared to control. The lower relative increase in H2O2 level in ‘BG25′

and “BG26” indicates lower cellular toxicity and oxidative damage compared to ‘BG23′

and “Pavon”.

3.6. Methylglyoxal Level and Detoxifying Enzymes

The MG levels varied slightly and ranged from 4.60 to 5.97 µmol g-1 FW under control,
but the level increased significantly due to heat stress and the levels ranged from 7.19
to 10.81 µmol g-1 FW between the wheat varieties (Figure 3D). The relative increase in
MG level were 61, 63, 56 and 81% in “BG23”, “BG25”, “BG26”, and “Pavon”, respectively
relative to control. The higher relative increase in MG level in “Pavon” indicated higher
cellular toxicity, increased degradation of membrane proteins, lipids and nucleic acid under
heat stress.

Increase in Gly I activity was observed in all wheat varieties in response to heat stress,
with a significant increase in “BG23”, “BG25” and “BG26”, but not in “Pavon” (Figure 3E).
Heat stress resulted in 17, 22, 25, and 10% increase in Gly I activities in “BG23”, “BG25”,
“BG26”, and “Pavon”, respectively, compared to control.

The activity of Gly II was increased slightly with heat stress in all wheat varieties but
the increase was non-significant (Figure 3F). As a result of heat stress, the highest increase
(19%) in Gly II activity was recorded in “BG26” with the least (8%) in “Pavon”, while on
average 14% increase was observed in other two varieties.

3.7. Activity of Osmolytes and Non-Enzymatic Antioxidants

Under control condition, statistically similar proline level was detected in all wheat
varieties (Figure 4A). However, heat stress leads to a significant increase in proline accumu-
lation in wheat seedlings of all four varieties. Upon exposure to heat stress, proline content



Antioxidants 2021, 10, 351 11 of 24

increased by 17, 25, 39 and 12% in “BG23”, “BG25”, “BG26” and “Pavon”, respectively
compared to control.

Figure 4. Changes in osmolytes and non-enzymatic antioxidants- (A) proline, (B) glycine betaine
(GB), (C) glutathione (GSH) and (D) ascorbate (AsA) content of wheat varieties under control and
heat-stressed conditions. Vertical bars represent +/− SE values. Different letter(s) indicate significant
difference at p < 0.05.

Though statistically similar glycine betaine (GB) content, heat stress resulted in a
substantial increase in GB content in all wheat varieties, compared to control (Figure 4B).
GB content increased by 90, 121, 180 and 68% in “BG23”, “BG25”, “BG26” and “Pavon”,
respectively, under heat stress conditions compared to control.

Similarly, glutathione (GSH) content was significantly increased under heat stress in
all four tested wheat varieties (Figure 4C). On exposure to heat stress, “BG26” recorded
99% higher GSH content with the lowest increase (25%) recorded in “Pavon”, while other
two varieties averaged at 54% increase in GSH. Leaf AsA content decreased significantly
under heat stress in “BG25”, “BG23” and “Pavon”, but the reduction was not significant
in “BG26” (Figure 4D). Under heat stress, “BG23” and “BG25” on average recorded 34%
lower AsA, while “Pavon” recorded 61% lower AsA compared to 15% decrease in “BG26”.

3.8. Reactive Oxigen Species (ROS) Scavenging Enzymes

In response to heat stress, an increase in SOD activity was observed in all wheat
varieties with a significant increase in “BG23”, “BG25” and “BG26”, but not in “Pavon”
(Figure 5A). Heat stress resulted in 16, 19, 36, and 8% increase in SOD activities in “BG23”,
“BG25”, “BG26”, and “Pavon”, respectively, compared to control.

The CAT activity was significantly decreased under heat stress in all the wheat varieties
(Figure 5B), recording a decrease by 20, 18, 15, and 38% in “BG23”, “BG25”, “BG26”, and
“Pavon”, respectively, compared to control. The lower relative decrease of CAT activity in
“BG25”, “BG26” and “BG23” indicated an efficient and stable ROS scavenging system in
these varieties than that of “Pavon”.

Similarly, POD activity was decreased non-significantly under heat stress in all wheat
varieties (Figure 5C). Upon exposure to heat stress, the lowest (8%) decrease in POD activity
was recorded in “BG26” and the highest (22%) in “Pavon” with an average of 17% in the
other two varieties.
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Figure 5. Specific activity of (A) superoxide dismutase (SOD), (B) catalase (CAT), and (C) guaiacol
peroxidases (POD) enzymes of wheat varieties under control and heat-stressed conditions. Vertical
bars represent +/− SE values. Different letter(s) indicate significant difference at p < 0.05.

Heat stress resulted in a significant increase in GPX activity in wheat seedlings of
“BG26” but the increase was not significant in “BG23”, “BG25” and “Pavon” (Figure 6A).
The highest GPX activity was recorded in “BG26” and the lowest in “Pavon” under both
control and heat stress conditions. Due to heat stress, the GPX activity was increased by 41,
53, 61 and 38% in “BG23”, “BG25”, “BG26”, and “Pavon”, respectively, over control. GST
activity of wheat leaves recorded a significant increase in all tested varieties, on exposure to
heat stress (Figure 6B). As a result of heat stress, the lowest increase (11%) in GST activity
was recorded in “Pavon” with the highest (24%) in “BG26”, while on average a 21% increase
in other two varieties.

Figure 6. The specific activity of (A) glutathione peroxidase (GPX) and (B) glutathione-S-transferase
(GST) enzymes of wheat varieties under control and heat-stressed conditions. Vertical bars represent
+/− SE values. Different letter(s) indicate significant difference at p < 0.05.
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3.9. AsA-GSH Cycle Enzymes

There was a significant increase in the glutathione reductase (GR) activity in all wheat
varieties on exposure to heat stress (Figure 7A) and the increase ranged between 26 to 102%
with “BG26” recording the highest increase and “Pavon” the least. Significant increase
in APX activity was observed in all the tested varieties under heat stress (Figure 7B).
Both under control and heat stress conditions, the highest APX activity was recorded in
“BG26” and the lowest in “Pavon”. Under heat stress, the highest increase in APX activity
was recorded in “BG26” (63%) with the least (26%) in “Pavon” while other two were
intermediate with 32 and 48% increase in APX activity.

Figure 7. The specific activity of (A) glutathione reductase (GR), (B) ascorbate peroxidase (APX),
(C) dehydroascorbate reductase (DHAR) and (D) monodehydroascorbate reductase (MDHAR) of
wheat varieties under control and heat-stressed conditions. Vertical bars represent +/− SE values.
Different letter(s) indicate significant difference at p < 0.05.

Compared to the control, the activities of DHAR and MDHAR was decreased markedly
in all wheat varieties due to heat stress (Figure 7C,D). Upon heat treatment, the activity
of MDHAR decreased by 23, 22, 13 and 35% in “BG23”, “BG25”, “BG26” and “Pavon”,
respectively, compared to control, without a significant decline only in “BG26”. The DHAR
activity was also decreased in the same manner, and the decrease ranged between 5 to 26%
with “BG26” having the lowest and “Pavon” recording the highest decline.

3.10. Assessment of the Association between Treatment, Varieties and Variables Using Hierarchical
Clustering and Principal Component Analysis (PCA)

The STI values of all measured physiological and biochemical variables were used to
develop heatmap, hierarchical clustering and PCA. From the hierarchical clustering, two
groups (Group-1 and -2) were obtained involving various physiological and biochemical
variables measured among the wheat varieties (Figure 8A). Group-2 included all the
measured variables, except MDA, H2O2, MII, LOX, MG, “Chl a” and Chl a/b which
formed Group-1 (Figure 8A). In comparison to “BG26”, five of the variables in Group-1
exhibited a highly consistent increasing trend in “Pavon”, whereas Group-2 variables
exhibited significantly decreasing pattern (Figure 8A). The other varieties like “BG23”
and “BG25” showed a varying direction in changes among variables in both groups.
Specifically, variety “BG26” displayed a decreasing trend in Group-1 and increasing trends
in the variables of Group-2, which represented opposite trends in “Pavon” (Figure 8A).
In addition, hierarchical clustering of the varieties revealed three distinct clusters namely
Cluster-1, -2 and -3. “BG23” and “BG25” were placed in the Cluster-1 and were strongly
associated with “BG26” compared to “Pavon” (Figure 8A). “BG26” and “Pavon” were
positioned in the Cluster-2 and -3, respectively.
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Figure 8. Hierarchical clustering and PCA-Biplot indicates an association between treatments, vari-
ables and varieties. (A) Hierarchical clustering heatmap: The STI (Stress Tolerance Index) mean
values obtained from the studied variables of all varieties, which were then normalized and clustered.
Two distinct groups were obtained at the variable levels (Group-1 and 2) (B) for all varieties. Different
color scale expresses the intensity of the normalized mean values of various variables. PCA-Biplot:
Varieties dispersed in different ordinates based on the dissimilarity among them. The length and
color intensity of a vector in the biplot indicate the quality of representation and the contribution
of the variable on the principal component, respectively. The angles between the vectors derived
from the middle point of biplots exhibit positive or negative interactions among the variables. The
variables included LTD, leaf temperature depression; MII, membrane injury index; MG, methyl-
glyoxal; MDA, malondialdehyde; LOX, lipoxygenase; H2O2, hydrogen peroxide; Pro, proline; GB,
glycine betaine; TDM, total dry matter; STI, stress tolerance index; GSH, glutathione; AsA, ascorbate;
“Chl a”, chlorophyll a; “Chl b”, chlorophyll b; T.Chl, total chlorophyll; Chl.a.b, chlorophyll a/b; Car,
carotenoids; Anth, anthocyanin; Gly.I, glyoxalase I; Gly.II, glyoxalase II; SOD, superoxide dismutase;
CAT, catalase; POD, peroxidase; GPX, Glutathione peroxidase; GST, Glutathione S-transferases; GR,
glutathione reductase; APX, ascorbate peroxidase; MDHAR, monodehydroascorbate reductase and
DHAR, dehydroascorbate reductase.

Subsequently, we performed PCA analysis using STI values to assess the associa-
tion between varieties and variables (Figure 8B). The two PCA components PC1 and PC2
explained 78.8 and 12.7% of the total phenotypic variation, respectively (Figure 8B). Interest-
ingly, the PCA results revealed that variables of Group-2 viz., DHAR, GR, GSH, SOD, Car,
TDM, APX, AsA, CAT, LTD, Gly II, GB and T.Chl were the major contributors in PC1 and
were strongly associated with “BG26”, while the variables from Group-1 which included
H2O2, MDA, LOX, MG and MII were strongly associated with “Pavon” (Figure 8B). “Chl
a” variable of Group-1 was found to be the most closely correlated with ‘BG25′, while ratio
of “Chl a” to “b” was the most closely linked with “BG23” (Figure 8B).
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4. Discussion
4.1. Pigment Stability Confers Judicious Light Absorption under Heat Stress

Heat stress generates significantly higher levels of ROS including 1O2, O2
•−, H2O2 and

•OH, thereby inducing oxidative stress in plants [29,69]. Excess energy that has not been
used for photosynthesis will lead to higher amounts of ROS, which cause oxidative damage
to chloroplasts and other cell structures when exposed to heat stress [70]. Heat stress also
reduces Chl biosynthesis, the disintegration of chloroplast membranes and disruption
of biochemical reactions in photosystems [71]. In this study, heat stress decrease in Chl
content in wheat leaves could be attributed to impairment of Chl biosynthesis or rapid
degradation [72–74]. Interestingly, the tolerant wheat variety “BG26” recorded greater
stability of the photosynthetic pigments under heat stress compared to the heat susceptible
“Pavon”, with a similar finding observed with late to very late-planted wheat [75]. Pigments
stability particularly “Chl a” reflected by a stable Chl a/b ratio in the most tolerant “BG26”
compared to other varieties, indicated its ability to sustain a higher proportion of the
vulnerable “Chl a” content under heat stress (Table 1).

Carotenoids protect photosystems and chlorophyll molecules by reacting with lipid
peroxidation products and scavenging singlet oxygen [76]. Anthocyanins are known to
protect cellular damage by stabilizing membrane fluidity [75,77,78] and act as effective
antioxidant [79,80]. So, higher stability of these pigments under heat stress collectively
indicates enhanced antioxidant system in tolerant wheat variety “BG26” compared to other
varieties. This implies slower degradation of chlorophyll, carotenoids and anthocyanins,
allowing stability in the light absorption machinery in “BG26” under heat stress (Table 1).
Further, higher carotenoids and anthocyanins content would enhance heat tolerance in
“BG26” through stable membrane system and effective ROS scavenging system.

4.2. Leaf Temperature Depression, Membrane Disruption and Cellular Toxicity Correlated with
Oxidative Damage

High leaf temperature depression (LTD) or a cooler leaf has been used as a pow-
erful and robust selection criterion to improve tolerance of plants to heat and drought
stress [50,80–82]. LTD was the highest in “BG26”, closely followed by “BG25”, indicating
the presence of an efficient transpiration cooling mechanism in these varieties compared to
the other two (Figure 2A). LTD is an important heat avoidance mechanism [82] that helps
to maintain higher assimilation rate in stress condition by improving stomatal conductance
and protecting chloroplasts [80]. In addition to LTD, membrane injury index (MII) is a
collective measure of cell membrane disruption due to stress and has been extensively used
as a reliable marker for the estimation of stress-induced injury in plants [83]. Genotypes
such as “BG26” (Figure 2B) having stable and functional cell membrane under heat stress
are considered as promising candidates for further enhancing heat tolerance in wheat
varieties [15,84].

H2O2 is a toxic compound which is harmful to cells, resulting in lipid peroxidation
and membrane injury [85,86] and thereby produce highly reactive and cytotoxic aldehyde
derivative MDA [87] (Figure 9). Elevated levels of MG are reported in different plants
exposed to abiotic stressors [26]. The MDA levels and LOX activity are used as a measure
of membrane lipid peroxidation and oxidative stress, and the impact it has on increasing
membrane fluidity; increase in leakiness of the membrane; and damage to membrane pro-
teins, enzymes, and ion channels [88,89]. Significant increase in the MG levels in “Pavon”
indicates the extent of inactivation of the vital defense system and irreparable metabolic
dysfunction under heat stress. In addition, a significantly higher H2O2, MDA and LOX
levels in “Pavon” adds further support to a higher level of heat stress sensitivity, due to the
inhibition or insufficient induction of the antioxidant defense systems compared to the tol-
erant “BG26”. MII, H2O2, MG, MDA and LOX collectively induce oxidative stress as these
variables were significantly positively correlated under heat stress (Figure 10). Compara-
tively, a higher relative increase of Gly I and II in the heat-tolerant “BG26” (Figure 9) confers
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efficient MG detoxification in addition to playing a role in maintaining GSH homeostasis
and subsequent ROS detoxification.

Figure 9. Schematic representation of the generation of ROS, MG and MDA due to heat stress and
parametabolic reactions of AsA-GSH cycle and glyoxalase system in plants involved in ROS and
MG detoxification. Red boxes and explosions indicate cellular oxidative stressors. Blue ellipses and
green boxes represent the enzymes and substrate/product of the reactions, respectively. The blue
and red arrows represent “BG26” and “Pavon”, respectively. The direction of the arrows indicate
an overall increase (upwards) or decrease (downwards) on exposure to heat stress within a variety.
Size of the arrow in terms of thickness indicates the amount/activity level with thicker arrows
indicating the higher change (increase or decrease) under heat stress compared to control between
the varieties. AGE- advanced glycation end product, Anth- anthocyanin, APX- ascorbate peroxidase,
AsA- ascorbate, Car- carotenoids, CAT- catalase, DHA- dehydroascorbate, DHAR- dehydroascorbate
reductase, DNA- deoxyribonucleic acid, GB- glycine betaine, Gly I- glyoxalase I, Gly II- glyoxalase
II, GPX- Glutathione peroxidase, GR- glutathione reductase, GSH- glutathione (reduced), GSSG-
glutathione (oxidized), GST- Glutathione S-transferases, H2O2- hydrogen peroxide, LOX- lipoxyge-
nase, MDA- malondialdehyde, MDHA- monodehydroascorbate, MDHAR- monodehydroascorbate
reductase, MG- methylglyoxal, NADPH- nicotinamide adenine dinucleotide phosphate (reduced),
POD- peroxidase, Pro- proline, PUFA- polyunsaturated fatty acid, ROS- reactive oxygen species, SLG-
S-D-lactoylglutathione, SOD- superoxide dismutase, and TDM- total dry matter.

Figure 10. Correlation coefficients among the parameters that collectively induced oxidative stress.
The parameters included LTD (leaf Table 2. O2 (hydrogen peroxide) and LOX (lipoxygenase). ***, **
and * indicate significant at p ≤ 0.001, p ≤ 0.01 and p ≤ 0.05, respectively.

4.3. Enhanced Osmolytes Accumulation Alleviate Heat-Induced Oxidative Stress in Wheat

Proline accumulation in plants has been associated with enhanced tolerance under
different stresses, including unfavourable temperature conditions, either low or high
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temperatures [90,91]. As an important osmolyte, accumulation of proline is shown to
alleviate osmotic stress induced by heat stress [92]. In this study, differences in the proline
level between the wheat genotypes were not substantial but were markedly higher in
plants exposed to heat stress at 35 ◦C compared to control (Figure 4A). This is consistent
with other studies, where even higher increases have been reported in heat stress exposed
wheat plants [93].

In vitro experiments have demonstrated glycine betaine (GB) in protecting some
enzymes and protein complexes from heat-induced destabilization [94,95] and increased the
levels of AsA and GSH in transgenic wheat by activating the synthesis of the molecules [95].
In the present study, higher accumulation of GSH (Figure 4C) and GB (Figure 4B) in the heat-
tolerant “BG26” indicates lesser disruption of pathways synthesizing these antioxidants
under heat stress compared to other varieties. Both glycine betaine and proline provide
protection against oxidative stress by reducing H2O2 and lipid peroxidation levels and by
increasing the antioxidant defense and MG detoxification systems [25].

4.4. Stable Antioxidant Enzyme System is Crucial for Heat Tolerance

In the plant cells, superoxide dismutase (SOD) provides primary protection against
O2
•−, which is then converted to H2O2 for subsequent metabolism to H2O by catalases

(CAT) and peroxidases (POD, APX and GPX), thus protecting the cell damage [39,96]. In
this study, the activity of both CAT and POD decreased significantly in all wheat varieties
upon exposure to heat stress, which could be due to its inactivation by the accumulated
H2O2 induced by heat. However, the extent of reduction varied with the relative tolerance
of the varieties, i.e., comparatively higher reduction in susceptible “Pavon” than tolerant
“BG26” (Figure 5A–C). The higher relative increase in SOD activity along with a lower
relative decrease of CAT and POD activity may be beneficial to detoxifying O2

•− and H2O2
induced by heat stress in tolerant varieties, and vice versa in susceptible varieties. Our
results align with other studies wherein a significant increase in SOD [97] and reduction in
CAT [98–101] and POD activity under heat stress is observed, including wheat [102] and
maize [103].

Glutathione peroxidases (GPX) are a family of isozymes that use GSH to reduce
H2O2 and lipid hydroperoxides (ROOHs) (Figure 9), and therefore protect the plant cell
membrane from oxidative damage [104–106]. Our results showed a sharp increase in GPX
activity in response to heat stress with a relatively higher increase in the tolerant “BG26”,
indicating the increased ability of the tolerant variety to scavenge H2O2 and ROOHs,
similar to Hasanuzzaman et al. [107]. The plant glutathione-S-transferases (GST) are a large
and diverse group of enzymes that catalyze the conjugation of electrophilic xenobiotic
substrates with the GSH and are associated with inducing tolerance to different abiotic
stresses [108]. More than 2-fold increase in GST activity was recorded in the tolerant “BG26”
compared to the susceptible “Pavon” (Figure 6B), thereby decreasing the levels of MDA
and H2O2 in wheat seedlings exposed to heat stress (Figure 3A,C). Similar increases in GST
activity under heat stress were observed in wheat [18,107] and maize [109].

Taken together, apart from the AsA-GSH cycle, SOD, CAT, POD, GPX and GST are
important antioxidant enzymes in plants. Our results demonstrated that the heat-tolerant
“BG26” seedlings countered ROS production by maintaining a relatively higher amount
of CAT and POD, and increasing the activities of SOD, GPX and GST under heat stress
(Figures 5 and 6).

4.5. Efficient Operation of Ascorbate-Glutathione Cycle is Pivotal for Heat Tolerance

Ascorbate–glutathione cycle is the core metabolic pathway to detoxify ROS and
recycling of non-enzymatic antioxidants. This vital cycle contains four enzymes: APX,
MDHAR, DHAR and GR which are systematically and proportionately involved in the
H2O2 detoxification (Figure 9). Other than H2O2 detoxification, these enzymes are also
actively involved in the regeneration of non-enzymatic antioxidants like AsA and GSH. The
presence of AsA and GSH has been reported to improve osmoregulation, plant water status
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and nutrient status, water use efficiency, photosynthetic performance, reduce oxidative
stress and improve overall productivity in plants [4,109]. Our results demonstrate that
AsA content markedly decreased under heat stress in all wheat varieties and it was less
pronounced in heat-tolerant “BG26” (Figure 4D). A decline in AsA is probably due to its
direct role in scavenging ROS, since AsA is considered to be the first line of defense against
oxidative stress. The greater decline of AsA content in heat susceptible “Pavon” indicated
the increased extent of AsA utilization to counter the higher amount of ROS produced
under heat stress.

The central role of GSH in the antioxidant defense system is due to its ability to
regenerate AsA through reduction of DHA in the AsA-GSH cycle [4,38] (Figure 9). Our
results indicated a significant increase in the level of GSH in seedlings exposed to heat
stress (Figure 4C) with a significantly higher accumulation in heat-tolerant “BG26” than
others. This finding is in agreement with Tiwari and Yadav [109] and Kocsy et al. [110],
a multi-fold increase in GSH content was recorded in tolerant maize and wheat varieties
under heat stress exposure. They also suggested that an increase in GSH content under
heat stress was due to a higher rate of GSH synthesis which was further accelerated by the
enhanced GR activity. Similarly, in the present study, higher increase in the GSH content
in “BG26” was well coordinated leading to an increased GR activity under heat stress
(Figure 7A).

APX is a key enzyme in the AsA-GSH cycle and plays a vital role in plant defense
against oxidative stress by catalyzing the conversion of H2O2 to water (Figure 9). Its
essential role in the scavenging of H2O2 in chloroplasts, where CAT is absent, has been well
established [111]. Our results showed a higher relative increase in APX activity during heat
stress in the tolerant “BG26” and lower in heat susceptible “Pavon”, which is in agreement
with Dash and Mohanty [112], Almeselmani et al. [77] and Tiwari and Yadav [109]. In
addition, a significantly higher GR activity observed (Figure 7A) would complement APX
in H2O2 scavenging [113].

Our results demonstrated that the activities of MDHAR and DHAR decreased markedly
due to heat stress, which are partially supported by Rivero et al. [114]. The slight increase
in APX and GR activities were not sufficient to protect the seedlings from ROS induced
damages in susceptible variety “Pavon”. As the MDHAR and DHAR are equally impor-
tant in regulating the level of AsA and its redox state under oxidative stress [93,115,116],
decreases in the activities of these enzymes were followed by a decrease in AsA content;
and these decreases was more pronounced in heat susceptible variety “Pavon” (Figure 4D).
Interestingly, our results indicate that AsA–GSH cycle to be more efficiently operating
in tolerant variety “BG26” than that of “Pavon” (Figure 9). The differential response of
these varieties to heat stress as a consequence of variation in the levels of enzymatic and
non-enzymatic antioxidants suggests that manipulation of AsA–GSH pathway may be a
promising route to enhance heat tolerance in wheat.

5. Conclusions

In conclusion, a comprehensive analysis of the oxidative species and antioxidant
interactions allowed us to capture the pathways that induced greater heat tolerance in
“BG26” seedlings exposed to heat stress, compared to other varieties. The “BG26” was able
to maintain highest dry matter and pigment stability, due to increased proline and glycine
betaine levels, lower accumulation of H2O2, MDA and MG content and reduced oxidative
stress with enhanced antioxidant capacity. Our findings demonstrated that heat-tolerant
attributes are closely associated with the overall antioxidant activities to aid plants to
maintain cellular homeostasis under heat stress. Our results establish a reference for further
molecular analysis in wheat at the seedling stage, shaping the antioxidant system associated
biochemical responses aimed to better adapt wheat to early-stage heat stress. Further
investigations are needed to establish a pipeline for translating findings from seedling
stage to different developmental stages including yield and yield-related parameters.
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AGE Advanced glycation end product
Anth Anthocyanins
AO Ascorbate oxidase
APX Ascorbate peroxidase
AsA Ascorbate
BARI Bangladesh Agricultural Research Institute
BSA Bovine serum albumin
Car Carotenoids
CAT Catalase
CDNB 1-chloro-2,4-dinitrobenzene
Chl Chlorophyll
DHA Dehydroascorbate
DHAR Dehydroascorbate reductase
DTNB 5,5′-dithiobis-(2-nitrobenzoic acid)
EDTA Ethylenediaminetetraacetic acid
GB Glycine betaine
Gly I Glyoxalase-I
Gly II Glyoxalase-II
GPX Glutathione peroxidase
GR Glutathione reductase
GSH Glutathione (reduced)
GSSG Glutathione (oxidized)
GST Glutathione s-transferase

https://www.mdpi.com/2076-3921/10/3/351/s1
https://www.mdpi.com/2076-3921/10/3/351/s1


Antioxidants 2021, 10, 351 20 of 24

IPCC The Intergovernmental Panel on Climate Change
LOX Lipoxygenase
LTD Leaf temperature depression
MDA Malondialdehyde
MDHA Monodehydroascorbate
MDHAR Monodehydroascorbate reductase
MG Methylglyoxal
MII Membrane injury index
NADPH Nicotinamide adenine dinucleotide phosphate (reduced)
NBT Nitroblue tetrazolium
POD Guaiacol peroxidases
Pro Proline
PUFA Polyunsaturated fatty acid
RDM Root dry matter
RH Relative humidity
RL Root length
ROS Reactive oxygen species
SDM Shoot dry matter
SL Shoot length
SLG S-D-lactoylglutathione
SOD Superoxide dismutase
STI Stress tolerance index
TBA Thiobarbituric acid
TCA Trichloroacetic acid
TDM Total dry matter
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