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Abstract: Patients with augmented renal clearance (ARC) have been described as having low van-
comycin concentration. However, the pharmacokinetic model that best describes vancomycin in
patients with ARC has not been clarified. The purpose of this study is to determine the pharma-
cokinetic of vancomycin in Chinese adults and the recommend dosage for patients with different
renal function, including patients with ARC. We retrospectively collected 424 vancomycin serum
concentrations from 209 Chinese patients and performed a population pharmacokinetic model us-
ing NONMEM 7.4.4. The final model indicated that the clearance rate of vancomycin increased
together with the creatinine clearance, and exhibited a nearly saturated curve at higher creatinine
clearance. The estimated clearance of vancomycin was between 3.46 and 5.58 L/h in patients with
ARC, with 5.58 being the maximum theoretical value. The central volume of distribution increased
by more than three times in patients admitted to Intensive Care Unit. Monte Carlo simulations
were conducted to explore the probability of reaching the target therapeutic range (24-h area under
the curve: 400–650 mg·h/L, trough concentration: 10–20 mg/L) when various dose regimens were
administered. The simulations indicated that dose should increase together with the creatinine
clearance until 180 mL/min. These findings may contribute to improving the efficacy and safety of
vancomycin in patients with ARC.

Keywords: area under the curve; augmented renal clearance; dosage regimens; population pharma-
cokinetic model; vancomycin

1. Introduction

Vancomycin is a glycopeptide antibiotic used to treat a number of gram-positive
infections [1]. It is the first-line choice of treatment for infections caused by methicillin-
resistant Staphylococcus aureus (MRSA).

Vancomycin is excreted in urine by glomerular filtration, without appreciable
metabolism [2]. The clearance rate is mainly affected by renal function. Dosage must
be adjusted for patients with renal dysfunction because the risk of toxicity is increased by
high blood concentrations [3]. At the same time, patients with augmented renal clearance
(ARC) have lower concentrations of vancomycin, leading to suboptimal drug exposure
and treatment failure [4,5]. A longer length of stay in the Intensive Care Unit has also been
reported [6,7]. Of note, the administration of subtherapeutic doses increased the prevalence
of antibiotic resistance [8].

Individualized dosage regimen is therefore necessary for safe and effective adminis-
tration. Establishing a population pharmacokinetic model is optimal for planning dosing
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regimen. However, most of the studies provided only regimens for patients with impaired
renal function [9–12]. The pharmacokinetic profile of vancomycin in patients with ARC has
not been well established and an appropriate dosing recommendation is very necessary.

We therefore conducted a population pharmacokinetic study of vancomycin to esti-
mate its variability in patients with abnormal renal function, including patients with ARC.

2. Results
2.1. Patients and Data Collection

We retrospectively collected and analyzed 424 vancomycin serum concentrations
from 209 Chinese patients. Among these, 82 (39.2%) were admitted at the Intensive
Care Unit (ICU) and 127 (60.8%) were admitted at other departments. A total of 40
(48.8%) ICU patients and 6 (2.9%) non-ICU patients developed shock or evidence of
multiple organ failure. 51 (24.4%) patients had a creatinine clearance (CLcr) ≥ 130 mL/min.
Vancomycin was administered at different dosages (median daily dosage 1875 mg), and
mostly evaluated between 5 and 12 h after administration. Clinical characteristics of
enrolled patients are displayed in Table 1.

Table 1. Demographic characteristics of patients.

Characteristic Patients (N = 209)

Male, n (%) 126 (60.3%)
ICU, n (%) 82 (39.2%)

CLcr ≥ 130 mL/min, n (%) 51 (24.4%)
Shock, n (%) 39 (18.7%)
MOF, n (%) 7 (3.3%)

Age, years (mean ± SD) 66.0 ± 16.4
TBW, kg (mean ± SD) 63.4 ± 12.9

Mean CLcr
a, mL/min (median (range)) 86.7 (18.4–390.7)

Number of samples, n 424
Number of samples per patient, n (%)

1 103 (49.3%)
2 50 (23.9%)
3 29 (13.9%)
≥4 27 (12.9%)

Mean daily dosage, mg (median (IQR)) 1875.0 (1461.9–2352.0)
Number of samples collected after the start of infusion, n (%)

<3 h 25 (5.9%)
3–5 h 16 (3.8%)

5–12 h 294 (69.3%)
12–24 h 75 (17.7%)
>24 h 14 (3.3%)

Mean concentration after the start of infusion, mg/L
<3 h 29.5
3–5 h 22.9

5–12 h 16.5
12–24 h 15.3
>24 h 10.3

ICU, Intensive Care Unit; CLcr, creatinine clearance calculated by the Cockcroft–Gault equation; MOF, multiple
organ failure; SD, standard deviation; TBW, total body weight; IQR, interquartile range; a, the mean value of CLcr
for each patient during admission.

2.2. Population Modeling

According to the goodness-of-fit (GOF) plots and Akaike information criterion (AIC)
values, a two-compartment model (AIC, 2089.498) was more appropriate to describe
the pharmacokinetic profile than a one-compartment model (AIC, 2162.859). The inter-
individual variability (IIV) was successfully estimated for clearance (CL) and central
volume of distribution (Vc). The CLcr and the admission at the ICU were identified
as significant covariates for CL and Vc, respectively, in the forward addition and back-
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ward elimination procedures. The final model was therefore developed to describe the
concentration-time profile of vancomycin (Equations (1)–(4)):

CL =
5.58 ∗ CGi

1.5

(93.81.5 + CGi
1.5)

∗ eη1 (L/h), (1)

Vc = 8.02 (non − ICU patients) or 35.7 (ICU patients) ∗ eη2 (L), (2)

Q = 2.66 (L/h), (3)

Vp = 36.8 (L), (4)

where CG is the creatinine clearance estimated by Cockcroft-Gault equation, while 5.58
is the theoretical maximum clearance of vancomycin in patients with creatinine clearance
between 18.4 and 390.7 mL/min. When the creatinine clearance is 93.8 mL/min, the drug
clearance is at 50% of its maximum value. The steepness parameter is 1.5. Vc is 8.02 L
and 35.7 L for non-ICU and ICU patients, respectively. The typical value of the peripheral
volume of distribution (Vp) is 36.8 L. η1 and η2 represent the interindividual variations of
CL and Vc, respectively.

2.3. Model Evaluation

The GOF plots indicate that the final model predictions agreed with the observed
plasma concentration of vancomycin. Observed data versus either the population or the
individual predicted values were closely distributed around the y = x line (Figure 1a,b).
The conditional weighted residuals (CWRES) were approximately 0, randomly and ho-
mogeneously distributed (Figure 1c,d). A success rate of 84.6% was obtained from the
bootstrap analysis. The estimated model parameters were within the bootstrap confidence
interval (Table 2). The pc-VPC plot suggested that the simulated models were consistent
with the observed values (Figure 2).

Table 2. Population parameter estimates of the base and final population models.

Parameter Base Model Estimate
(RSE%)

Final Model
Estimate (RSE%)

Bootstrap Median
(95% CI)

CL (L/h) 2.56(7%) - -
CLmax (L/h) - 5.58 (17%) 5.58 (4.26–8.52)

CGCLmax50 (L/h) - 93.8 (24%) 94.65 (66.99–178.63)
s - 1.5 (14%) 1.49 (1.16–1.95)

Vc (L) 13.1 (11%) - -
Vc non-ICU (L) - 8.02 (12%) 7.90 (4.90–11.80)

Vc ICU (L) - 35.7 (13%) 36.66 (26.68–48.37)
Q (L/h) 4.9 (26%) 2.66 (12%) 2.64 (1.80–3.58)
Vp (L) 40.2 (13%) 36.8 (15%) 36.26 (25.51–49.36)
IIV CL 0.319 (12%) 0.0771 (16%) 0.075 (0.05–0.10)
IIV Vc 1.65 (39%) 0.223 (56%) 0.20 (0.0039–0.53)

Additive residual error 0.0479 (18%) 0.0466 (14%) 0.045 (0.032–0.060)
CL, clearance; CLmax, theoretical maximum clearance; CGCLmax50, value of creatinine clearance reaching 50% of the
maximum drug clearance; s, steepness parameter; Vc, distribution volume of the central compartment; Vc non-ICU,
Vc of non-ICU patients; Vc ICU, Vc of ICU patients; Q, inter-compartment clearance; Vp, distribution volume of the
peripheral compartment; IIV, inter-individual variability; RSE, relative standard error; CI, confidence interval.
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Figure 1. Goodness-of-fit plots of vancomycin population pharmacokinetic model. (a) observed con-
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after dose (TAD). 

Figure 2. Prediction corrected-visual predictive check (pc-VPC) plot of the final model. Blue circles: 
observed vancomycin concentrations. Red solid and dashed lines: the 50th, 5th, and 95th percentiles 
of the observed concentrations. 3 shaded areas: the 90% CIs of the 5th, 50th, and 95th percentiles of 
the simulated concentrations. 

Figure 1. Goodness-of-fit plots of vancomycin population pharmacokinetic model. (a) observed
concentration versus population prediction (PRED); (b) observed concentration versus individual
prediction (IPRED); (c) conditional weighted residuals (CWRES) versus PRED; (d) CWRES versus
time after dose (TAD).
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Figure 2. Prediction corrected-visual predictive check (pc-VPC) plot of the final model. Blue circles:
observed vancomycin concentrations. Red solid and dashed lines: the 50th, 5th, and 95th percentiles
of the observed concentrations. 3 shaded areas: the 90% CIs of the 5th, 50th, and 95th percentiles of
the simulated concentrations.
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2.4. Dosage Recommendation

The probability of AUC24 between 400 and 650 mg·h/L at several regimens was
calculated using the final model (Figure S1). The dosage regimen providing the highest
target attainment rate determined the optimal regimen. The estimated AUC24 at our
regimen was shown in violin plot (Figure S2). The dose of vancomycin increased together
with CLcr until 180 mL/min. The recommended dosage regimens for targeted AUC24
were summarized in Table 3. The recommended regimens for targeted Ct are described in
Supplement Table S1. The probability of target attainment (PTA) was between 41 and 67%
in patients with different renal function.

Table 3. Recommended initial dosage regimens for targeted AUC24 between 400 and 650 mg·h/L.

CLcr (mL/min) Dosage PTA (%)

15–29 250 mg Q24 h 41.44
30–44 500 mg Q24 h 53.69
45–59 750 mg Q24 h 57.64
60–89 1250 mg Q24 h 57.32

90–119 750 mg Q12 h 61.58
120–149 1750 mg Q24 h 62.33
150–179 1000 mg Q12 h 62.56
≥180 750 mg Q8 h 61.69

CLcr, creatinine clearance; PTA, probability of steady-state AUC24 between 400 and 650 mg·h/L.

3. Discussion

Our results suggest that the CLcr and ICU admissions influence the pharmacokinetics
of vancomycin. Patients with ARC (CLcr ≥ 130 mL/min) showed between 1.3 and 2.1 times
higher drug clearance than patients with normal kidney function. The central volume of
distribution increased by 3.5 times in ICU patients, compared with non-ICU patients. We
therefore designed an individualized dosing regimen based on these two covariates.

We identified the CLcr calculated with the Cockcroft-Gault equation as the most
significant covariate that affected the elimination of vancomycin. The drug clearance
rate increased together with CLcr in a saturation curve, with the theoretical maximum
clearance being 5.58 L/h. In previous pharmacokinetic studies, the clearance rate constantly
increased [13–15], whereas Chu et al. found that the trend is weaker in patients with
ARC [16]. Consistently, a similar trend was plotted into a scatter diagram format with CLcr
and the clearance (Supplement Figure S3). We therefore tried to fit a saturation correlation
and found lower objective function value (OFV) of the model (OFV 1843.222) compared
with linear (OFV 1864.24), exponential (OFV 1929.264) and power (OFV 1856.897) models,
indicating that the correlation was more consistent with the actual relationship.

Although different models have been implemented regarding vancomycin pharma-
cokinetics, little is known about the behavior in patients with ARC [17]. In observational
cohort studies, a lower blood concentration has been described in patients with ARC [18,19].
Our model suggested between 1.3 and 2.1 times higher clearance in patients with ARC
than in patients with normal kidney function. Another study reported a clearance rate of
8.52 L/h, much higher than what we observed [20]. The age was used as a covariate and
might explain their findings, obtained in a younger population.

The apparent volume of distribution increased by more than three times in ICU pa-
tients (35.7 L), compared with non-ICU patients (8.02 L). Previous studies reported similar
results [21–23]. Several pathophysiological changes might be related to PK modifications
in ICU patients [24]. Intravenous fluid loading, hypoalbuminemia and endothelial damage
may increase capillary permeability and contribute to interstitial space expansion in the
critically ill, especially in cases of sepsis and septic shock [25]. Hydrophilic drugs, charac-
terized by a distribution limited to the extracellular space, are significantly affected [24].
A recent study suggested that an increased volume of distribution (Vd) may be due to
sepsis-induced third space losses [26]. In accordance, we found that more ICU patients
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received a diagnosis of shock or multiple organ failure. Although the two diagnoses were
not identified as significant covariates of Vd in our study, we cannot refuse the influence of
these diseases on Vd. The proportion of patients with corresponding diagnosis is relatively
low, which may interfere with the identification of influencing covariates. On the other
hand, although not been diagnosed, ICU patients with different degrees of sepsis (sepsis,
severe sepsis and septic shock) are associated with varying degrees of fluid retention.

A larger Vd of hydrophilic drugs has been reported in ICU patients, but the clinical
relevance is questionable. An aminoglycoside is supposed to have lower concentrations
in patients with higher Vd and therefore needs an augmented dose [24,25]. An increased
dosing is also necessary for β-lactam antibiotics to prevent visible growth of a microorgan-
ism [27,28]. However, an increased Vd may not have a significant effect on the maintenance
dose of vancomycin, as the AUC depends only on the clearance rate at the steady state.
At the same time, the increased Vd might improve the penetration of the drug, which is
helpful against certain infections. Higher loading and daily doses were suggested by some
authors [29]. An augmented loading dose may increase the body’s exposure to vancomycin
in the initial treatment phase and may be helpful for the early elimination of the bacterium
in vivo.

We recommend a dosage regimen for patients with a CLcr between 15 and 180 mL/min.
Patients with a CLcr > 180 mL/min do not need to increase the dose, which is consistent
with the saturation correlation dimension of our model. Other studies reported higher daily
doses than ours [9,12,30]. Differences in the choice of simulation target might be the reason.
The daily dose was higher when the trough concentration was used as the simulation
target (Supplement Table S1). However, the AUC is more recommended as may reduce
the occurrence of vancomycin-associated acute kidney injury [31,32]. A meta-analysis
demonstrated that AUC/minimum inhibitory concentration = 400 is a reasonable target
of mortality and infection treatment failure [33]. An AUC24 > 650 mg·h/L was associated
with a higher risk of nephrotoxicity [34]. We therefore selected AUC24 between 400 and
650 mg·h/L as the target in this study [35].

Our study has some limitations. First, the sample size was limited. Other clinical data
could help to characterize the differences between ICU and non-ICU patients, including the
covariate Acute Physiology and Chronic Health Evaluation II or other scores. In the future,
prospective studies with a larger sample size may be helpful to verify the performance of
the model, as well as the effectiveness of the proposed regimens in real-world patients.

4. Materials and Methods
4.1. Patients and Data Collection

This study was approved by Peking University Third Hospital (PUTH) Ethics Com-
mittee (reference number M2020377). Data from hospitalized patients at PUTH between
January 2010 and June 2018 were retrospectively collected. Age, gender, total body weight
(TBW), department, primary diagnosis, vancomycin dosage, serum creatinine (SCr) and
serum vancomycin concentration were recorded. Patients were eligible to participate in
the study if they: (i) aged ≥ 18 years; (ii) received intermittent intravenous vancomycin
therapy; (iii) had data recorded, including age, gender, TBW, SCr and at least one serum
vancomycin measurement. Patients were excluded from the study if they: (i) had been
diagnosed with end-stage renal disease, including patients with CLcr < 15 mL/min or
receiving renal replacement therapy; (ii) had been diagnosed with acute kidney injury
before or during treatment; (iii) had been admitted to the Hematology Department or the
Surgical Department of the Intensive Care Unit; (iv) had been pre-treated with vancomycin
in other hospitals; (v) had significant missing data.

4.2. Evaluation of Serum Vancomycin Concentration

Vancomycin hydrochloride (abbreviated as vancomycin) for intravenous adminis-
tration was obtained from Eli Lilly and Company and Zhejiang Pharmaceutical Co., Ltd.
The serum concentration of vancomycin was determined by commercial chemilumines-
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cent microparticle immunoassay (CMIA) assay using the ARCHITECT platform with the
ARCHITECT iVancomycin assay obtained from Abbott Laboratories Trading Co., Ltd.
(Shanghai, China).

4.3. Population Pharmacokinetic Modeling

The model estimation was performed using NONMEM 7 software (version VII, level
4.4; ICON Development Solutions, Ellicott City, MD, USA) with the FOCEI method. Analy-
sis and post-processing were performed with the PsN toolkit and Xpose4 (version 4.6.1)
through the statistical package R.

Classical one- and two-compartment models were fitted to the data. An exponential
model was used to estimate the interindividual variability of the pharmacokinetic parame-
ters (Equation (5)). The residual errors were described by a constant coefficient of variation
model (Equation (6)). AIC values, GOF plots and the numerical estimates were used to
determine the structure model.

Pi = Ppop ∗ eη, (5)

where Ppop and Pi represent the pharmacokinetic parameters for the population and each
individual, respectively. η is a random variable for each individual following a normal
distribution with a mean of 0 and a variance ofω2.

Cobs = Cpred + Cpred ∗ ε, (6)

where Cpred and Cobs represent the predicted concentration and the observed vancomycin
concentration in the serum, respectively. ε represents the proportional error assumed to
follow a normal distribution with a mean of 0 and a variance of σ2.

Factors considered in relation to the pharmacokinetics of vancomycin were age, gender,
TBW, department, primary diagnosis and CLcr estimated according to the Cockcroft-Gault
equation. An exploratory graphical analysis was performed to identify characteristics that
may influence pharmacokinetic parameters. The covariates showing a correlation with
pharmacokinetic parameters were introduced into the model sequentially. The significance
of the covariates was calculated through the OFV. An OFV decrease of more than 3.84
(p < 0.05) was considered statistically significant during the forward inclusion process. All
of the significant covariates were incorporated in the full model and then excluded from
the model one at a time. An OFV increase of more than 10.83 from the full model (p < 0.001)
was considered statistically significant.

4.4. Model Validation

Validation was performed by GOF plots, bootstrap and prediction corrected-visual
predictive check (pc-VPC) approaches. GOF plots illustrated the overall performance of
the model. The bootstrap median values and 95% confidence intervals for each estimate
were compared with those from the original dataset. The pc-VPC approach was applied to
determine whether sample data were consistent with the 90% prediction interval of 1000
simulated datasets from the final model.

4.5. Simulation and Dose Optimization

The Monte Carlo simulations (N = 10,000) were performed for each renal func-
tion classification (i.e., 15–29 mL/min, 30–44 mL/min, 45–59 mL/min, 60–89 mL/min,
90–119 mL/min, 120–149 mL/min, 150–179 mL/min, 180–209 mL/min, 210–239 mL/min,
240–269 mL/min, and 270–299 mL/min). Dosing intervals were set at 8, 12 or 24 h with
250–2500 mg per dose. The probability of target (steady state 24-h area under the curve
(AUC24): 400–650 mg·h/L, steady state trough concentration (Ct): 10–20 mg/L) attainment
was calculated. The dosage regimens with the highest PTA were recommended.
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5. Conclusions

The current study established a population pharmacokinetic model for vancomycin
in adult patients with different renal function, including patients with ARC. An initial
dosing regimen of vancomycin was proposed for patients with insufficient, normal and
augmented renal clearance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10101238/s1, Figure S1: Probability attainment for targeted AUC24 400–650 mg·h/L.,
Figure S2. Distribution of AUC24 at recommended vancomycin regimens., Figure S3. Scatter diagram
format with creatinine clearance calculated by the Cockcroft–Gault equation (CG) and the drug clear-
ance (Clearance)., Table S1: Recommended initial dosage regimens for targeted trough concentration
of 10–20 mg/L attainment.
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