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About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized 
one of the most important actors on the scene of self-tolerance. Thymic transcription 
of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and 
embodies the essence of thymic self-representation. Pathogenic AIRE variants cause 
the autoimmune polyglandular syndrome type 1, which is a rare and complex disease 
that is gaining attention in research on autoimmunity. The animal models of disease, 
although not identically reproducing the human picture, supply fundamental information 
on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE 
localizes to chromatin enclosing the target genes, binds to histones, and offers an anchor-
age to multimolecular complexes involved in initiation and post-initiation events of gene 
transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA 
splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reac-
tive thymocyte clones. However, AIRE function is not restricted to the activation of gene 
transcription. AIRE would control presentation and transfer of self-antigens for thymic 
cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of 
the thymocytes that carry the corresponding T-cell receptors. Another fundamental role 
of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, 
as thymic self-representation shapes at the same time the repertoire of regulatory T cells. 
Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the 
cell lineage detaining such property has not been fully characterized. Delineation of AIRE 
functions adds interesting data to the knowledge of the mechanisms of self-tolerance and 
introduces exciting perspectives of therapeutic interventions against the related diseases.

Keywords: animal disease models, autoimmune polyendocrinopathies, immune tolerance, thymus gland, transcription 
factors, type-1 diabetes mellitus

Abbreviations: Ac, acetylation; AIRE/Aire, autoimmune regulator; APC, antigen-presenting cell; APS1, autoimmune pol-
yglandular syndrome type 1; ATF7IP, activating-transcription-factor-7-interacting protein; Brd4, bromodomain-containing 
domain 4; CARD, caspase-activation and recruitment domain; CBP, CREB-binding protein; CCL, CC-chemokine ligand; CCR, 
CC-chemokine receptor; DC, dendritic cell; DNA-PK, DNA-activated protein kinase; DNA-TOP/DNA-Top, DNA topoisomer-
ase; E, embryonic day; EpCAM, epithelial-cell adhesion molecule; ESC, embryonic stem cell; Fgf, fibroblast growth factor; 
Fox, forkhead-box; HIPK2/Hipk2, homeodomain-interacting protein kinase 2; Il, interleukin; iNK, invariant natural killer; 
INS/Ins, insulin gene; Irbp, interphotoreceptor retinoid-binding protein; K, keratin; LtβR, lymphotoxin-β receptor; MBD1, 
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UEA1, Ulex europaeus agglutinin 1; VNTR, variable number of tandem repeat.
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iNTRODUCTiON

Surface receptors, enzymes, hormones, structural proteins, and 
other molecules act as self-antigens (self-ags) and are susceptible 
to autoimmune targeting in adverse circumstances. In a signifi-
cant number of cases, these substances are restricted to specific 
tissues and for this reason are named tissue-specific antigens  
(ts-ags). The notion that ts-ag-encoding genes are transcribed 
and translated into their respective proteins within the thymus, 
the so-called promiscuous gene expression (PGE), dates back 
to the eighties, when neurohypophyseal hormones, insulin-like 
growth factors, and other ts-ags were found in the human and 
animal gland (1–4).

Later, a quantitative correlation between PGE and negative 
selection was established: in 1997, two research groups assayed 
human insulin gene (INS) expression in thymi of aborted fetuses 
and children dead at various ages. The researchers found that the 
allele classes of the variable number of tandem repeats (VNTRs) 
upstream of INS promoter, the so-called type-1 diabetes (T1D) 
susceptibility locus 2, affected INS transcription, and suggested 
that higher amounts of thymic insulin could promote a more 
effective purge of the related self-reactive thymocyte clone (5–7). 
Similar studies supplied valuable data on thymic PGE and led to 
identify several markers of autoimmunity, but did not realize the 
extent of the phenomenon (8–10).

In 1998, Sospedra et al. stated that the human thymus contains 
self-ags belonging to three classes: those synthesized in peripheral 
tissues and circulating at high, moderate, or low concentration; 
those synthesized in peripheral tissues and ordinarily undetect-
able in the circulation; finally, secluded self-ags, such as the 
retinal-S antigen and the myelin basic protein (11). Noticeably, 
PGE amount showed marked inter-individual variability, as 
confirmed by later studies (12, 13).

In 2001, Derbinski et al. assayed the expression of a large set 
of ts-ag-encoding genes in murine thymic stromal cells: corti-
cal and medullary thymic epithelial cells (cTECs and mTECs, 
respectively), dendritic cells (DCs), and macrophages. All gene 
transcripts were found in mTECs, and around 50% of them were 
restricted to this cell sublineage (14). Detection of mRNAs from 
five selected genes was first obtained in 15-embryonic-day (15E) 
embryos and persisted into late adulthood. PGE was enhanced 
in UEA1hi mTECs (UEA1 stays for Ulex europaeus agglutinin 1). 
UEA1 labeling, in turn, was related to the co-stimulatory cluster 
of differentiation CD80, and, to a lesser degree, to class-II major 
histocompatibility complex (MHCII) antigens. Importantly, 
the expression of the autoimmune regulator (Aire) gene, which 
encodes the homonymous transcription factor, exhibited close 
distribution and timing (14), so that the study prompted the 
scientific community to inquire into the role of Aire in thymic 
self-representation and tolerance.

The present review is devoted to the fundamental aspects of 
Aire action and adverse consequences caused by its deficiency. 
Unless referring to the human counterparts (AIRE gene and 
AIRE protein), author will cite ordinarily murine gene (Aire) and 
protein (Aire), as the main body of scientific studies on this topic 
has been carried out on the animal models of disease. With regard 
to PGE, which is only in part dependent on Aire, author refers 

the kind readers to excellent reviews that delineate its extent and 
principles (15–17).

ONTOGeNeSiS OF TeCs

Generation of Mature TeCs
In the murine thymus, Aire mRNA and Aire are traceable since 
14E–15E (14, 18–20). Interestingly, in one of these studies the 
authors were able to detect Aire transcripts on a first-strand cDNA 
panel from 11E embryos (19). In this sense, a Chinese research 
group found that Aire is expressed in undifferentiated embryonic 
stem cells (ESCs), where it is co-stained with the stage-specific 
embryonic antigen 1, and that such expression attenuates upon 
ESC differentiation (21, 22). In ESCs, Aire associates with the 
spindle apparatus and plays a critical role in mitotic events (23). 
Hidaka et al. reported similar findings in embryoid bodies (24).

Many efforts have been produced to identify the thymic 
epithelial progenitor cells (TEPCs) from which Aire+ mTECs 
descend. Transplantation of endodermal cells of the third 
pharyngeal pouch from avian inter-species chimeras (25) and 
ectodermal-cell tracking in murine embryos (26) show that both 
cTECs and mTECs come from the endoderm, so that it is widely 
accepted that TEPCs are bipotent (27–31). In the simplest model 
of cTEC/mTEC commitment, TEPCs give rise simultaneously 
to sublineage-restricted elements. However, various research 
groups, on the basis of cTEC differentiation stages (32), have 
demonstrated that Aire+ mTECs derive from TEPCs exposing 
cTEC-associated markers, such as CD205, the thymoproteasome 
subunit β5t and the atypical CC-chemokines receptor (CCR)L1, 
and that such lineage persists in the postnatal thymus (33–36). 
Also interleukin (Il)7, which is required for T-cell development, 
is released by cTECs, and Il7hi cTECs can generate CD80+ mTECs 
through Il7–CD80lo elements (37). From this perspective, it has 
been possible to elaborate a model of cTEC/mTEC commitment 
in which mTEC sublineage diverges from a defaulted program of 
cTEC differentiation (38), as shown in Figure 1. Interestingly, in 
early organogenesis, the tight-junction claudins 3 and 4 mark the 
future Aire+ mTECs at the apex of the primordial endodermal 
layer (39). In the last few years, the researchers have focused their 
attention on TEPC characterization in the thymus of adult (at least 
4-week-old) mice, applying different experimental settings and 
marker panels (40–45). Once again, markers of predetermined 
commitment to Aire+ mTECs have been identified (46, 47).

Finally, immature cTECs and mTECs deal with the differen-
tiation program leading to full maturity. All TECs expose the 
epithelial-cell adhesion molecule (EpCAM), but, while mature 
cTECs have a rather homogeneous phenotype, two distinct 
mTEC subsets exist: UEA1hi and UEA1lo mTECs, also called 
mTECshi and mTECslo, respectively (14, 32, 48–56). Distribution 
of keratins (Ks) into these subsets is not selective (48, 49, 55, 
56); conversely, MHCII antigens and CD80 associate prefer-
entially with the former (14, 50, 51, 54, 56). The expression of 
Aire and most ts-ag-encoding genes, in turn, is restricted to the 
mature, MHCIIhi or CD80hi, mTECs (14, 53, 56). These subsets 
represent about the same elements, which derive from their 
immature MHCIIloCD80lo precursors (57–59). Proliferation 
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FiGURe 1 | Schematic representation of thymic epithelial cell (TEC) differentiation. Thymic epithelial progenitor cell (TEPC) is tagged by mouse thymic stroma 
antibodies 20/24 (Mts 20/24), synthesizes intracellular keratins (Ks) 5 and 8 (K5 and K8, respectively), and exhibits surface markers associated with mature cortical 
TEC (cTEC), such as the cluster of differentiation CD205 and the thymoproteasome subunit β5t. Commitment to medullary TEC (mTEC) sublineage is restricted to 
claudine (Cld)-exposing elements, which, through intermediate stages of mTEC pro-precursor and precursor (pro-pmTEC and pmTEC, respectively), generate the 
immature mTEC (mTEClo). mTEClo differentiation into mature mTEC (mTEChi) is accompanied by enhancement of Ulex europaeus agglutinin 1 (UEA1) labeling and 
further upgrading of class-II major histocompatibility complex (MHCII) antigens and CD80. Lymphostromal interaction (thymic “crosstalk”) drives the emergence of 
pro-pmTECs by induction of molecules of the tumor necrosis factor-receptor super-family (TnfR-Sf), such as the lymphotoxin-β receptor (LtβR) and the receptor 
activator of nuclear factor Nf-κB (Rank). The transition from pro-pmTECs to pmTECs is characterized by loss of the stage-specific embryonic antigen 1 (Ssea) and 
results in a Rankhi condition. Loss of Aire expression and acquisition of keratinocyte markers typify a subset of post-Aire mTECs that emerge in the postnatal 
thymus.
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markers and the pattern of regeneration after pharmacological 
ablation indicate that a stock of MHCIIhiCD80hiAire− mTECs 
at an intermediate stage of differentiation exists (58–60), while 
predisposition to apoptosis suggests that Aire typifies terminally 
differentiated mTECs (57–61). Not in opposition to this evidence, 
later observations delineate a post-Aire mTEC stage, character-
ized by loss of Aire expression, suppression of PGE, reversion 
to MHCIIloCD80lo condition, and synthesis of keratinocyte 
proteins, such as desmogleins and involucrin, a soluble precursor 
of the envelope of the epidermal stratum corneum (62–64).

Transcriptional Regulation and Thymic 
“Crosstalk”
Although not fully known, there is a strict regulation of TEC 
ontogenesis. The thymic compartmentalization requires the 
transcription factor forkhead-box (Fox)N1, which is encoded at 

the “nude” locus: although referred to as athymic, the nude mice 
display an organ rudiment that includes TECs at an early stage of 
differentiation and is devoid of lymphoid progenitors (65). More 
recently, Nowell et al. have demonstrated that FoxN1, although 
dispensable for sublineage commitment, drives cTECs and 
mTECs along the program of differentiation (66). In the murine 
thymus, loss or downregulation of FoxN1 expression subverts the 
organ morphology mimicking a precocious senescence (67, 68), 
while FoxN1 upregulation reactivates TEPCs and reverses organ 
aging (69–71). These observations suggest that the thymic micro-
environment reacts to FoxN1 in a dosage-sensitive manner and 
that FoxN1 expression is regulated in accordance with age (72).

While cTEC differentiation is induced by thymocytes at an 
early stage of maturation, mTEC differentiation is dependent 
on their full maturation and relocation. This lymphostromal 
interaction, the so-called thymic “crosstalk,” is achieved through 
two pathways enabling the nuclear factors Nf-κB (73–75). Both 
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FiGURe 2 | Schematic representation of human autoimmune regulator (AIRE). At the N-terminus, the caspase-activation and recruitment domain (CARD) and 
nuclear localization signal (NLS) are flanked by the SAND domain. Moving to the C-terminus, two plant-homeodomains (PHD1 and PHD2, respectively) fingers are 
separated by a proline-rich region (PRR). Four LxxLL (L stays for leucine) motifs are enclosed in the amino-acid chain. Preeminent domain-related properties are 
reported.
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pathways are triggered by intercellular signals between the tumor 
necrosis factor (Tnf) and tumor necrosis factor-receptor (TnfR) 
super-families (Tnf-Sf and TnfR-Sf, respectively). TnfR-Sf mem-
bers exposed on mTEC surface are the lymphotoxin-β receptor 
(LtβR), the receptor activator of nuclear factor Nf-κB (Rank), and 
CD40. LtβR and CD40 are also exposed on cTEC surface (32). 
There is a bulk of experimental data from the studies on the role 
and consequences of loss and gain of function of these molecules 
in the embryonic and postnatal/adult thymus (76–114). The 
cited studies are those that, on a targeted basis, have evaluated 
the impact of these changes on the generation and differentiation 
of Aire+ mTECs.

Unsurprisingly, differences in murine strains employed, 
experimental settings, and timing of observation have produced 
contrasting results in a number of cases. However, recent studies 
have set out some basic principles, highlighting that LtβR and 
Rank cooperate in the embryonic thymus to switch TEPCs to 
mTEC sublineage, while in the following step mTEC precur-
sors become Rankhi (92, 95, 106). The release of the respective 
ligands is provided by T-cell subsets, such as lymphoid-tissue 
inducer cells and dendritic epidermal T cells, generated prior to 
the conventional αβ-thymocytes (98, 100, 102). Post-Aire mTEC 
differentiation and crosstalk of the postnatal thymus require 
inputs different from those acting in the embryonic period (91, 
100, 101, 103). Presumably, thymic B cells and DCs participate 
in these processes (115, 116), while, if crosstalk is suppressed, 
coarse medullary cysts form, which are circumscribed by polar-
ized mTECs (117). A careful dissection of the matter goes beyond 
the author scope, but essential aspects are reported in Table S1 in 
Supplementary Material. In addition, author refers the kind read-
ers to excellent reviews that have thoroughly analyzed crosstalk 
dynamics, and the role and essentiality of each molecule involved 
(118–121).

Several other factors may exert inducing or inhibiting influ-
ence over mTEC development: of particular importance are the 
fibroblast growth factors (Fgfs), mainly Fgf7 (or keratinocyte 
growth factor), which is required for TEC differentiation in 
thymic organogenesis and regeneration (122). In murine models 

of graft-versus-host disease, administration of Fgf7 has proven to 
be decisive in the enrichment and maintenance of Aire+ mTECs 
able to promote T-cell reconstitution and avoid self-tolerance 
breaking (123–127).

Interestingly, mTEC differentiation may be reproduced in vitro 
by three-dimensional organotypic co-cultures engineered for 
dermal equivalent and based on the close relationship between 
skin and thymic stroma (128).

AiRe GeNe AND THe ReLATeD PROTeiN

Human AIRE is encoded by a gene located in the region 22q.3 of 
chromosome 21 (129, 130). Pathogenic AIRE variants cause the 
autoimmune polyglandular syndrome type 1 (APS1), character-
ized by chronic surface candidiasis and various autoimmune 
diseases involving mainly the endocrine glands (131, 132).

Murine Aire maps to chromosome 10 in a region syntenic to 
human 21q22 (18–20). Similarly to the human gene, Aire expres-
sion is restricted to a few cells of the thymic medulla, represented 
by a significant percentage of mTECshi, and, to a lesser degree, by 
DCs (76, 133). Presumably, Aire is synthesized and acts also in the 
secondary lymphoid organs, while, as reviewed elsewhere, Aire 
expression in other systems and cell lineages is uncertain and of 
doubtful meaning (134, 135).

Biophysical and Biochemical Properties
Analysis of its multidomain structure reveals that human AIRE 
belongs to the group of proteins able to bind to chromatin and 
regulate the process of gene transcription (136, 137). Starting 
from the N-terminus, AIRE comprises (Figure  2) a caspase-
activation and recruitment domain (CARD), a nuclear localiza-
tion signal (NLS), a SAND domain, and two plant-homeodomain 
(PHD) fingers (138). At subcellular level, AIRE localizes into 
small speckles uniformly distributed in the nucleoplasm and 
resembling the promyelocytic-leukemia nuclear bodies (NBs). In 
addition, it is visualized in the cytoplasm of a variable number of 
cells, where it forms a scaffold-like meshwork reminiscent of the 
intermediate filaments or microtubules (139–141). As observed 
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FiGURe 3 | Schematic representation of autoimmune regulator (AIRE)-containing multimolecular complexes involved in initiation and post-initiation events of gene 
transcription. Abbreviations: Ac, acetylation; CBP, CREB-binding protein; DNA-PK, DNA-activated protein kinase; DNA-TOP, DNA-topoisomerase; PARP1, 
poly-(ADP-ribose) polymerase 1; BRD4, bromodomain-containing domain 4; P-TEFb, positive transcription elongation factor b; RNA-PolII, RNA-polymerase II; ts-ag, 
tissue-specific antigen. Reprinted (with changes) with the permission from Macmillan Publishers Ltd.: Peterson (171). Copyright 2015.
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in cultures of human mTECs and AIRE-transfected cell lines, 
AIRE has a subcellular organization following spatio-temporal 
cycles, and associates with the nuclear matrix (142, 143).

Homomerization into oligomers (dimers and tetramers) is an 
important biophysical property of AIRE, which allows binding to 
specific oligonucleotide motifs (144, 145). Suggestively, construc-
tion of a library of thymic consensus sequences highlighted that 
the promoters of several genes, among which those encoding 
ts-ags targeted by autoimmunity in Aire-deficient (Aire−/−) mice, 
enclose such motifs, albeit this mechanism represents a non-
specific way of action of the protein (146).

Ability to homomerize is attributed to the AIRE N-terminus, 
already named homogeneously staining region (aa 1–100) by 
analogy with the speckled-protein SP100 (147). Two research 
groups demonstrated that pathogenic AIRE variants and deletion 
constructs involving this domain prevent oligomer formation 
and are unable to activate gene transcription (148, 149). Later, 
Ferguson et al. individuated in AIRE N-terminus a CARD (150), 
which is typical of pro-apoptotic proteins (151). Beside CARD, a 
bi- or tri-partite NLS guarantees AIRE shuttle into and out of the 
nucleus (152, 153).

In the middle of the amino-acid chain, the SAND domain 
(aa 180–280) encloses a basic amino-acid module that mediates 
AIRE binding to the phosphate groups of DNA (154), albeit 
SAND actual role is probably that of offering an anchorage to 
heterologous proteins (155). Importantly, CARD, NLS, and 
SAND domain hold most AIRE lysine residues, which are sites of 
acetylation (Ac) (145, 152, 153): this is a key point for proper pro-
tein localization and participation in multimolecular complexes.

At the C-terminus, AIRE is completed by two PHD fingers, 
named PHD1 (aa 299–340) and PHD2 (aa 434–475), which are 
separated by a proline-rich region. PHD fingers are cysteine-rich 
domains characterized by a four-cysteine, one-histidine, three-
cysteine motif, which coordinates two zinc ions (156). In general, 
PHDs “read” the chromatin marks, mainly the degree of methyla-
tion at the tail of histone H3: importantly, AIRE PHD1 belongs to 

the PHD subfamily that recognizes unmethylation of H3 tail as a 
distinct epigenetic mark (157–159). At molecular level, opposite 
charges on the reciprocal surfaces facilitate the electrostatic inter-
action between PHD1 and H3 (160), while the methylation of 
some H3 amino-acid residues, mainly Arg2 and Lys4, dissociates 
them (161, 162). Despite a structural resemblance with PHD1, 
PHD2 displays a positively charged surface that makes it unsuit-
able to interact with histones (160). Nonetheless, its structural 
integrity is crucial for the activation of gene transcription, as 
confirmed by inherent AIRE variants (163) and deletion of the 
murine homolog (164). Actually, even the thirty amino acids 
positioned at the end of AIRE C-terminus act as an autonomous 
domain (165).

Finally, it should be remembered that AIRE encloses four LxxLL 
(L stays for leucine) motifs typical of proteins that bind to nuclear 
receptors and affect, as either co-activators or co-repressors, the 
transcriptional events (166). Interestingly, the fourth LxxLL motif 
lies in the C-terminus and is critical for AIRE properties (165).

Molecular Mechanisms of Action
It is now clear that Aire does not act as a conventional tran-
scription factor by binding to consensus sequences of the 
target gene promoters. Rather, the protein seems to participate 
in coordinated events performed by multimolecular complexes 
(Figure 3). Several studies have been produced to elucidate Aire’s 
partnerships and their functional relevance. An acceleration in 
this field has come from the study of Abramson et al., who used 
AIRE-targeted co-immunoprecipitation, mass spectrometry, 
and RNAi-mediated mRNA knockdown to identify the pool of 
associated proteins (167).

CREB-binding protein (CBP), which localizes in the NBs 
and is a co-activator of several transcription factors, was the 
first AIRE partner to be identified (148, 168). Following studies 
suggested that Ac by CBP stabilizes the subcellular distribution 
of AIRE, albeit data on targeted lysine residues and functional 
consequences were conflicting (169, 170). In a more recent study 
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on murine mTECs, mapping of Aire lysine residues acetylated by 
CBP has been validated by bioinformatics-based candidate pre-
diction. In this context, it has been highlighted that the group-III 
histone-deacetylase Sirtuin 1 preserves Aire-dependent PGE by 
deacetylation of such residues (171, 172).

Positive transcription elongation factor b (P-TEFb) and DNA-
activated protein kinase (DNA-PK) are other AIRE partners 
(173–175). DNA-PK phosphorylates AIRE, at least in  vitro, at 
Thr68 and Ser156 (174). Above all, DNA-PK belongs, together 
with other molecules co-immunoprecipitating with AIRE, to the 
multimolecular complex involved in DNA break and repair by 
non-homologous end joining (175). Among these molecules, a 
strong AIRE partner, as evidenced in proteomic assays, is the 
DNA-topoisomerase (DNA-TOP)IIα (167). DNA-TOPs are 
isomerase enzymes that operate on DNA topology and remove 
positive and negative DNA supercoils by generating transient 
DNA breaks: this causes local chromatin relaxation and facilitates 
the initiation and post-initiation events of gene transcription 
(176). DNA-TOPIIα performs double-stranded DNA breaks and 
attracts DNA-PK and poly-(ADP-ribose) polymerase 1 (PARP1). 
Recently, Bansal et  al. have demonstrated that murine Aire 
and the above partners localize to long stretches of chromatin 
known as super-enhancers, which serve as depots of cell-specific 
multimolecular complexes involved in transcriptional events, 
and enclose the transcription start sites of most Aire-dependent 
genes. In the same study, the authors have indicated DNA-TopI, 
which introduces single-stranded DNA breaks, as a preeminent 
Aire partner upstream of DNA-TopIIα and DNA-TopIIβ (177). 
In another recent study, Guha et al. have clarified the details of 
the interaction between AIRE and DNA-TOPs: AIRE would 
exert a camptothecin- and etoposide-like function able to inhibit 
type-I and type-II DNA-TOP re-ligation activity. This is followed 
by chromatin changes attributable to DNA-PK and PARP1, 
and activates the transcription of low-expressed genes (178). 
Recently, a clinical picture resembling APS1 has been reported in 
two patients with pathogenic variants of the gene encoding the 
DNA-PK catalytic subunit. Unsurprisingly, PGE was impaired in 
patients’ fibroblasts transfected with AIRE (179).

Also the homeodomain-interacting protein kinase 2 (HIPK2), 
another serine-threonine protein kinase localized in the NBs, 
phosphorylates AIRE (and CBP) and exerts a repressive influ-
ence over the related properties. Interestingly, Hipk2-deficient 
(Hipk2−/−) mice undergo a PGE downgrade that mostly involves 
Aire-independent genes expressed in mTECslo, suggesting that 
Hipk2 operates on hypothetical transcription factors other than 
Aire (180).

The interaction with P-TEFb seals AIRE participation 
in the post-initiation events of gene transcription (173). In 
eukaryotic cells, gene transcription is abortive if P-Tefb does not 
enable elongation and pre-mRNA splicing into mature mRNA 
by phosphorylation and release of stalled RNA-polymerase II. As 
observed in human and murine cell lines, AIRE recruits P-TEFb 
at the transcription start sites of the target genes and enables the 
above sequence (181, 182). Moreover, Yoshida et al. found that 
the bromodomain-containing protein 4 (Brd4) forms a bridge 
between murine Aire and P-Tefb, and that balanced phosphoryla-
tion and Ac of Aire CARD are necessary to keep such interaction 

(183). Finally, interaction with the human heterogeneous nuclear 
ribonucleoprotein L suggests that AIRE enhances mRNA diver-
sity by favoring alternative mRNA splicing (184), as confirmed in 
murine mTECs (185, 186).

Although the studies so far examined have provided a 
formidable contribution to the knowledge of the molecular 
mechanisms of Aire action, how the protein recognizes the target 
genes remains to be fully explained. PHD1 disruption abrogates 
the transcription of a part of human AIRE-dependent genes 
(159), while a histone H3-specific demethylase does not enlarge 
their number (187), so that the hypothesis that promoters of 
AIRE-dependent and AIRE-independent genes merely differ in 
chromatin marks is unsatisfying (188). A complementary mecha-
nism may be the interaction between AIRE and the complex 
formed by activating-transcription-factor-7-interacting protein 
(ATF7IP) and methyl-CpG-binding-domain protein 1 (MBD1) 
(189). ATF7IP can act as either co-activator or co-repressor of 
gene transcription depending upon its partners, while MBD1 
belongs to a family of nuclear proteins able to bind to methylated 
CpG dinucleotides, which characterize the promoter region of 
silent or low-expressed genes. Thus, coopting such repressive 
complex would recruit AIRE to the target genes, but the details 
of the interaction need further explanation. In another study, 
murine chromatin enclosing Aire-dependent genes exhibited 
marks of polycomb silencing, such as histone H3 hypomethyla-
tion at Lys4 and trimethylation at Lys27. Although Aire partner-
ship with chromodomain-helicase-DNA members, which bind 
to these amino-acid residues, is controversial (163, 167), it has 
been suggested that such putative interaction would drive Aire to 
the target genes and activate gene transcription by overriding a 
repressive chromatin state (190).

interaction with miRNAs
In the last few years, some research groups have put forward the 
hypothesis that Aire would be involved in post-transcriptional 
gene control by interaction with miRNAs, small (21–25 nucleo-
tides in length) double-stranded non-protein-encoding RNAs, 
which join in silencing complexes able to cause translational block 
and mRNA degradation (191). TEC-restricted deletion of murine 
genes encoding molecules that participate in miRNA pathway 
makes the thymic environment unable to sustain thymocytes 
maturation and reach a proper PGE, with more or less obvious 
Aire dysregulation (192, 193). Observation of miRNA pattern 
changes throughout mTEC differentiation has led to identify a 
miRNA subset that affects specifically Aire mRNA translation 
(194–196). Conversely, Aire itself seems to condition amount and 
composition of miRNAs by modulating their transcription (197). 
Moreover, Aire would induce in genes involved in PGE a sort 
of refractoriness to the interaction with miRNAs, while in Aire 
deficiency a large number of miRNAs would achieve the target 
(198–200).

MeCHANiSMS OF ACTiON iN CeNTRAL 
TOLeRANCe

Once dissected the molecular mechanisms of Aire action, it is 
now appropriate to analyze in an orderly fashion the biological 
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effects of such events. As expected, most information comes from 
studies on the animal models of disease. First Aire−/− mice were 
engineered in 2002: the animals exhibited lymphocyte infiltration 
invading or surrounding specific structures of various organs (for 
example, the portal spaces of the liver, or the gastric parietal cells, 
or the outer layer of the retina), paralleled by circulating antibod-
ies to self-ags with a similar, although not exactly corresponding, 
pattern (201, 202). When bone marrow from either wild-type 
(Aire-sufficient, Aire+/+) or Aire−/− mice was transplanted into 
two mirror groups of lethally irradiated mice, organ infiltration 
and humoral autoimmunity were found only in Aire−/− recipients, 
independently from the donor condition (Figure 4). Obviously, 
PGE was impaired in Aire−/− thymi (202).

These principles were applied in a following study. Mice 
carrying T-cell receptor (TCR) loci immunized to the hen egg 
lysozyme were crossed with mice in which thymic expression 
of the related transgene was driven by the rat Ins promoter. The 
comparison between Aire+/+ and Aire−/− double-transgenic mice 
revealed that the former had a small number of TCR-specific 
thymocytes, which exhibited anergy markers, while failure of 
negative selection in Aire−/− mice caused spreading of the self-
reactive T cells (203).

In the following subheadings, author will address the various 
modalities of Aire intervention in central tolerance: activation of 
PGE, presentation and transfer of self-ags, promotion of anergy 
by diversion to regulatory T (Treg) cells, and a putative influence 
over thymic cellularity.

Activation of PGe
Actually, PGE is not restricted to mTECs, but ts-ag-encoding 
genes expressed in cTECs are mostly lymphocyte-specific and are 
due to contamination by thymocytes complexed to thymic nurse 
cells, while those expressed in DCs and macrophages are mostly 
related to bone marrow-derived cell lineages (14). Recent studies 

indicate that Aire modulates, by induction of chemokine signals, 
cTEC gene transcription, and at the same time slows down cTEC 
metabolism and differentiation (204, 205). By contrast, Aire initi-
ates PGE in mTECs (14, 202), as confirmed in fetal thymic organ 
cultures and cultures from adult thymi (206, 207). The process 
involves hundreds of genes whose expression overrides the ordi-
nary sex-, tissue-, and differentiation-dependent regulation (14, 
202, 208). However, Aire activates the transcription of a part of 
these genes, as demonstrated in Aire−/− mice (209, 210). Moreover, 
Aire-dependent and Aire-independent genes participating in 
PGE co-localize in chromosomal clusters (208–210): as seen, 
this phenomenon is due to the localization of Aire-containing 
multimolecular complexes in chromatin stretches enclosing the 
transcription start sites of the ts-ag-encoding genes (177).

Interesting data are available when, taking into consideration 
a set of functionally connected genes, thymic PGE is compared 
with the corresponding expression in the relevant peripheral tis-
sue. For example, while murine casein genes (clustered on chro-
mosome 5) are co-expressed in about 90% of mammary-gland 
cells of young female mice, the expression of the same genes in 
CD80hi mTECs exhibits a prevalence between 2 and 15%. The rate 
of mRNA translation into the respective proteins is even lower, 
so that each ts-ag is traceable in about 1–3% of mTECs (211). 
With regard to allele pairs, many mTECs use one chromosomal 
locus, with no obvious imprinting (212). At the same time, genes 
ordinarily imprinted in the peripheral tissues, such as the Aire-
dependent gene encoding the insulin-like growth factor 2, may 
be expressed biallelically in mTECs (209). Another proof that 
gene transcription activated by Aire is regulated differently from 
the peripheral tissues is given by the observation that a selective 
deficiency in the pancreatic-duodenal homeobox 1, a master 
transcription factor encoded by an Aire-dependent gene, does 
not impair the thymic transcription of other Aire-dependent, 
pancreatic-islet-related genes (213).
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Initially, although it was observed that clustered ts-ag-
encoding genes have a higher chance of sharing the same fate, no 
clear pattern of co-expression emerged (211, 212). Recent studies 
have changed this perspective. Actually, single human mTECs 
shift through distinct pools of ts-ag-encoding genes. In this sense, 
some co-expression pools of overlapping and complementary 
gene sets have been individuated, which encompass intra- and 
inter-chromosomal distribution and align along a co-linear 
program of differentiation (214). Analogously, clustered Aire-
dependent genes are expressed stochastically in small groups of 
murine mTECshi, with a significant degree of diversity between 
individuals (215, 216).

Other important observations may be added: first, Aire favors 
alternative mRNA splicing, which represents a broadening of 
thymic self-representation (184–186). Second, the pool of genes 
regulated by Aire is conditioned by the cellular environment, 
as demonstrated both in physiologic conditions, by comparing 
mTECs with the germ cells of the testis, where PGE addresses 
pulsed waves of scheduled apoptosis (217), and in experimental 
setting, by transfecting pancreatic-islet β-cells with Aire (218). 
Finally, the dichotomy between Aire-dependent and Aire-
independent genes represents perhaps an improper simplifica-
tion: it is possible that genes belonging to both categories are 
connected into transcriptional networks that recognize a hierar-
chy. This could explain how Aire regulates indirectly some genes, 
albeit an interaction with other transcription factors cannot be 
excluded (219, 220).

Self-ag Presentation and Transfer
Kuroda et al. found that Aire−/− mice display Sjögren’s syndrome-
like disease of the exocrine glands, and this was associated with 
autoimmunity to the ubiquitous protein α-fodrin. Surprisingly, 
the expression of the encoding gene was not impaired by Aire 
deficiency, and the authors hypothesized that the autoimmune 
process was due to suboptimal antigen presentation and transfer 
(221). Initially, the features and timing of self-ag presentation 
by mTECs and thymic DCs were evaluated without taking into 
account Aire role (222, 223). Later, Hubert et  al. found that 
some self-ags need to be transferred to the thymic DCs to be 
presented to the thymocytes, and that Aire is able to address 
this interplay (224). In another study, lethally irradiated mice 
transplanted with bone marrow deficient in the gene encoding 
the MHCII-transactivator—hereby forced to use only antigen-
presenting cells (APCs) of epithelial lineage—had a higher 
frequency of T-cell clones with self-reactivity to an epitope of 
the interphotoreceptor retinoid-binding protein (Irbp), which 
is encoded by an Aire-dependent gene (225). More recently, 
it has been demonstrated that Aire+ mTECs release vesicles of 
endocytic origin called exosomes, which carry a high number 
of self-ags (226).

By contrast, another research group has provided evidence 
that mTECshi, through the process of macroautophagy, induce 
autonomously a proper thymocyte response (227). Interestingly, 
both Aire+ mTECs and DCs, when co-cultured with fresh thymo-
cytes, act as APCs and re-propose in vitro the process of negative 
selection (228, 229).

At this point, it seems to be correct to state that self-ag pres-
entation by mTECs and thymic DCs runs in parallel, but preemi-
nence and degree of redundancy of the two sources remain to be 
deciphered (230). In a very recent study, Mouri et al. employing 
transgenic mice in which ovalbumin expression has been driven 
by either Aire or rat Ins promoter, delineate a division of labor 
between mTECs and thymic DCs, which configures uneven 
dependency on Aire and different outcomes in central tolerance 
(that is, negative selection versus Treg-cell generation) (231). To 
complicate matters, other recent data suggest that even thymic 
B cells display Aire expression and participate in self-ag presenta-
tion (232).

Generation of Treg Cells
As touched upon previously, thymus role in promoting self-
tolerance relies not only on the process of negative selection, 
but also on the generation of Treg cells able to prevent and 
control the autoimmune process. Treg cells have a CD4+CD25+ 
phenotype and require FoxP3 to differentiate: initial studies 
suggested that Aire−/− mice have a normal number of circulating 
CD4+CD25+ cells (201–203), which, however, do not consist 
solely of the Treg-cell subset. Later, Anderson et  al. (Figure 5) 
observed that nude mice co-engrafted with 2′-deoxyguanosine-
resistant thymic stroma from wild-type and Aire−/− mice, or, in 
an alternative approach, recombinase-activating gene-1-deficient 
(Rag1−/−) mice treated with co-transfer of splenocytes from the 
above donors, exhibit organ infiltrates undistinguishable from 
those found in the animals engrafted with a single Aire−/− thy-
mus or receiving splenocytes from Aire−/− mice only. Should 
Treg-cell impairment play a role in the adverse events deriving 
from Aire deficiency, generation of Treg cells in the co-engrafted 
wild-type thymus (or their presence among the co-transferred 
wild-type splenocytes) would prevent the autoimmune process. 
However, avoiding organ damage by introduction of an excess 
of thymic stroma (or splenocytes) from wild-type animals left 
reasonable doubts on the earlier conclusions (233). Similar data 
were obtained by Kuroda et al., albeit in this case co-engrafted 
thymi were employed at a fixed ratio (221). In a further study, 
Aire sufficiency did not enlarge, compared with a condition of 
Aire deficiency, Treg-cell TCR specificities on a background of 
TCR oligoclonality (234), but such experimental design (i.e., the 
utilization of transgenic mice with a restricted TCR repertoire) 
was questionable in itself.

On the other hand, the hypothesis of an Aire role in generat-
ing Treg cells moves from the observation that Aire deficiency 
exacerbates the organ damage in FoxP3-deficient (FoxP3−/−) 
mice (235). In this sense, a series of studies prove that self-ag 
presentation by Aire+ mTECs shapes the Treg-cell repertoire 
(227, 236–238). Critical factors for this process, whose efficiency 
correlates inversely with Treg-cell differentiation, are optimal 
affinity/avidity in TCR engagement and proper cytokine 
availability (237). Other observations propose a reissue of the 
relationship between Aire and conventional (effector) T  cells: 
first, Aire+ mTECs act autonomously as APCs (227, 238), but 
cooperation with thymic DCs may be required for some self-
ags (239, 240). Second, in the perinatal age Aire promotes the 
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generation of a distinct compartment of Treg cells that persists 
into adulthood (241).

Some studies suggest that Aire promotes Treg-cell enrichment 
in the secondary lymphoid organs: Rag1−/−Aire+/+ recipients of 
T cells from Aire−/− mice show hyperproliferation of the FoxP3+ 
subset able to prevent overt autoimmunity (242). Coherently, 
consequences of Aire deficiency are made critical by constitu-
tional defects or derailment of the mechanisms enabling Treg-cell 
action in the periphery (243, 244).

Unfortunately, given that Aire promotes central tolerance also 
to cancer-associated self-ags, generation of Treg cells with the 
related TCR specificities is a way to exert such unfavorable action 
(245–248). Finally, it is important to remember that, beside 
FoxP3+ major population, minor subsets of Treg cells exist: one 
of these, represented by CD8+CD28lo T cells, fails to control the 
onset of experimental colitis in Aire−/− mice (249).

Control of Thymic Cellularity
A putative role attributed to Aire is that of controlling mTEC 
molecular mediators that regulate thymic cellularity and dynam-
ics (Figure 6). In this context, mTECs do not act as APCs, and 
their non-TCR-mediated influence relies on the production and 
release of cytokines.

The most important event is the cortex-to-medulla migration 
of the positively selected αβ-thymocytes. This non-inertial move-
ment is elicited by various CC-chemokine ligands (CCLs) through 
their respective CCRs: CCL5, CCL17, and CCL22 interact with 
CCR4, while CCL19 and CCL21 interact with CCR7 (250). A 
lack of cytokine signal does not prevent thymocyte accumula-
tion in the cortex and outflow from the thymus, but the process 
of negative selection is compromised (251). Conversely, after 
relocation, surviving single-positive thymocytes complete their 

maturation in three or four stages and enter the bloodstream as 
“recent thymic emigrants” (RTEs) (252). As reviewed by Cowan 
et al., intrathymic thymocyte migration is indispensable for the 
emergence of Treg-cell precursors, and involves at the same time 
thymocyte sublineages deputed to innate immunity, such as γδ-
thymocytes and invariant natural-killer (iNK)-T cells (253).

Aire intervention in these events remains unclear. Laan et al. 
found that, in the murine thymus, Aire deficiency impairs the 
expression of the genes encoding CCR4 and CCR7 ligands, albeit 
the cellular source of the latter would not coincide with Aire+ mTECs 
(254). Other research groups found that LtβR signaling directs 
chemokine release by mTECs (81, 82, 85). Later, Lkhagvasuren 
et al. clarified that CCL21+ mTECs represent a distinct, LtβR-driven 
mTEC subset that emerges after the perinatal period and mostly 
segregates from Aire+ elements (93). A Chinese research group has 
dedicated a series of studies to the intra-medullary maturation of the 
CD4+ thymocytes, highlighting that a perinatal reduced outflow of 
RTEs, which play an important role in the establishment and main-
tenance of peripheral tolerance, deteriorates the detrimental effects 
of Aire deficiency (255–258). Further studies have been dedicated, 
with not univocal results, to Aire role in the generation, intrathymic 
migration and maturation of γδ-thymocytes, iNK-T cells, and DCs 
(259–263). Interestingly, recent studies suggest that Aire intervenes 
in regulating generation and function of Il17-releasing invariant 
and adaptive T cells, which have been linked to the early stage of 
the autoimmune processes (264, 265).

ORGAN TARGeTiNG iN AiRe DeFiCieNCY

Experimentally, thymic deletion of a ts-ag-encoding gene leads 
ineluctably to the onset of the related autoimmune disease. Given 
that two murine Ins genes (Ins1 and Ins2) exist, only the latter 
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being Aire-dependent (14, 202), Fan et al. used Cre-Lox recom-
bination technology to restrict Ins2 deletion to Aire-expressing 
cells. Therefore, diabetes developed within 3 weeks. Murine strain 
was autoimmune-resistant and the animals displayed unimpaired 
tolerance to other self-ags. Importantly, the authors employed 
Ins1−/− mice to eliminate the interference of an Aire-independent 
factor, whose strength in the mechanisms of self-tolerance is 
undetermined (266). In the preceding study of DeVoss et al., nude 
mice engrafted with thymic stroma in which the Irbp gene was 
deleted, exhibited eye disease (267).

In contrast, Aire−/− condition causes a dysregulation, mostly 
a downgrade of expression, of the entire pool of Aire-dependent 
genes. In this chaotic perturbation of thymic PGE, the patho-
logical consequences are determined by factors acting at various 
levels.

Species Specificity and Genetic 
Background
First, species-specific peculiarities cause remarkable differences 
between human APS1 and the phenotype of Aire−/− mice: in other 
words, the animal models of disease exhibit pathological find-
ings not comparable with those of the APS1 patients (268–270). 
Nevertheless, studies on Aire−/− mice have made it possible to 

identify, with proven or potential connection to the human field, 
several targets of autoimmunity (271–278).

Moving to the intra-species level, the genetic background, 
more than Aire genotype, influences severity of disease and set 
of organs damaged in each individual, albeit in APS1 patients 
this is observable with some difficulty. To give a few examples of 
the link between geo-ethnic patient origin and clinical picture, 
Finnish APS1 patients have an increased prevalence of T1D 
(131), while autoimmune thyroiditis is common among those 
from Southern Italy (279). Again, chronic candidiasis is observed 
rarely in Iranian-Jewish APS1 patients, who generally exhibit a 
milder phenotype (280). It is not surprising that MHCII alleles 
are relevant to these differences (281).

Of course, the availability of highly inbred animal lines gives 
greater visibility to the phenomenon: murine autoimmune-
prone strains, such as non-obese diabetic (NOD) and SJL mice, 
show a consistent and specific pattern of organ infiltration and 
self-reactivity. A relatively autoimmune-resistant strain, BALB 
mouse, has an intermediate prevalence of organ damage, which 
preferentially involves stomach and genital apparatus. Finally, an 
autoimmune-resistant strain, C57BL/6 (B6) mouse, shows a few 
components of the disease, with elective targeting to retina and 
prostate (221, 282). Susceptible alleles of the modifier loci—once 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


11

Perniola Twenty Years of AIRE

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 98

again with privileged reference to MHCII ones—are necessary, 
but not always sufficient, to elicit organ damage: for example, the 
H2-Aβg7 allele was required to induce autoimmune pancreatitis 
in NOD Aire−/− mice, but was not sufficient when transferred to 
a B6 background (282). A related, unexpected phenomenon is 
the intra-organ targeting switch: typically, in NOD Aire−/− mice 
the autoimmune pancreatitis hits the exocrine part of the gland, 
and the release of autoantibodies to an acinar-cell self-ag comple-
ments the process (283).

Studies on murine chimeras add interesting data: engrafting 
2′-deoxyguanosine-resistant thymic stroma from BALB or B6 
Aire−/− mice into mirror nude animals, Han observed that Aire 
deficiency simply enhanced the restricted predisposition to 
autoimmunity of the recipients, independently from the genetic 
background of the donors. By contrast, when thymic stroma 
from NOD Aire−/− mice was engrafted, it dictated the spectrum 
of organ damage, indicating that Aire deficiency impinges on a 
constitutional derailment of PGE (284).

Gene expression variability
Not only the genetic background with which Aire deficiency 
overlaps, but also factors intrinsically related to Aire expression 
should be taken into account. Various studies demonstrate that 
the amount of mRNAs transcribed from murine Aire-dependent 
genes correlates with the level and timing of Aire mRNA (285–
287), even in single cells (190). Age is an important factor able to 
modulate Aire expression: MHCII+ mTECs increase dramatically 
after birth and peak at 4  weeks of age (57). It is probable that 
the perinatal lymphopenia and ensuing lymphopenia-induced 
proliferation of Aire−/− mice are related to the infringement of 
the above trend and contribute to their pathological findings 
(288), which are reminiscent of the 3-day-thymectomized mice 
described by Miller (289). At the opposite, thymic involution, as 
depicted in 12-month-old mice, is featured by a fall in mTEC/
cTEC and MHCIIhi/MHCIIlo ratios (57), and is caused by 
programmed aging of the primary lymphoid organs (290). The 
efficiency of the process of negative selection in the embryonic 
and neonatal thymus is confirmed by the study of Guerau-de-
Arellano et  al., who used a doxycycline-regulated transgene to 
control Aire expression, and found that self-tolerance established 
in the perinatal age is longstanding. The autoimmunity triggered 
by Aire deficiency was attenuated by transfer of previously 
tolerized T cells. Not surprisingly, lethal irradiation during Aire 
turn-off recreated the disease in adult mice (291). As cited earlier, 
a recent study highlights that Aire influences also the perinatal 
generation of Treg cells (241).

Sexual hormones seem to modulate central tolerance, explain-
ing gender differences in susceptibility to autoimmunity. While 
castration prevents the decrease in thymic PGE observed in adult 
mice of either sex (292), androgens enhance Aire transcription 
and estrogens induce opposite changes acting at an epigenetic 
level (293, 294).

These physiologic variables score life periods at species level, but 
what can we say about inter-individual differences? Reappraising 
previous studies (11–13), Taubert et  al. reiterated that human 
mTECs present a strong inter-individual disparity in AIRE expres-
sion and PGE. However, while mRNA from AIRE-independent 

genes displays restricted fluctuations uncorrelated with AIRE 
mRNA, variability in the transcription of the AIRE-dependent 
genes is wider and follows an obvious AIRE-related trend (295). 
Given that Liston et al., employing mice in which one Aire allele 
was deleted, found that PGE affects in quantitative terms the mag-
nitude of self-reactive T cells escaping negative selection (296), it 
has been hypothesized that conditions of partial AIRE deficiency 
may represent a risk for non-syndromic autoimmunity when act-
ing in synergy with other susceptibility factors. However, various 
research groups did not find an increased prevalence of AIRE vari-
ants among patients with sporadic, especially endocrine, autoim-
mune diseases (297–303). Instead, various patient reports suggest 
that some AIRE variants encode mutated chains that co-localize 
with the wild-type protein and undermine the activity of the 
oligomeric structure in a dominant manner (304–307). Reporter 
gene assays, in vitro structure modeling and homologous murine 
constructs validate such hypothesis (305–309). The resulting clini-
cal picture is characterized by late-onset autoimmunity, milder 
phenotype than APS1, and incomplete penetrance (304–307).

The animal models of disease add valuable data that, once 
again, stress the importance of the genetic background: mTECs 
of murine autoimmune-prone strains display lower amounts of 
mRNAs from Aire and selected ts-ag-encoding genes (207, 310), 
and such dysregulation becomes more obvious in the stages 
preceding the overt disease (311). Based on the study of Venanzi 
et al., the difference relies on the strength of responsiveness to Aire 
and is no longer apparent when Aire−/− strains are compared. In 
the same study, the authors demonstrated that, similarly to the 
human thymus, there are marked inter-individual differences 
in the thymic expression of most ts-ag-encoding genes, even 
between mice homogeneously fed and housed: once again, the 
coefficient of variation is higher for the Aire-dependent genes and 
drops when the residual expression is assayed in Aire−/− thymi 
(312). According to the authors’ comment, this diversity may 
be beneficial in preventing uniform holes in central tolerance, 
but at the price of an unpredictable individual predisposition to 
autoimmunity.

AiRe and T1D: Special Case or Paradigm?
In author opinion, the relationship between APS1 and T1D 
resumes most principles regarding AIRE function. Insulin is a 
self-ag commonly targeted in T1D and encoded by an AIRE-
dependent gene: this dependence was inferred from gene expres-
sion pattern in murine (14, 202) and human mTECs (208). Later, 
two research groups observed that, although class-III VNTR 
alleles induce a higher level of INS expression compared to 
class-I alleles, the thymic amount of insulin varies widely among 
individuals carrying the same VNTR haplotype and correlates 
better with AIRE expression (295, 313). Another research group 
demonstrated that AIRE is able to bind to class-I and class-III 
VNTRs, and that the complexes modulate INS expression (314).

At this point, one would expect that AIRE deficiency lead 
invariably to overt pancreatic-islet β-cell autoimmunity. Actually, 
T1D affects a minority of APS1 patients (131, 132, 315), so that 
it can be assumed that one or more additional factors modulate 
the related risk. Although initially no or weak influence was 
attributed to MHCII alleles (316, 317), following studies modified 
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this perspective: Gylling et  al. found that DQB1*0602 plays a 
protective role in the development of APS1-associated T1D 
(318). Similarly, Halonen et al. showed a negative correlation with 
DRB1*15-DQB1*0602 (281). Two later studies on APS1 patients 
drew once again attention to the risk conferred by the T1D sus-
ceptibility locus 2, but both research groups genotyped MHCII in 
a limited percentage of the sample and omitted to include these 
data in multivariate statistics (319, 320).

Therefore, we can conclude that AIRE exerts a chief role in 
the hierarchical regulation of thymic INS expression, but, in a 
condition of AIRE deficiency, unfavorable classes of VNTR alleles 
are needed to reduce INS transcription below a critical threshold 
and determine a failure in the process of negative selection. Other 
genetic variables, such as MHCII haplotype, may further stratify 
the risk by shaping organ susceptibility to autoimmunity.

AiRe: NOT ONLY “CeNTRAL”

It is known that ts-ag-encoding genes are expressed also in the 
secondary lymphoid organs. Nonetheless, cell lineages holding 
this property and the related Aire role remain unresolved issues. 
According to two studies, main source of extra-thymic PGE 
would be Aire+ epithelial cells located within the lymph-nodal 
and splenic stroma. In an experimental setting, these cells were 
fostered to express an ovalbumin transgene driven by the promoter 
of the Aire-dependent gene encoding the intestinal fatty-acid-
binding protein (321). In the other setting, Aire promoter itself 
drove the expression of the gene encoding the pancreatic-islet 
β-cell-specific glucose-6-phosphatase-related protein, a self-ag 
routinely undetectable in the thymus (322). Both cell types 
induced deletion of the TCR-specific CD8+ T-cell clones, even 
when the latter were transferred into lethally irradiated mice 
transplanted with bone marrow from β2-microglobulin-deficient 
donors. In this way, reconstituting DCs were unable to act as 
APCs (321, 322). Later, one of these research groups revised the 
phenotype of the extra-thymic Aire+ cells, identifying them in 
unconventional CD45loEpcam+MHCIIhiCD80lo bone marrow-
derived APCs (323).

Reappraising their previous study (266), Grupillo et  al. 
deleted Ins2 in CD11c-expressing cells of Ins1−/− mice. The 
splenic source of Aire expression and PGE was attributed to 
CD11cintMHCII+B220+ plasmacytoid DCs. Treg-cell number 
was unaffected, so that self-tolerance was necessarily deletional. 
An interesting aspect of this study was that only B6 mice crossed 
to adopt MHCII alleles typical of NOD mouse exhibited some 
degree of pancreatic-islet β-cell damage (324). Jointly, the studies 
of this research group (266, 324) suggest that thymic PGE plays a 
chief role in self-tolerance, and that thymic gene deletion causes 
inevitably the related autoimmune disease. By contrast, the same 
event in the secondary lymphoid organs leads to adverse conse-
quences only on an autoimmune-prone genetic background.

Other researchers did not find a relationship between Aire and 
extra-thymic PGE (325, 326). In further studies, Aire was local-
ized in uncharacterized cells of the secondary lymphoid organs 
(327), or even in the stroma of non-lymphoid organs where 
immune tolerance is strictly needed, such as the decidua basalis 
at the embryo implantation site (328).

ANOTHeR THeORY OF ACTiON

The mTEC developmental theory (329), which configures an 
alternative hypothesis on Aire function, moves from the observa-
tion that the pharyngeal arches can generate many types of tissue, 
and that distinct foci of mTECs are arranged in organoids resem-
bling typical epithelial formations. Such organization suggests 
that the thymic medulla forms some sort of mosaic, whose pieces 
follow different programs of differentiation, and that mTECs 
with the largest PGE are intermediate elements that progressively 
restrict the pool of ts-ag-encoding genes expressed (330–334). 
Other evidences have been called into question, such as the small 
percentage of mTECs in which each ts-ag is detectable (335); 
the dependency on Aire of differentiation-associated genes and 
genes encoding master transcription factors (21–23, 336, 337); 
and the ultrastructure of Aire−/− thymus, in which expansion 
of the K8+ subset indicates mTEC inability to differentiate into 
distinct epithelial lineages (338, 339). Finally, the detection of a 
post-Aire mTEC stage (62) and the lack, once again in the murine 
Aire−/− thymus, of hyalinized structures equivalent to the human 
Hassall’s corpuscles (340), would provide the conclusive proof 
that Aire controls mTEC differentiation, and that its scheduled 
disappearance is a condition for the proper implementation of 
the latter (341–343). As discussed above, the same arguments 
have been used to build and support the well-defined theory that 
places Aire onto the high point of mTEC differentiation.

Is Aire expression the end-stage of an invariant differentia-
tion program, albeit with a stochastic pattern of PGE, or does it 
enable, before to be lost, multiple and predetermined programs of 
mTEC differentiation (344, 345)? There is still no definite answer 
to this question, but, in author opinion, Aire mandate remains 
unchanged: to accomplish the largest PGE for self-tolerance 
induction.

PeRSPeCTiveS AND CONCLUSiON

To sum up, Aire activates the transcription of a large pool of 
ts-ag-encoding genes in mTECs. In Aire deficiency, missed self-
ag presentation to the thymocytes determines a failure in the 
process of negative selection and the subsequent spreading of 
self-reactive T cells. The absolute heritable profile of the human 
related disease, APS1, suggests exciting implications on the topic 
of gene therapies.

A first approach is aimed at obtaining a functional thymus 
from ESCs. Following two studies in which murine ESCs were 
induced to generate TEPCs able to self-renew and foster thy-
mocyte maturation (346, 347), two research groups replicated 
such results with human ESCs (348, 349). In one of these studies, 
TEPC re-aggregation with embryonic fibroblasts and following 
engraftment into nude mice led to mTEC differentiation and 
AIRE expression, albeit T-cell outflow from the thymus was 
short-lived (349). Similar results were achieved with human and 
murine induced pluripotent stem cells (350, 351).

Aire expression can be manipulated by immunologic (78, 79, 
240), virus-based (285, 352), physical (286, 287), and chemical 
(353) methods. Nonetheless, enhancing Aire expression may 
impair unexpected forms of immune defense and get unwelcome 
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surprises. As seen, genes encoding some cancer-associated ts-ags 
are Aire-dependent (245–248), so that it is not surprising that 
Aire−/− mice are able to provide a stronger immune response after 
melanoma challenge (354, 355).

Translating these data to hypothetical therapies of human 
autoimmune diseases, the cited studies suggest that, while 
restoring AIRE expression is the goal of gene therapy in APS1 
patients, ideal profile of a tailored, AIRE-based treatment should 
be restricted to selected cell lineages or single AIRE-dependent 
genes, to avoid the pitfalls of a generalized PGE distortion.

Of course, just an increasing knowledge of PGE and the 
related Aire role will help to refine any strategy aiming at restor-
ing, promoting, or strengthening the mechanisms of central and 
peripheral self-tolerance. Finally, author refers the kind readers 
to excellent preceding reviews, which recapitulate the course 
of discoveries over Aire, and mark chronologically doubts and 
insights into its function (356–380).
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