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Abstract

T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to
arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and
modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell
activation characterized by increased CD4+CD44hi and CD8+CD44hi T cells in the lymph nodes and spleens. Splenic
CD8+CD25+ T cells and CD8+CD28+ T cells, but not CD4+CD25+ and CD4+CD28+ T cells, were also significantly increased.
Adoptive cell transfer of CD4+ or CD8+ T cells from donor CD82/2 or CD42/2 mice, respectively, to immune-deficient Rag-
12/2 mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-12/2
mice that received CD8+ T cells had significantly reduced neointima formation compared with Rag-12/2 mice without cell
transfer. CD4+ T cell transfer did not reduce neointima formation. CD8+ T cells from CD42/2 mice had cytotoxic activity
against syngeneic smooth muscle cells in vitro. The study shows that although both CD8+ T cells and CD4+ T cells are
activated in response to arterial injury, adoptive cell transfer identifies CD8+ T cells as the specific and selective cell type
involved in inhibiting neointima formation.
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Introduction

Clinical evidence suggest that the T cell immune response is

involved in restenosis, the process of re-narrowing of the artery

after percutaneous coronary intervention (PCI), but the specific T

cell subtypes involved remain to be elucidated [1–3]. Current

understanding of immune function in the vascular wall is based

mostly on alloreactive responses, but little is known about

syngeneic T cell responses, which is presumably what would

happen in the immune response to arterial injury. This is a

significant issue considering that options to treat restenosis

include the use of immune-suppressing drugs [4–6]. In addition,

there is the possibility of persistent immune activation after PCI

[7].

Specific immune activation signals after arterial injury remain

undefined but sources of non-antigen specific signals include

release of intracellular material such as uric acid by injured cells

[8], or adjuvant-like activity by heat shock proteins [9]. In

addition, lipid neoantigens produced after arterial injury may be

important signaling molecules [10].

Neointimal thickening is the underlying mechanism that drives

restenosis and recent experimental reports suggest that T cell

recruitment into the arterial wall promotes the process [11–13].

On the other hand, experimental studies have also demonstrated

that neointima formation is significantly augmented in immune-

compromised animals, specifically those with T cell deficiency

[14–18]. We have previously reported that adoptive transfer of T

cells into immune-deficient Rag-12/2 mice reduced neointima

formation [16]. Common to all these reports is the involvement

of T cells in neointima formation. However, the T cell response

to arterial injury is not well characterized and its kinetics

undefined. Natural killer (NK) T cells augment neointima

formation [10] but it remains unclear if other subsets of T cells

play defined roles in the response [6]. It is thus important to

identify which T cells are involved in modulating the response to

vascular injury.

We provide evidence that arterial cuff injury results in T

cell immune activation, characterized by a robust CD8+ T

cell response. To help elucidate the T cell subset(s) involved

in neointima formation after vascular injury, we used

adoptive transfer of CD4+ or CD8+ T cells to immune-

deficient Rag-12/2 mice [19]. The adoptive transfer model

allowed for the direct study of the role of distinct subsets of

immune cells. We have reported that B cells and immuno-

globulin reduce neointima formation after arterial injury

[15,20]. Thus, to test the role of specific T cell subsets,

adoptive transfer of specific T cell subtypes provided the best

approach to exclude the effect of B cells. The results show

that CD8+ T cells are likely the subtype involved in inhibiting

neointima formation.
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Results

Characterization of T cell response to arterial injury in WT
mice

To characterize the specific T cell population activated after

arterial injury, we performed flow cytometric analysis on cells in

the regional lymph nodes and spleen at various time points after

injury. We used previously reported activation markers, namely:

CD69, CD28, CD25, and CD44 [10,21–23].

CD4+ T cells after arterial injury. There was no significant

increase in CD4+CD69+ T cells in the lymph nodes and spleens

after injury (not shown), as previously reported [10]. CD4+CD44hi

T cells in the lymph nodes (Fig. 1A, top panel) and spleen (Fig. 1A,

bottom panel) of WT mice significantly increased 7 days after

injury. Twenty-one days after injury, CD4+CD44hi cells decreased

back to uninjured levels (Fig. 1A and Table 1). CD4+CD25+ and

CD4+CD28+ T cells did not significantly change after injury

(Table 1). The sham group did not have significant changes in

CD4+ T cells (Fig. 1A and Table 1).

CD8+ T cells after arterial injury. There was no significant

increase in CD8b+CD69+ T cells in the lymph nodes and spleens

after injury (not shown). CD8b+CD44hi cells in the lymph nodes

Figure 1. Lymph node and splenic CD44+ T cells after arterial injury in WT mice. Representative scatter plots of lymph node (LN) and
spleen cells collected at various times after injury and characterized using CD44 gated on CD4 (A) or CD8b (B). Cells were collected from uninjured
(UI) mice, or 7 days (D7) and 21 days (D21) after arterial injury. Sham mice correspond to 7 days after sham surgery. Percentage of cells is indicated on
the top right corner of each graph.
doi:10.1371/journal.pone.0020214.g001
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(Fig. 1B, top panel) and spleen (Fig. 1B, bottom panel) significantly

increased 7 days after injury then decreased 21 days after injury

(Fig. 1B and Table 1). Splenic CD8b+CD25+ T cells also increased

significantly 7 days after injury and decreased back to uninjured

levels at day 21 (Fig. 2A, top panel and Table 1). CD8b+CD28+ T

cells in the spleen were significantly increased within a week after

injury (Fig. 2A, bottom panel and Table 1) and remained elevated

21 days after injury. In addition, CD8b+ T cells in the spleen of

WT mice had significantly increased CD28 expression 7 days after

injury compared with uninjured mice (Fig. 2B and C), suggesting

not only increased number but increased CD28 expression as well.

There were no significant changes in the percentage of CD8b+ T

cells in the sham group (Figs. 1 and 2 and Table 1).

T cells in the injured arterial wall. Uninjured and 7-day

injured arteries had very scant presence of CD4 or CD8b+ T cells.

CD4+ T cells were present in the neointima and advential layers of

the carotid artery 21 days after injury (Fig. 3A) with 0.6060.49%

positive stain area (N = 4) of the arterial wall. CD8b+ T cells were

detected predominantly in the neointima of the injured carotid

artery at the same time point (Fig. 3B) with 0.5360.23% positive

stain area (N = 4) of the arterial wall.

Adoptive cell transfer of CD8+ T cells into Rag-12/2 mice
reduced neointima formation

Injury of WT mice showed that arterial injury itself resulted in T

cell activation; we therefore transferred T cells from non-injured

donors to assure that the activation signal was from injury of the

recipient mice. To determine specificity of the T cell sub type

involved, excluding the influence of B cells and immunoglobulin,

we performed adoptive transfer of T cells from donor CD42/2

or CD82/2 mice into Rag-12/2 mice. The use of specific T cell

knockout models as donors assured the purity and specificity of the

T cell population transferred into Rag-12/2 mice, avoiding the

reported interaction of CD4 and CD8 T cells during activation.

Flow cytometry indicated that CD8b+ T cells were present in the

spleen of recipient mice 48 hours after adoptive transfer (Fig. 4A),

indicating successful cell transfer. Twenty-one days after injury,

Rag-12/2 mice that received CD8+ T cells (Rag-1+CD8; Fig. 4D

and E; Table 2) had significantly reduced neointima area

compared with Rag-12/2 mice without cell transfer (Fig. 4B

and C, Table 2). Intima-to-media (I/M) ratio was also significantly

decreased in Rag-1+CD8 compared with Rag-12/2 mice

(Table 2). Rag-12/2 mice that received CD4+ T cells (Rag-

1+CD4; Figure 4F and G) had similar neointima area and

intima:media ratio (Table 2) compared with Rag-12/2 mice

without T cell transfer. There were no significant differences in

vessel size as determined by external elastic lamina area (Table 2).

We had previously reported that adoptive T cell transfer into Rag-

12/2 mice reduced neointima formation after arterial injury

[16]. The current results indicate that CD8+ T cells are the cell

type involved in the T cell inhibition of neointima formation.

Transferred CD8+ T cells in the injured artery
Immuno-histochemical staining showed presence of CD8b+

cells in the neointimal layer of Rag-1+CD8 mice (Fig. 5A).

Staining of consecutive sections showed presence of CD8b+ cells in

close proximity to active caspase-3 stain (Fig. 5B) suggesting

cytotoxic activity of the CD8b+ T cells.

Cytotoxic activity of CD8+ T cells against SMCs
To assess a possible mechanism for CD8+ T cell mediated

reduction of neointima formation, syngeneic aortic smooth muscle

cells (SMCs) were co-cultured for 4 hours in the presence or

absence of CD8+ T cells from spleens of 21-day injured mice.

There was significant cytotoxic activity against SMCs by CD8+ T

cells at effector to target ratios of 1:1 and 3:1 (Fig. 6).

Characterization of adoptively transferred CD8+ T cells
Spleen cells were collected from donor mice (designated as

Donor CD8+), uninjured recipient mice 48 hours after T cell

transfer (UI), or recipient mice 21 days after injury (D21). Donor

cells were aliquoted from the pooled donor spleens before adoptive

transfer. Spleens from 2–3 uninjured recipient mice were pooled

due to the small size of spleens, whereas individual spleens were

used for the D21 time point. Cells were enriched for T cells and

flow cytometric analysis was performed. CD8b+CD62L+ T cells

were unchanged in uninjured recipient mice compared with donor

T cells but were significantly reduced 21 days after injury (Fig. 7B).

CD8+CD44hi T cells increased in uninjured mice and significantly

increased further D21 after injury (Fig. 7C).

Homeostatic T cell expansion in CD8+ T cell recipient
mice

Although the changes observed in the transferred CD8+ T cells

suggested activation after injury, homeostatic T cell proliferation also

occurred as a consequence of cell transfer, which has been

demonstrated in recipients that are immune-deficient [24,25].

Homeostatic CD8+ T cell expansion is dependent on MHC-I

signaling [24,25]. To test if the reduction in neointima formation is

dependent on homeostatic CD8+ T cell expansion, we used a

monoclonal antibody to block MHC-I signaling in the recipient mice.

Flow cytometric analysis showed that antibody treatment significantly

reduced the percentage of CD8b+ T cells in the spleen, suggesting

that homeostatic T cell expansion was significantly reduced (Table 3).

CD8b+CD44+ T cells in the spleen were also significantly reduced by

antibody treatment but CD8b+CD62L+ T cells were not significantly

different (Table 3). CD8+ T cell recipient Rag-12/2 mice treated

with MHC-I monoclonal antibody (mAb) or its isotype control still

had reduced neointima formation (0.012560.004 mm2, N = 6 and

0.014260.002 mm2, N = 5 respectively) compared with Rag-12/2

mice without cell transfer (0.02160.009 mm2, Table 1; p,0.05 vs.

mAb treatment). The reduction in neointima formation was to a

similar extent as untreated CD8+ T cell recipient mice (see Table 2).

The results showed that even as MHC-I antibody treatment

Table 1. T cell activation after arterial injury.

UI D7 D21 Sham

LN CD4+CD44hi 13.763.2 19.162.0* 11.561.1 12.061.4

Spl CD4+CD44hi 15.564.2 22.162.1** 11.061.7 13.661.2

Spl CD4+CD25+ 10.764.1 12.663.0 10.563.5 11.160.5

Spl CD4+CD28+ 90.962.7 93.065.0 93.363.4 93.760.9

LN CD8b+CD44hi 9.061.0 38.9613.0** 9.960.8 10.661.0

Spl CD8b+CD44hi 8.462.7 15.663.2* 10.462.5 9.661.0

Spl CD8b+CD25+ 2.360.8 6.763.0* 5.962.4 2.260.5

Spl CD8b+CD28+ 79.366.2 91.562.3{{ 90.963.3{{ 83.762.3

LN = lymph nodes, N$3; Spl = spleen, N$5. UI = Uninjured mice; D7 and D21 = 7
days and 21 days after arterial injury, respectively. All values expressed as
percent CD4+ or CD8b+ gated cells.
*p,0.05 vs. other time points;
**p,0.01 vs. other time points;
{p,0.01 vs. UI;
{p,0.05 vs. sham.
doi:10.1371/journal.pone.0020214.t001
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significantly reduced homeostatic CD8+ T cell expansion in the

recipient mice, inhibition of neointima formation by CD8+ T cells

was not significantly affected.

CD8+ T cells from WT donors also reduced neointima
formation

CD8+ T cells from CD42/2 mice have been reported to be

contaminated by an atypical MHC-II restricted population [26]. To

ascertain whether the reduction in neointima formation by adoptive

cell transfer of CD8+ T cells into Rag-12/2 mice was due to this

atypical population from CD42/2 mice, we used WT mice as

donors instead. WT CD8+ T cell transfer significantly reduced

neointima area in recipient Rag-12/2 mice compared with Rag-

12/2 mice without cell transfer (0.01460.008, N = 12 vs.

0.02160.009 mm2, N = 13, respectively; P,0.05). Intima:media

ratio was also significantly reduced by WT CD8+ T cell transfer

compared with Rag-12/2 mice without cell transfer (0.3260.15

vs. 0.5460.21, respectively; P,0.01). The results further support

the finding that CD8+ T cells reduce neointima formation.

Discussion

The results of our study provide the following key findings: 1) T cells

are activated and respond to arterial injury; 2) CD8+ T cells have a

more robust and sustained response; 3) adoptive transfer of T cell

subtypes identify specific CD8+ T cell function in response to arterial

injury; and 4) the effector function of CD8+ T cells in arterial injury

involves the cytotoxic response. In addition, we also provide supporting

evidence that the specific role of CD8+ T cells in our adoptive cell

transfer studies is not dependent on homeostatic proliferation, or on an

atypical CD8+ T cell population from the CD42/2 donor mice.

Figure 2. Splenic CD8b+ T cells after arterial injury in WT mice. Representative scatter graphs of CD8b-gated CD25+ (A, top panel) and CD28+

(A, bottom panel) spleen T cells. Representative histogram of CD28 expression on CD8b-gated cells (B). Geometric mean fluorescence intensity (MFI)
of CD28 on CD8b-gated cells (C; N = 3–4 each time point).
doi:10.1371/journal.pone.0020214.g002
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There is currently a lack of studies that define T cell response to

injury. This is highlighted by the current dilemma in the use of drug-

eluting stents coated with immune-suppressants to treat restenosis

post PCI. The treatment has been suggested to result in incomplete

healing of the injured artery [4,5], a process which remains

incompletely understood, suggesting that the immune system

regulates vascular tissue homeostasis after injury [6]. Previous

reports indicate that T cells inhibit neointima formation after

arterial injury [14,16,18], although conflicting results have been

reported [10–13]. These findings underscore the need to define the

T cell response to arterial injury. We did not observe an increase in

CD69+ T lymphocytes after arterial injury, similar to another report

[10]. However, flow cytometry using CD44, CD28, and CD25

suggested that both CD4 and CD8 T cell activation occurs after

arterial injury in the WT mice. The activation phenotypes observed

appears to be the specific result of injury to the carotid artery since

the pattern of activation was not observed in the sham group.

Previous characterization of our injury model showed the

endothelial lining of the intima sloughing off within a week [20].

Capture and processing of apoptotic and necrotic cells occur in the

lymph nodes and spleen through phagocytosis by dendritic cells

and macrophages which then signal either immune activation or

tolerance [27]. Thus, presentation of, and activation in response to

self-antigens would predictably occur at these sites and our results

support this notion. Our results further suggest that CD4+ T cell

activation was rather transient, yet CD8+ T cell activation was

robust and sustained. Immuno-histochemistry identified the local

presence of both T cell subtypes in the carotid arteries 21 days

after injury, supporting the previously reported involvement of T

cells in inhibiting neointima formation [14,16,18].

We assessed the specific role of sub-populations of T cells using

immune deficient Rag-12/2 mice as recipients of adoptive T cell

transfer and show that CD8+ T cells are the primary T cell type

involved in reducing neointima formation. Several reports indicate

that immune deficiency in the Rag2/2 mouse model results in

augmented neointima formation after arterial injury [15–17,20].

The adoptive transfer approach we used was designed to show that

any effect of a T cell sub-type in a combined immune-deficient

recipient such as the Rag-12/2 mouse would be specific to that T

cell sub-type since Rag-12/2 mice have no mature T cells and B

cells. The presence of B cells or immunoglobulin would complicate

the interpretation of the role of specific T cell types given our

previous report on the role of B cells and natural antibodies in

neointima formation [15,20]. Separate experiments need to be

designed to address the possible role of the interaction between

specific T cell subsets and B cells in the setting of arterial injury and

neointima formation. The results of the adoptive transfer experi-

ments show that CD8+ T cells are directly and specifically involved

in limiting neointima formation. To our knowledge, this is the first

study to show direct evidence of this specificity. It is also clear from

our studies that specific arms of the immune system differentially

respond to, and affect neointima formation [15,16,20].

Our results suggest that cytotoxic activity against SMCs is at least

one mechanism involved in the CD8+ T cell response after injury.

Immuno-histochemical staining of arteries of recipient Rag-12/2

mice shows CD8b+ cells in close proximity to active caspase-3

positive cells, suggesting cytotoxic activity. The in vitro co-culture

experiment supports the cytotoxic pathway of control of SMCs by

CD8+ T cells in the injured arterial wall. However, it is also worth

noting that syngeneic SMC lysis by CD8+ T cells was not in the

magnitude of what is observed in an allogeneic response, suggesting

that only a small number of SMCs are targeted by CD8+ T cells.

Our results also show that the process of adoptive transfer by

itself results in CD8+ T cell phenotypic change, evidenced by

increased CD8+CD44hi cells. This has been attributed to

homeostatic expansion of the transferred cells [24,25]. The lack

of change in CD8+CD62L+ cells by adoptive transfer by itself is in

agreement with the reported effect of homeostatic cell expansion

on cell phenotype [25]. There appears to be either further immune

activation as a result of arterial injury, or continuous homeostatic

cell expansion, since CD8+CD44hi T cells increased further and

CD8+CD62L+ cells decreased at the day 21 time point.

The observation that phenotype change associated with

homeostatic CD8+ T cell expansion had occurred led us to test

if the effect on neointima formation was directly due to this

process. Homeostatic T cell expansion after adoptive transfer into

immune-deficient recipients is MHC-I dependent [24,25]. Treat-

ment of the recipient mice with an anti-MHC-I monoclonal

antibody partially suppressed homeostatic expansion, reducing the

CD8+CD44+ T cells by about half yet still reducing neointima

formation, suggesting that the effects of transferred CD8+ T cells

Figure 3. T cells in the injured arterial wall. Representative
sections of 21-day injured carotid arteries stained for CD4 (A) or CD8b
(B) identify their localization (arrows) in the arterial wall. Omission of
primary antibody (C) was used as control for staining. N = 4 each;
bar = 10 microns.
doi:10.1371/journal.pone.0020214.g003
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Figure 4. Adoptive T cell transfer. Representative histogram of CD8+ T cells homing-into the spleen of a recipient mouse 48 hours after cell transfer,
before arterial injury (A). Viable lymphocytes were gated on the FSC/SSC plot. Representative sections of 21-day injured carotid arteries (4006
magnification) stained with hematoxylin and eosin from Rag-12/2 mice (B), Rag-12/2 injected with CD8+ T cells (D), and Rag-12/2 mice injected with
CD4+ T cells (F). Boxed area indicates magnification of the respective cross-sections (C, E, G). Arrows indicate internal elastic lamina. Bar = 50 microns.
doi:10.1371/journal.pone.0020214.g004

Neointima Formation and CD8+ T Cells
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on neointima formation are at least partially independent of

homeostatic expansion.

The transfer experiments also suggest that CD4+ T cells have no

direct role in modulating neointima formation. Although the result is

unexpected given the pathogenic role of CD4+ T cells in lipid-rich

atherosclerotic plaques [28], there is yet to be a definitive report on its

role in arterial injury. There is the predominant yet untested

speculation that CD4+ T cells are directly involved in neointima

formation. Reduced neointima formation by CD4 antibody treatment

in the rat injury model was attributed to effects on macrophage [29].

Vasculitogenic T cells, predominantly CD4+ that are activated and

respond to syngeneic SMCs, have been previously studied. However,

these cells were first primed by in vitro exposure to SMCs and then

transferred into recipients and shown to cause vasculitogenic injury

[30]. This study is unlike our report where the T cell response is

characterized after arterial injury in vivo. Furthermore, we transferred

naı̈ve, non-primed T cell subtypes into immune-deficient recipients to

assure that the T cell activation signal was from the injury of the

recipients’ carotid artery. Thus, our results are the first to directly assess

the role of CD4+ T cells in arterial injury and neointima formation.

CD42/2 and CD82/2 mice were chosen as donors in the

study to assure the purity and specificity of the T cell population

transferred into Rag-12/2 mice. This is significant given the

known interaction between CD4 and CD8 T cells during activation

and response. Although the results strongly support a significant role

for CD8+ T cells in inhibiting neointima formation after injury,

interpretation must be made with caution in the context of the

reported contamination of MHC-II restricted CD8 T cells in

CD42/2 mice [26]. However, additional experiments using WT

mice as donors confirm the finding that CD8+ T cells reduce

neointima formation and that the effect of the adoptive transfer of T

cells from CD42/2 mice is not due to the atypical cell population.

The specific signaling pathways involved in T cell activation

after arterial injury remain to be delineated. However, it has been

reported that mice with deficiency in hypoxia-inducible factor 1a
(Hif-1a) specifically in T cells had increased neointima formation

in response to arterial injury [13]. Hif-1 activity is increased in cells

subjected to hypoxic conditions [31]. However, Hif-1 activation

occurs through both hypoxic and non-hypoxic pathways [32,33],

both of which occur after arterial injury. Activation through T cell

receptor signaling increases Hif-1a expression in T cells [34] and

T cell function is regulated by Hif-1a [35]. Hypoxia and

inflammation interact in both innate and adaptive immune

responses [36] and it is unclear how this interaction factors in

neointima formation after arterial injury. For example, it is

unknown how dendritic cells respond to hypoxia in our injury

model. What may link the two arms of the immune system in the

context of hypoxia and inflammation is signaling through the Toll-

like receptors. Hif-1a mediates TLR2 and TLR6 expression [37].

How this relates to arterial injury remains uncertain because of

conflicting reports on the role of endogenous TLR2 signaling after

arterial injury [38,39] and TLR6 signaling after arterial injury

remains to be defined. However, the reported interaction between

TLR2 and TLR6 [37] could yet link Hif-1a activation, TLR

signaling, and the immune response to arterial injury.

The limitation of the study is inherent in the model used. The injury

performed is on arteries that are neither diseased nor have on-going

Table 2. Neointimal thickening 21 days after arterial injury.

Intimal area
(mm2) I/M ratio EEL (mm2)

Rag-12/2 (n = 13) 0.02160.009 0.5460.21 0.12160.025

Rag-1+CD8 T cells
(n = 11)

0.01160.007* 0.2760.17* 0.10660.030

Rag-1+CD4 T cells
(n = 7)

0.01860.009 0.4060.18 0.12960.009

All values are mean 6 SD. Rag+CD8 T cells = Rag-12/2 mice injected with CD8+

T cells from CD42/2 donors; Rag-1+CD4 T cells = Rag-12/2 mice injected with
CD4+ T cells from CD82/2 donors. I/M = intima to media ratio.
*p,0.05 vs. Rag-12/2.
doi:10.1371/journal.pone.0020214.t002

Figure 5. CD8b+ cells in the injured artery of recipient Rag-12/2
mice. Detection of CD8b+ cells (A; reddish-brown stain) in arteries of
recipient Rag-12/2 mice 21 days after injury. Adjacent sections double-
stained (B) for CD8b+ (orange arrow) and active caspase-3 (dark blue
stain, black arrowhead) showed positive cells in close proximity. Omission
of primary antibodies was used as control (C). 10006magnification.
doi:10.1371/journal.pone.0020214.g005

Neointima Formation and CD8+ T Cells
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inflammation, thus not completely replicating human stenotic vessels.

However, our study shows that CD8+ T cells control SMC

accumulation in the neointima layer of the injured artery, which in

the simple case of narrowing of the artery is beneficial. How this activity

of CD8+ T cells may influence an advanced atherosclerotic plaque

remains unknown. It also remains unclear what specific activation

signal would result in a cytotoxic response of CD8+ T cells against

vascular SMC in the arterial intima, and what makes a relatively small

number of SMCs susceptible to targeting by CD8+ T cells. One

possibility is the notion of the ‘‘altered-self’’ phenotype of injured

SMCs, which could turn them into target cells of immune surveillance.

Altered-self recognition is an essential aspect of homeostasis [27].

In conclusion, the report identifies CD8+ T cells as the specific

and selective T cell type that inhibits neointima formation after

arterial injury. There is a surprising lack of direct effect of CD4+ T

cells in the response to arterial injury in the absence of interaction

with either B cells or CD8+ T cells. The findings implicate CD8+ T

cells in regulating neointima formation and warrants further

studies of the process that defines this effect.

Materials and Methods

Arterial injury
Mice were housed in a pathogen-free facility and had ad

libitum access to food and water. Aseptic peri-adventitial cuff

injury was performed on the right carotid artery of 25 week old

male wild type (WT) or Rag-12/2 mice on the C57Bl6/J

background (Jackson Laboratory), as previously described [40].

Briefly, mice were anesthetized with ketamine and xylazine

and carprofen was administered prior to surgery for post-

surgical pain relief. The right carotid artery was dissected and

exposed, and a 2.5 mm-long Tygon tube (internal diameter of

0.51 mm) with a longitudinal opening was placed around the

right carotid artery, secured with ligatures around it, and the

wound was closed with sutures. A prior report detailed the

injury with an electron microscopic study showing that the

procedure results in the endothelial layer sloughing off within a

week [20]. Uninjured mice served as control. An additional

control group of WT mice had sham injury where surgical

manipulation of the mice was performed without peri-

adventitial cuff injury. Carotid arteries were harvested after

perfusion with normal saline for 10 minutes. The Cedars-Sinai

Institutional Animal Care and Use Committee approved the

experimental protocols specifically used in this study (IACUC

# 001552 and 002868).

Morphometric Analysis
Frozen sections 6–8 mm thick were collected from the injured

carotid arteries of Rag-12/2 mice, stained with hematoxylin and

Figure 6. Lytic activity of CD8+ T cells from spleens of 21-day injured mice. Syngeneic aortic SMCs were labeled with CFSE and co-cultured
for 4 hours with increasing number of CD8+ T cells enriched from CD42/2 mouse spleens. SMC lysis was assessed using 7-AAD+ cells gated on CFSE
(A) and expressed as % SMC lysis (B) relative to basal lysis (see Methods). N = 3–5 each group. *P,0.05 vs. no T cell; {P,0.01 vs. no T cell and 1:1.
doi:10.1371/journal.pone.0020214.g006
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eosin, and the vessel area measured as described previously using

image analysis software (ImagePro) [16].

Flow cytometry
Regional lymph nodes and the spleen were collected and subjected

to red blood cell lysis. Cells were then stained with CD4 or CD8b and

CD69, CD44, CD25, or CD28 (BD Bioscience) for flow cytometry.

T cell enrichment and transfer
Spleen cells from age-matched, donor CD82/2 or CD42/2

mice were pooled. The cells were then negatively selected for T cells

using a commercially available kit (Invitrogen) with paramagnetic

beads and a magnetic particle concentrator, as recommended by the

manufacturer (Dynal). Flow cytometry confirmed cell enrichment with

90.162.3% T cells. Equal numbers of cells from either CD42/2 or

CD82/2 donors were then injected via the tail vein of Rag-12/2

mice (36107 cells/mouse) 48 hours prior to injury [16]. Age-matched

WT mice were also used as CD8+ T cell donors to confirm results from

the CD42/2 donors. Cells were collected from lung, lymph node and

spleen for flow cytometry 48 hours after cell transfer to assess homing.

At least two separate isolation and transfer procedures were performed

for each group subjected to arterial injury.

Characterization of transferred cells
T cells enriched from CD42/2 donor mouse spleens and T

cells enriched from recipient spleens were collected and double-

stained for CD8b and CD62L, or CD44 for flow cytometric

analysis. Matching isotype antibodies were used as control.

MHC-I antibody treatment
MHC-I antibody treatment in CD8+ T cell recipient Rag-12/2

mice was performed using a mouse monoclonal anti-H-2Db antibody

(BD Biosciences; 0.2 mg/mouse, i.p.) on the day of cell transfer, at

injury, and twice weekly until day 14. Mouse IgG isotype treatment

was used as control. Mice were euthanized 21 days after injury.

Immunohistochemistry
Frozen sections 6–8 mm thick were fixed in ice-cold acetone and

stained for CD8b (BD Bioscience). Biotin-conjugated secondary

antibody was used for detection and visualized using horseradish

peroxidase-conjugated streptavidin and AEC (DAKO). Biotin-

conjugated anti-active caspase-3 (BD Biosciences) was used to

double stain sections for CD8b and active caspase-3. Detection

was performed using alkaline phosphatase-conjugated streptavidin

and BCIP/NBT (DAKO). Omission of the primary antibodies was

used as negative control.

SMC lytic assay
An aliquot of CD8+ T cells negatively purified from 21-day injured

CD42/2 mice were co-cultured with CFSE-labeled (1.0 mM)

syngeneic aortic smooth muscle cells (SMC) in 10% FBS/DMEM

for 4 hours in 37uC at a CD8+ T cell to SMC ratio of 1:1 or 3:1. Basal

lysis of SMC without T cells was used as control. Cells were washed in

16PBS, trypsinized to detach the SMC monolayer, and stained with

7-AAD for cell lysis as previously described [41]. Flow cytometry was

Figure 7. Characterization of cells transferred to recipient Rag-
12/2 mice. T cells enriched from pooled spleens of CD42/2 mice (Donor
CD8+) were used for flow cytometric analysis and compared with T cells
enriched from spleens of CD8+ T cell recipient Rag-12/2 mice 48 hours
after cell transfer without injury (UI), and 21 days after injury (D21).
Representative flow cytometric analysis of CD62L or CD44 gated on CD8b+

cells from donor mice (A). CD8b+CD62L+ (B) and CD8b+CD44hi (C) cells T
cells were compared between Donors (N = 3), UI recipients (N = 4) and D21
recipients (N = 4). *P,0.05 vs Donors and UI; {P,0.01 vs Donors and UI.
doi:10.1371/journal.pone.0020214.g007

Table 3. Effect of MHC-I mAb treatment on CD8+ T cells of
recipient mouse spleens.

MHC-I mAb IgG isotype

CD8b+ Splenocytes 20.364.6%* 31.765.3%

CD8b+CD62L+

Splenocytes
15.862.1% 14.162.4%

CD8b+CD44hi

Splenocytes
10.262.9%* 14.562.8%

Analysis was performed on CD8b gated lymphocytes. All values are mean 6 SD.
MHC-I mAb (monoclonal antibody) N = 6; IgG isotype N = 5;
*p,0.05.
doi:10.1371/journal.pone.0020214.t003
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performed to detect 7-AAD-stained viable SMCs gated on FL1

(CFSE+). Gating on CFSE assured viability of the cells that were

analyzed [41]. Results are presented as % SMC lysis:

% SMC Lysis~
100| % Sample Lysis - % Basal Lysisð Þ

100 - % Basal Lysis

where sample lysis is SMC lysis in the presence of CD8+ T cells at a

given effector:target ratio; and basal lysis is SMC lysis without CD8+

T cells [41].

Statistics
Results are presented as mean 6 SD. ANOVA was used to test

for significance followed by Neuman-Keuls post test, unless

indicated otherwise. Significance was set at p,0.05.
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