
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
A model-based optimization framework for the inference of 
regulatory interactions using time-course DNA microarray 
expression data
Reuben Thomas1, Carlos J Paredes4,5, Sanjay Mehrotra2, 
Vassily Hatzimanikatis*3 and Eleftherios T Papoutsakis*4,6

Address: 1Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research 
Triangle Park, North Carolina, USA, 2Department of Industrial Engineering and Management Science, Northwestern University, Evanston, Illinois 
60208-3120, USA, 3Laboratory of Computational Systems Biotechnology, EPFL, CH-1015 Lausanne, Switzerland, 4Department of Chemical and 
Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, USA, 5Gevo, Inc., 133 N. Altadena Dr. Suite 310, Pasadena, CA 
91107, USA and 6Dept. of Chemical Engineering and the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA

Email: Reuben Thomas - ThomasR3@niehs.nih.gov; Carlos J Paredes - cjparedes@gmail.com; 
Sanjay Mehrotra - mehrotra@iems.northwestern.edu; Vassily Hatzimanikatis* - vassily.hatzimanikatis@epfl.ch; Eleftherios T Papoutsakis* - e-
paps@northwestern.edu

* Corresponding authors    

Abstract
Background: Proteins are the primary regulatory agents of transcription even though mRNA expression data alone,
from systems like DNA microarrays, are widely used. In addition, the regulation process in genetic systems is inherently
non-linear in nature, and most studies employ a time-course analysis of mRNA expression. These considerations should
be taken into account in the development of methods for the inference of regulatory interactions in genetic networks.

Results: We use an S-system based model for the transcription and translation process. We propose an optimization-
based regulatory network inference approach that uses time-varying data from DNA microarray analysis. Currently, this
seems to be the only model-based method that can be used for the analysis of time-course "relative" expressions
(expression ratios). We perform an analysis of the dynamic behavior of the system when the number of experimental
samples available is varied, when there are different levels of noise in the data and when there are genes that are not
considered by the experimenter. Our studies show that the principal factor affecting the ability of a method to infer
interactions correctly is the similarity in the time profiles of some or all the genes. The less similar the profiles are to
each other the easier it is to infer the interactions. We propose a heuristic method for resolving networks and show
that it displays reasonable performance on a synthetic network. Finally, we validate our approach using real experimental
data for a chosen subset of genes involved in the sporulation cascade of Bacillus anthracis. We show that the method
captures most of the important known interactions between the chosen genes.

Conclusion: The performance of any inference method for regulatory interactions between genes depends on the noise
in the data, the existence of unknown genes affecting the network genes, and the similarity in the time profiles of some
or all genes. Though subject to these issues, the inference method proposed in this paper would be useful because of its
ability to infer important interactions, the fact that it can be used with time-course DNA microarray data and because it
is based on a non-linear model of the process that explicitly accounts for the regulatory role of proteins.
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1. Background
Inference of regulatory interactions in a genetic system
provides fundamental biological knowledge and signifi-
cant efforts have been invested for the solution of this
problem, [1-23]. The method we propose in this paper
improves upon the previous contributions to the solution
of this problem: it employs a more realistic model, it
reduces the effect of noise on the solution obtained, it
avoids the costly step involving numerical integration
and, significantly, it explicitly utilizes gene expression
ratios, which are typically the primary data of microarray-
based gene expression analysis. Here, we use an S-system
based [24-29] model that explicitly accounts for proteins
serving as regulatory agents. It also accounts for the non-
linear dependency of transcription rates in the protein
concentrations. We are solely dealing with gene expres-
sion data in view of the fact that reasonably-complete pro-
teomic data are not readily available. We used the same
model as in our previous work, [12] for the development
of a method for gene regulatory network inference based
on steady state gene expression ratio data. In this paper, a
heuristic solution for the problem is given, as dictated by
the S-system based model and time-varying gene expres-
sion ratio data. The computational complexity of the
method is exponential in the number of genes in the sys-
tem. However if a subset of the interactions were already
known to exist, then the method could be used on net-
works with a larger number of genes. The impact of noise
in the data is reduced by using smoothing splines as
approximations to the time profiles of gene expression.

The model used in this paper shares similarity with infer-
ence methods based on S-system models [11-15]. How-
ever, these earlier methods do not consider the effect of
proteins (whose concentrations are not measured) in reg-
ulating gene expression. Also, every evaluation of the
objective function set up in [11] and [13] for optimization
required the integration of a set of differential equations.
This integration can be costly in terms of computational
resources, as was pointed out in [28] and [29].

Related to the methods based on the S-system models are
methods based on linear differential equations [16-19].
The methods of Refs. [17] and [19] involve a least square
fitting approach, but their models do not involve protein
concentrations. Dasika et al. [2] used a linear regulatory
model but allowed the current gene expressions to
depend on the levels of gene expression of the previous
time points. This time delay of the action of an mRNA on
the transcription rates may capture the delay due to the
protein-translation process and possible protein modifi-
cation events like glycosylation, phosphorylation, methyl-
ation etc. However, the value of the time-delay parameter
cannot be mapped easily to the biophysical and biochem-
ical process it represents. The model presented here

directly accounts for the protein translation process and
thus there is an implicit time-delay in the regulation of
gene expression. The model used in Ref. [18] involves
both mRNA and protein concentrations. However, the
authors assume that all protein concentrations can be
measured. The work in Refs. [20-23] are representative of
methods which analyze the time course gene expression
data using a Bayesian network framework. This frame-
work assumes a linear model between gene-expression
levels at multiple time points and hence is similar, con-
ceptually, to the one used in Ref. [16].

Most of the previous model-based methods (Eg.
[11,13,16,19]) assume that the gene-expression data are
available as absolute concentrations and they also assume
linear, additive action of the regulatory mRNAs on the
transcription rates. The method presented here is tailored
for the analysis of relative gene expression data, and it can
be regarded as a non-lineargeneralization of the previous
models. Apart from these models, there are model-based
identification methods that include even broader descrip-
tion of cellular processes by including models for meta-
bolic processes [14]. However, the applicability of such
models is restricted to smaller systems because of the
complexity involved due to experimental measurements
and computational requirements.

Here we describe a model-based inference approach of the
regulatory network of a genetic system using time-varying
mRNA-expression ratios obtained from experiments
involving DNA microarrays. We employ an S-system
approach to model the transcription and translation proc-
esses and, propose an optimization-based regulatory net-
work inference method. The method is tested using
synthetic data from a model genetic network of genes, and
is applied on expression data of a core subset of genes
involved in the sporulation cascade of the prokaryote
Bacillus anthracis.

2. Results
2.1 Dynamic regulation model and its characteristics
According to the S-system based model of gene expression
and protein synthesis [12] the mass balances (rates of
change of concentrations) for each mRNA i, mi(t), and
protein i, pi(t), in a system of n genes are described by the
following equations,
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where Vsm,i and Vdm,i denote the rates of synthesis and deg-
radation rates of the ith mRNA, Vsp,i and Vdp,i denote the
rates of synthesis and degradation rates of the ith protein,
αi and γi denote the transcription and translation rate con-
stants, and βi and δi are the first-order decay constants of
the mRNA and protein, respectively. The real parameters
εig quantify the strength of regulatory control exerted by
the activity of protein g on the synthesis rate of mRNA i. If
εig is equal to zero, protein g does not affect the expression
of gene i, and if εig is positive (negative), then protein g
induces (represses) the expression of gene i. A discussion
on the ranges of these parameters can be found Appendix
1 of [12] and [29].

2.2 Derivation of the optimization method
The basic goal is to quantify the strengths of regulatory
interactions and rate constants that best fit the dynamic
model described by Equation (1) to a given set of time-
course, gene-expression data. We consider a network of n
genes, which are perturbed at some time before t = 0, from
t = 0 onwards there are no external perturbations, and the
mRNA and protein concentrations change continuously
over time.

Experimental methods like the DNA microarrays typically
measure the absolute value or the logarithm of gene
(mRNA) expression ratios at discrete points in time. Thus,
the log-expression ratio for gene i at time tj is given by,

where  is a reference state for gene i.

Protein concentrations are not directly observable, unless
an accurate proteomics technology is used [31,32], and
therefore we employ the following novel methodology
that utilizes smoothing cubic splines, [33]. We fit smooth-
ing splines through the gene expression ratios at different
time points and use them to predict the protein concen-
trations. It is analytically possible to do this because of the
polynomial forms of the splines. As a result, we can avoid
the expensive steps of numerical integration during the
parameter estimation stage. The concentration of protein
i at time t can be written in the following form:

pi(t) = pi(0)fi(δi, t) + γihi(δi, t) (2)

where pi(0) is the initial concentration of protein i, fi, and

hi are non-linear functions of δi and time, t, derived using

the splines fitted to the gene-expression data in the mass
balance equations for the proteins. The initial protein

concentrations pi(0) and the reference states  are also

unknown parameters. Estimates of the decay constants βi

and δi can be obtained from the available half-life of

mRNAs and proteins [34,35] and also see Section A6.2,
Additional file. In the following analysis, we will assume
that these decay constants are known. The derivation of
Equation (2) is given in the Section 4.1.

We can now estimate the unknown parameters of the net-
work by solving the following nonlinear mixed-integer
mathematical programming problem:

where,

subject to

-DYij ≤ εij ≤ DYij, i, j = 1,2,...,n (5)

Yij ∈ {0,1}, i, j = 1,2,...,n (7)

αi, γi, , Pi(0) ≥ 0, i = 1,2,...,n (8)

where,  is the error term which is an approximate
restatement of the mass balance equations of all the n
genes at Nt discrete points in time (see Section 4.2 for the

derivation of this term).  represents the vector of regu-

latory interactions affecting gene i and || || represents its

Euclidean norm. τi is a regularization parameter for each

gene i. Regularization [36] of the formulation can be used
when the quality of the time-series data leads to ill-condi-
tioned systems. Regularization has been also used in the
network inference method proposed by Kikuchi et al. [13],
and by Gardner et al. [3] in the form of ridge regression.
However, if the data do not lead to an ill conditioned sys-
tem, such regularization is not necessary and the regulari-

zation parameters τi are set equal to zero. Therefore, the

objective in Equation (3) minimizes the sum of the error
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in fitting the model to the experimental data, and the
weighted norm of the strength of the interactions.

Yij is a binary variable which is equal to 1 when gene j
interacts with gene i or zero otherwise. D in Equation (5)
is some positive number that limits the strength of an
interaction. This constant can either be assigned a number
based on prior biological knowledge (for typical kinetics,
it can be set equal to one for Michaelis-Menten kinetics, or
up to 4 (for the usual tetramer-dependent cooperative
kinetics) or set equal to an arbitrarily large number. Con-
straints (5), (6) and (7) enforce the assumption that each
gene is regulated by not more than k other genes as has
been explained in [16] and [12]. Constraint (8) guaran-
tees the non-negativity requirements of the other
unknowns.

2.3 Coordinate descent based heuristic method

There are two main issues associated with computing the
solution of the optimization problem described by Equa-
tions (3)-(8). First, the objective function in (3) is convex

in the terms of strength of interactions, εij and in the loga-

rithm of the transcription rates, log(αi), and it is non-con-

vex in the translation rate constants, γi, the initial protein

concentrations, pi(0) and the reference mRNA expression

states, . In general globally optimal solutions can be

found only for convex optimization problems [37,38]. A
second issue arises from the large number of continuous
and discrete variables (or unknown parameters) involved
in each optimization since the time for solving such prob-
lems increases exponentially with the number of varia-
bles. In order to address these two issues, we introduce a
coordinate-descent based heuristic method to solve the
inference problem. The method is based on the observa-

tion that the three sets of parameters, γi, , and pi(0),

link all the genes together through the objective function,
in the sense that if these three sets of parameters were
known, then the resulting optimization problem would
be convex in its unknowns and the problem could be
equivalently split into n sub-problems, one problem for
each gene. Thus, instead of dealing with one mixed-inte-
ger optimization problem of O(n2) variables, we would
have n mixed-integer problems with O(n) variables. The
method then essentially repeats the two steps below for a
given number of times (say Nl),.

1. Fix the values of γi, , and pi(0), as determined either

by an initial guess or from Step 2 below. Solve n (mixed-
integer quadratic) optimization problems, one for each

gene i, in the parameters  and log(αi). Each problem is

mathematically stated as:

subject to

-DYij ≤ εij ≤ DYij, j = 1,2,...,n (10)

Yij ∈ {0,1},i, j = 1,2,...,n (12)

log(αi) ≥ -A (13)

where A is some large positive number.

2. Fix the values of  and log(αi) determined from Step 1

and solve the following optimization problem in the

three sets of parameters, γi, , and pi(0).

min (14)

subject to,

γi, , pi(0) ≥ 0, i = 1,2,...,n (15)

Our numerical studies suggest that the improvements
attained by increasing the number of repetitions of the
above two steps are marginal (Figure A.1, Additional file),
i.e., a relatively small value for Nl may be good enough.

Different initial guesses would potentially lead to differ-
ent solutions, and the proposed method does not guaran-
tee finding the globally optimal solutions. A procedure of
reporting the best solution considers the network of inter-
actions derived from all the collected solutions, i.e., of
similar optimum objective function values, by accepting
an interaction to be present if it is inferred to be present in
the majority of the solutions. Since the set of optimal
solutions can be considered as alternative networks that
are consistent with the experimental data, an interaction
can be considered physiologically significant if it occurred
in the majority of the solutions.
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2.4 Parameters and issues affecting the performance of the 
algorithm
The applicability of any genetic network inference method
is affected by a number of factors (see Ref. [39] for a math-
ematical description of such factors). We used 10-gene
synthetic networks (see Section A3, Additional file) to
generate data that are used to study the performance of the
algorithm. The following six factors which are known to
have an effect on the performance of inference algorithms
were studied: (i) the degree of similarity between the time
profiles of the expression of different genes; (ii) the
number of experimental samples available; (iii) noise in
the data; (iv) interactions involving genes that do not
show significant variation; (v) the parameters Nl (the
number of iterations), and Nt (the number of discretiza-
tion time points in the objective function) of the heuristic
method; and (vi) missing genes from the analysis.

The time-series data were obtained by the integration of
the S-system of differential equations (1) in MATLAB [40],
for different values of the parameters. The mixed-integer
non-linear solver of LINDO [41] was used in all the opti-
mization problems. In all the numerical studies in this

section only, we assume that the parameters γi, , pi(0)

are known. This will allow us to correctly base our conclu-
sions using globally optimal solutions.

The degree of similarity between the different time pro-
files of mRNA expression is an important determinant of
the amount of information present in the data. We stud-
ied three different types of networks that we labeled
"Low", "Medium" and "High" according to the degree of
similarity between the different profiles which we quanti-
fied using the condition number of the matrix Φ formed
by the logarithm of protein concentrations at each time
point:

Φ = [log(pgj)], g = 1,...,n, j = 1,2,...,Nt

The time series of the logarithm of expression ratios are
shown in Figure 1, for the three types of networks: a net-
work with condition number of ~103 ("Low"; Figure
1(a)), a network with condition number ~106

("Medium"; Figure 1(b)) and that in Figure 1(c) in a con-
dition number ~109 ("High").

As expected, the performance of the method, with respect
to percentage of the correct identifications, improved as
the number of uniformly spaced experimental samples,
Ns, used for the protein estimation increased (Figure 2)
since their size affects how much of the true variation of
the time profiles are captured in the data. Note that the
percentage of correct identifications refers to the percent-
age of true positives (interactions) among all the positives

(true and false) identified by the method. The parameter
k was set to 3 and hence the total (true and false) positives
equal to 30. The performance of the method is not very
sensitive to Nt. Moreover, most of the interactions in the
network appear to be quite robust to sampling frequency.
For example at least 50% of the interactions were correctly
identified for all sample sizes (Figure 2). As the condition
number of the data increases, i.e., the profiles exhibit
lesser variation, the number of samples required for cor-
rect identification is reduced (Figure 3).

We also studied the effect of noise in the data of expres-
sion ratios using the "Low" network with 1000 "experi-
mental" samples. We chose a large number of samples in
order to avoid bias in the results due to a sampling error.
We used smoothing splines that are known to provide a
good compromise between the approximation error and
the smoothness of the resulting curve [33]. A parameter
called the smoothing parameter controls the degree of
smoothness of the spline, and as expected the choice of
the value of this parameter will have an impact on the per-
formance of the method. We used the technique of Gen-
eralized Cross Validation [42], which has been shown to
provide good estimates for the smoothing parameter, as
implemented in the R statistical package [43]. We found
that about 50% of the interactions are very sensitive to
noise, while even with a 50% error in the data, we are able
to infer about 30% of the interactions (Table 1).

The DNA microarray technology tends to suppress the
measured expression ratios [44], and some of the gene
expression profiles do not show much variation, i.e., they
are more or less constant over the period of observation.
Therefore, it is unlikely that the algorithm, due to numer-
ical constraints, will infer interactions involving these
genes, since these interactions will be absorbed in the
parameter α that quantifies the transcription rate con-
stant. Therefore, in order to make the experimental gene-
expression profiles more suitable for the genetic-network
inference method, we examined the possibility of rescal-
ing all logarithmic expression ratios by a constant factor
or raise all expression ratios to a certain power. This way
the larger expression ratios (>1) become larger while the
smaller expression ratios (<1) become smaller.

If all the interacting genes in a network are not considered
for analysis by an inference method, then incorrect inter-
actions are likely to be identified. If we remove genes that
contribute to significant regulatory interactions, the
number of incorrect identifications would increase (see
Table A.7, Additional file). Finally, relatively small errors
in the estimates of the half-lives of the mRNAs and pro-
teins cause only a modest deterioration in the perform-
ance of the method (see Table A.8, Additional file).
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2.5 Algorithm testing
2.5.1 Synthetic networks

The algorithm was tested using data from the "Low" net-
work with 1000 "experimental" samples. There was no

noise in the data but the parameters γi, , pi(0) were

now assumed to be unknown, i.e., the problem was non-
convex. We found 7 solutions using the Coordinate
descent heuristic method starting from 7 random initial
guesses and all solutions converged to similar (O(1))
objective function values. The best solution was identified
as the one whose interactions occurred in the majority of
the solutions. The '4 out of 7' solution identified 11/30
interactions correctly while the '5 out of 7' solution iden-
tified 10/30 interactions correctly. If the method identify-
ing the interactions were random, and since we have
assumed a 10-gene network with 3 regulatory inputs for
each gene, an interaction will be identified as inducing
with probability 15%, repressing with probability 15%

and absent with probability 70%. Therefore the average
number of correct interactions identified will be 15%
(4.5/30), suggesting that the heuristic method we are
using is doing better than a random method.

Note that we found that about 30% of the interactions
could be identified with a large amount of noise, or when

the parameters γi, , pi(0) are unknown. The results here

give a similar coverage indicating that these 10/30 interac-
tions are not just robust to noise but are also important in
the sense that they are captured in all the solutions found.

To give an estimate of the time required to obtain a solu-
tion, it took about 15 hours to obtain 5 solutions, each
running in parallel on a P4, 2 GHz, and 1 Gig RAM PC.
Since the main emphasis of this study was not to obtain a
computationally efficient method, only this estimate of
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Variation of correct identifications and identification errors with experimental samples and discretizations for "Low" net-workFigure 2
Variation of correct identifications and identification 
errors with experimental samples and discretizations 
for "Low" network. Variation of the percentage of cor-
rectly identified interactions among 30 known interactions 
and the error as a percentage of the error obtained with the 
smallest number of samples. The variations are with respect 
to the number of experimental samples chosen and the 
number of discretizations, Nt. The "experimental" data are 
obtained by simulation using the "Low" synthetic network 
(see Figure 1).
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the time taken for a solution is provided. Note that the
computational complexity of the heuristic method is of
O(nen).

2.5.2 A network from the sporulation cascade of Bacillus anthracis
2.5.2.1 Background
Bacillus anthracis is an endospore-forming bacterium (a
prokaryote) that is responsible for the anthrax disease.
Under environmental-stress conditions, like most bacilli,
it commits to sporulation via the bacillus endospore pro-
gram. Mature spores can survive many extreme condi-
tions, thus assuring species survival. When conditions are
suitable, the endospore germinates and the organism then
can begin to grow again.

2.5.2.2 Data and choice of genes
Liu et al. [45] performed genome-scale DNA microarray
analysis of a sporulating batch culture of B. anthracis, and
they monitored the expression ratios of over 2000 genes
at 20 points over a time course of about 6 hours. Figure 4
shows the logarithm values of expression ratios of 24 of

the important players in the sporulation cascade [45]. The
procedure of expression data retrieval and the choice of
the 24 players are further elaborated in Section A5.1,
Additional file. From these, we excluded a subset of genes
based on the following considerations:

• kinA had an insufficient number of usable data points.

• Genes like kinD, abrB, codY exhibited insufficient varia-
tion.

• The transcriptional and total protein levels of Spo0A are
not relevant; rather, it is its activation (phosphorylated
Spo0A, Spo0A~P) that matters, and, in the absence of reli-
able kinA data, this is better captured by the expression of
spo0F. Thus, we will use spo0F expression to represent
Spo0A~P and is shown below as spo0F/Spo0A~P.

• Genes with similar profiles were not considered. E.g.
spoIIAA and spoIIAB had similar profiles to sigF and sigE.
spoIVB had a similar profile to sigK.

• The variation of spoIIGA did not correspond to what is
known about its role in the cascade. From prior biological
knowledge [46], one would have expected spoIIGA to have
a profile similar to those of sigF and sigE.

The chosen subset of 9 genes consists of spo0F/Spo0A~P,
sigF, sigE, spoIIIJ, sigG, spoIVFB, spoIIID, sigK and gerE. Refer
to Section A5.2, Additional file for a discussion of the bio-
logical basis of this choice.

2.5.2.3 Inferred interactions

In the experiments [45] to generate the B. anthracis micro-

array data, the reference state (parameter , in terms of

copies of mRNA per cell) for the expression of gene i was
taken to be the average of equal amounts of samples
drawn at each of the time points over the course of the
experiment. If a gene was expressed only for a short period
of time, then the expression ratios during this period
would be relatively high. But if the expression of a gene
changed slightly over the entire course of the experiment,
then the expression ratios would show only very small
variations around the value of 1. Because of this and
because, as stated, DNA-microarray analysis underesti-
mates the true expression ratios, the log-expression ratio
data were scaled by a factor of 2 (see Section 2.4) in order
to accentuate the variations within each profile. Smooth-
ing splines were fit to the expression ratio data derived
from these scaled log-expression ratio ones. The graphs of
these smoothing splines along with the units and the
bounds on the different unknown parameters involved in

mi
c

Variation of correct identifications and identification errors with experimental samples for "Medium" networkFigure 3
Variation of correct identifications and identification 
errors with experimental samples for "Medium" net-
work. Variation of the percentage of correctly identified 
interactions among 30 known interactionsand the error as a 
percentage of the error obtained with the smallest number 
of samples. The variations are with respect to the number of 
experimental samples chosen. The "experimental" data are 
obtained from simulations using the "Medium" synthetic net-
work of Figure 1. 10 time points were used in the optimiza-
tion method.
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the optimization problem are given in Section A6, Addi-
tional file.

The interactions that were identified in at least 5 out of the
7 solutions are given in Table 2. We observe that many
important known interactions are captured. These include
the effect of: spo0F/Spo0A~P on sigF, sigF on sigE, sigE on
sigG, spoIVFB on sigK, and sigK on gerE. Also note that sev-
eral inhibiting interactions that were identified are not
known to exist. This could be because the set of genes that
were considered did not include genes or conditions nec-
essary to shut down the genes under consideration. Hence
the algorithm picked genes whose profiles were probably
closest to the ones that the true inhibiting genes/condi-
tions would possess. Also note that the set of genes did
not involve a gene (like kinA) or condition (e.g., starva-
tion) that would initiate the activation of Spo0F and even-
tually that of Spo0A. So the fact that gerE was identified as
being responsible for the activation of Spo0A can be
viewed as a numerical artifact that reduces the objective
function value the most when compared with the reduc-
tion obtained when other genes serving as activators of
Spo0A. A more detailed discussion of the results is pre-
sented in Section A7, Additional file.

Overall, the algorithm was able to identify many impor-
tant interactions based on this set of experimental data.
While we can assess the effect of all the factors discussed
in Section 2.4 on the specific set of experimental data, we
propose that the missing genes/signals are probably
mainly responsible for the incorrect interaction identifica-
tions for the 'start' gene (Spo0A) and for those responsible
for shutting down the expression of various genes.

3. Conclusion
We have developed a regulatory inference method that
can be used on dynamic, time-course expression data such
as those obtained from DNA microarray analysis. The
method takes into account the non-linear regulatory roles
of the corresponding proteins in the system. We validated
our approach on a synthetic network and on a set of genes
that are involved in the sporulation cascade of B. anthracis.
We did not consider the impact of external perturbations

during the course of the experiment. However, the exten-
sion of our approach to include this case would be
straightforward if we assume that the external perturba-
tions can be modeled as artificial genes that are not influ-
enced by any of the genes involved in the study.

The ability of the method to generate a set of alternative
regulatory networks that are consistent with the experi-
mental data allows a broader analysis of a system when
the number of experimental samples is low and the degree
of similarity between the time profiles of different genes is
high.

4. Methods
4.1 Prediction of protein concentrations

Let Ns denote the number of time points at which log-

expression ratios are measured, and these points are

denoted as {t1, t2,… } and t1 = 0 and  = T. For each

gene i, we perform a cubic spline interpolation [33]

through the points (tj, ) for j in {1..Ns}. This results

in the following n(Ns-1) cubic polynomials,

So  represents a polynomial approximation to mi(t)

in the interval [tj, tj+1]. Using this approximation, the gen-

eral solution to the protein mass-balance equation can be
approximated by,

where the first term represents the homogeneous solution
to the protein mass-balance differential equation and the
second term the particular solution. The values for bij are
given by,

tNs
tNs

2
lm ti j( )

�m t m a t a t a t a t t tij i
c

ij ij ij ij j j( ) ( ),= + + + ≤ ≤ +
1 3 2 2 3 4

1

�m tij( )

�p t c e m b t b t b t b t tij ij
t

i
c

i ij ij ij ij j
i( ) ( ) ( ( )),= + + + + ≤ ≤−δ γ 1 3 2 2 3 4 tt j+1

Table 1: Variation of correct identifications with increasing levels of noise in data

% Error % Correct

0.01 70.8 ± 0.2
s1 44.1 ± 0.2
5 41.4 ± 0.2
10 38.2 ± 0.2
20 34.8 ± 0.2
50 31.9 ± 0.2

Variation of the percentage of correctly identified interactions (given at a 95% confidence interval) with the percentage error in the data. E.g., a 5% 
error implies that all the experimental expression ratio data are known only with an error of ±5%. The "experimental" data are obtained from 
simulations using the "Low" synthetic network (Figure 1).
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This can be verified by checking that the particular solu-
tion indeed satisfies the protein mass-balance equation. cij

can be obtained in terms of the initial protein concentra-

tion, pi(t1) (t1 = 0),  and γi by enforcing the continuity

of the protein function across the break points, i.e.,

We can then show that

where Qi(t) and Rij(t) are defined in terms of , {tq},

for q in {1..j}, d in {1..4} and δi. Let,

Then,
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Time-course variation of subset of important genes in the sporulation cascade of B. AnthracisFigure 4
Time-course variation of subset of important genes in the sporulation cascade of B. Anthracis. The time-course (in 
hours) variation of the logarithm of expression ratios in color-coded format (green indicates up-regulation, red indicates 
down-regulation, grey indicates missing data and the intensity of the color indicates the level of regulation) of 24 important 
genes in the sporulation cascade of B. anthracis ([29]). An approximate measure of the intensity of the color to the magnitude 
of the log2 ratio (fold change) is also given. Note that the ratio refers to that of the actual expression value to the expression 
value at the reference state.
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So now we have approximations to Mi(t) and pi(t) for any
time t in the interval [0, T]. The error in the approximation
of Mi(t) is O(T × Ns

-4) [33] while the error in approxima-
tion of pi(t) is the sum O(γ × T × Ns

-4) and the error in the
estimation of the initial protein concentration, see Section
A2, Additional file.

4.2 Derivation of objective function for optimization 
problem
This section describes the derivation of the error term in
the objective function (Equation (3)) for the optimization
problem of the inference method. The mass balance equa-
tion for any gene i, at any time t, is given by (from Equa-
tion (1)),

If both the left-hand side and right-hand side of the above
equation are non-zero then,

The last equation is a function of time t, that is exactly
equal to zero over the entire time per period of observa-
tion, [0, T]. Therefore the integral of this function with
respect to time t, over this time period should also be zero.

The above equation should hold for all the n genes in the
system. Hence,

The objective function can further be simplified by
approximating the integral by a discrete summation, say
at Nt points. In other words, we require that the mass bal-
ance equations are satisfied only at a finite number of
points as opposed to every time point in the period of
observation. Note that this discrete summation can also
be viewed as a trapezoidal rule-based approximation of
the integral:
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Table 2: Identified interactions among subset of genes in B. anthracis

spo0F/Spo0A~P sigF sigE spoIIIJ sigG spoIVFB spoIIID sigK gerE

spo0F/Spo0A~P 0 0 0 * 0 0 -1 0 1
SigF 1 0 0 0 0 * -1 0 0
SigE 0 1 0 * * 0 * 0 0
SpoIIIJ 1 0 0 0 * 0 * * 0
SigG -1 0 1 0 0 0 0 0 *
spoIVFB * 0 1 0 0 0 * -1 0
SpoIIID -1 1 1 0 0 0 0 0 0
SigK * 0 0 * 0 1 0 1 0
GerE 0 0 0 0 -1 -1 0 1 0

Identified interactions obtained from the inference method for the set of 9 genes involved in the sporulation cascade on B. anthracis. '1' indicates an 
activating interaction, '-1' an inhibiting interaction, '0' an absent interaction and '*' an interaction for which a conclusion could not be drawn. A row 
corresponds to a regulated gene and a column corresponds to a regulator gene. For example, sigE positively regulates sigG, spoIVFB and spoIIID.
Page 10 of 12
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:228 http://www.biomedcentral.com/1471-2105/8/228
Additional material

Acknowledgements
Supported by a grant from the National Institutes of Health (NIH R01-
GM065476). RT acknowledges communications with Ranjith Nair on the 
mathematical analysis in the Additional file.

References
1. Akutsu T, Miyano S, Kuhara S: Inferring qualitative relations in

genetic networks and metabolic pathways.  Bioinformatics 2000,
16:727-734.

2. Di Bernardo D, Gardner TS, Collins JJ: Robust identification of
large genetic networks.  Pac Symp Biocomput 2004, 9:486-497.

3. Gardner TS, di Bernardo D, Lorenz D, Collins JJ: Inferring genetic
networks and identifying compound mode of action via
expression profiling.  Science 2003, 301:102-105.

4. Ideker TE, Thorsson V, Karp RM: Discovery of regulatory inter-
actions through perturbation: Inference and experimental
design.  Pac Symp Biocomput 2000, 5:302-313.

5. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bum-
garner R, Goodlett DR, Aebersold R, Hood L: Integrated genomic
and proteomic analyses of a systematically perturbed meta-
bolic network.  Science 2001, 292:929-934.

6. Noda K, Shinohara A, Takeda M, Matsumoto S, Miyano S, Kuhara S:
Finding genetic network from experiments by weighted net-
work model.  Genome Inform Ser Workshop Genome Inform 1998,
9:141-150.

7. Moriyama T, Shinohara A, Takeda M, Maruyama O, Goto T, Miyano
S, Kuhara S: A system to find genetic networks using weighted
network model.  Genome Inform Ser Workshop Genome Inform 1999,
10:186-195.

8. Wu FX, Zhang FX, Kusalik AJ: Modeling gene expression from
microarray expression data with state-space equations.  Pac
Symp Biocomput 2004:581-592.

9. Liang S, Fuhrman S, Somogyi R: REVEAL, a general reverse engi-
neering algorithm for inference of genetic network architec-
tures.  Pac Symp Biocomput 1998, 3:18-29.

10. Lin X, Floudas CA, Wang Y, Broach JR: Theoretical and compu-
tational studies of the glucose signaling pathways in yeast
using global gene expression data.  Biotechnol Bioeng 2003,
84:864-886.

11. Maki Y, Tominaga D, Okamoto M, Watanabe S, Eguchi Y: Develop-
ment of a system for the inference of large scale genetic net-
works.  Pac Symp Biocomput 2001:446-458.

12. Thomas R, Mehrotra S, Papoutsakis ET, Hatzimanikatis V: A model-
based optimization framework for the inference of gene reg-
ulatory networks from DNA micro-array data.  Bioinformatics
2004, 20(17):3221-3235.

13. Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M: Dynamic
modeling of genetic networks using genetic algorithm and S-
system.  Bioinformatics 2003, 19(5):643-650.

14. Almeida JS, Voit EO: Neural-Network-Based Parameter Esti-
mation in S-System Models of Biological Networks.  Genome
Informatics 2003, 14:114-123.

15. Tsai KY, Wang FS: Evolutionary optimization with data collo-
cation for reverse engineering of biological networks.  Bioin-
formatics 2005, 21(7):1180-1188.

16. Dasika M, Gupta A, Maranas CD, Varner JD: A mixed integer lin-
ear programming (MILP) framework for inferring time delay
in gene regulatory networks.  Pac Symp Biocomput 2004,
9:474-485.

17. D'Haeseleer P, Wen X, Fuhrman S, Somogyi R: Linear modeling of
mrna expression levels during cns development and injury.
Pac SympBiocomput 1999, 4:41-52.

18. Chen T, He HL, Church GM: Modeling gene expression with dif-
ferential equations.  Pac Symp Biocomput 1999, 4:29-40.

19. Bansal M, Gatta GD, Di Bernardo D: Inference of gene regulatory
networks and compound modes of action from time course
gene expression profiles.  Bioinformatics 2006, 22:815-822.

20. Imoto S, Goto T, Miyano S: Estimation of genetic networks and
functional structures between genes by using Bayesian net-
works and nonparametric regression.  Pac Symp Biocomput 2002,
7:175-186.

21. Husmeier D: Sensitivity and specificity of inferring genetic reg-
ulatory interactions from microarray experiments with
dynamic Bayesian networks.  Bioinformatics 2003, 19:2271-2282.

22. Yu J, Smith V, Wang P, Hartemink A, Jarvis E: Advances to Baye-
sian Network Inference for Generating Causal Networks
from Observational Biological Data.  Bioinformatics 2004,
20:3594-3603.

23. Yamanaka T, Toyoshiba H, Sone H, Parham FM, Portier CJ: The
TAO-Gen Algorithm for Identifying Gene Interaction Net-
works with Application to SOS repair in E. coli .  Toxicogenomics
2004, 112(16):1614-1621.

24. Savageau MA: Biochemical systems analysis, I. Some mathe-
maticalproperties of the rate law for the component enzy-
matic reactions.  J Theor Biol 1969, 25:370-379.

25. Savageau MA: Biochemical systems analysis, II. The steady-
state solutions for an n-pool system using a power-law
approximation.  J Theor Biol 1969, 25:365-369.

26. Savageau MA: Biochemical Systems Analysis Addison Wesley Longman
Publishing Co; 1976. 

27. Savageau MA: Rules for the evolution of gene circuitry.  Pac
Symp Biocomput 1998, 3:54-65.

28. Voit EO: Canonical Nonlinear Modeling – S-System Approach to Under-
standing Complexity New York: Van Nostrand Reinhold; 1991. 

29. Voit EO: Computational Analysis of Biochemical Systems: A Practical Guide
for Biochemists and Molecular Biologists Cambridge University Press,
Cambridge; 2000. 

30. Voit EO, Almeida JS: Decoupling dynamical systems for path-
way identification from metabolic profiles.  Bioinformatics 2004,
20(11):1670-1681.

31. Hatzimanikatis V, Choe LH, Lee KH: Proteomics: Theoretical
and Experimental Considerations.  Biotechnology Progress 1999,
15(3):312-318.

32. Pandey A, Mann M: Proteomics to study genes and genomes.
Nature 2000, 405(6788):837-46.

33. de Boor C: A Practical Guide to Splines New York: Springer-Verlag;
1978. 

34. Hambraeus G, von Wachenfeldt C, Hederstedt L: Genome-wide
survey of mRNA half-lives in Bacillus subtilis identifies
extremely stable mRNAs.  Mol Genet Genomics 2003,
269(5):706-14.

35. Varshavsky A: The N-end rule: functions, mysteries, uses.  Proc
Natl Acad Sci USA 1996, 93(22):12142-9.

36. Björck A: Numerical Methods for Least Squares Problems Philadelphia:
SIAM; 1996. 

37. Floudas CF: Deterministic Global Optimization: Theory, Methods and
Applications MA: Kluwer Academic Publishers; 2005. 

38. Polisetty PK, Voit EO, Gatzke EP: Identification of metabolic sys-
tem parameters using global optimization methods.  Theoret-
ical Biology and Medical Modelling 2006, 3:4.

39. Wessels LFA, van Someren EP, Reinders MJT: A comparison of
genetic network models.  Pac Symp Biocomput 2000, 6:508-519.

40. MATLAB, MathWorks, Natick, MA, USA.  .
41. Schrage L: Optimization Modeling with Lindo Duxberry Press; 1997. 
42. Craven P, Wahba G: Smoothing Noisy Data with Spline Func-

tions: Estimating the Correct Degree of Smoothness by the
Method of Generalized Cross Validation.  Journal of Numerical
Mathematics 1979, 31:377-403.

43. R development core team: R: A Language and Environment for Statistical
Computing R Foundation for Statistical Computing. Vienna Austria;
2006. 

Additional file 1
Additional derivations, data and results. This document has information 
on derivations, explanations and data that is related to the work in this 
paper. However knowledge of this information is not crucial to under-
standing what is stated in the paper. For the interested reader, the paper 
does refer to this material at appropriate places in the paper.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-228-S1.doc]
Page 11 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-228-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12843395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12843395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12843395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11340206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11340206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11340206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11072355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14992535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14992535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14708127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14708127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14708127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15513993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15513993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16418235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16418235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16418235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5387046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5387046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5387046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5387046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5387046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5387046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10356248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10356248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8901547


BMC Bioinformatics 2007, 8:228 http://www.biomedcentral.com/1471-2105/8/228
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

44. Yang H, Haddad H, Tomas C, Alsaker K, Papoutsakis ET: A segmen-
tal nearest neighbor normalization and gene identification
method gives superior results for DNA-array analysis.  Proc
Natl Acad Sci 2003, 100(3):1122-7.

45. Liu H, Bergman NH, Thomason B, Shallom S, Hazen A, Crossno J,
Rasko DA, Ravel J, Read TD, Peterson SN, Yates J III, Hanna PC: For-
mation andComposition of the Bacillus Anthracis
Endospore.  Journal of Bacteriology 2004, 186(1):164-178.

46. Paredes CJ, Alsaker KV, Papoutsakis ET: A comparative genomic
view of clostridial sporulation and physiology.  Nat Rev Microbiol
2005, 3(12):969-78.
Page 12 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14679236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14679236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14679236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16261177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16261177
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	1. Background
	2. Results
	2.1 Dynamic regulation model and its characteristics
	2.2 Derivation of the optimization method
	2.3 Coordinate descent based heuristic method
	2.4 Parameters and issues affecting the performance of the algorithm
	2.5 Algorithm testing
	2.5.1 Synthetic networks
	2.5.2 A network from the sporulation cascade of Bacillus anthracis
	2.5.2.1 Background
	2.5.2.2 Data and choice of genes
	2.5.2.3 Inferred interactions



	3. Conclusion
	4. Methods
	4.1 Prediction of protein concentrations
	4.2 Derivation of objective function for optimization problem

	Authors' contributions
	Additional material
	Acknowledgements
	References

