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Calculation of therapeutic antibody viscosity with coarse-grained models, 
hydrodynamic calculations and machine learning-based parameters
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ABSTRACT
High viscosity presents a challenge for manufacturing and drug delivery of therapeutic antibodies. The 
viscosity is determined by protein–protein interactions among many antibodies. Molecular simulation is 
a promising method to study protein–protein interactions; however, all-atom models do not allow the 
simulation of multiple molecules, which is necessary to compute viscosity directly. Coarse-grained models, 
on the other hand can do this. In this work, a 12-bead coarse-grained model based on Swan and 
coworkers (J. Phys. Chem. B 2018, 122, 2867–2880) was applied to study antibody interactions. Two 
adjustable parameters related to the short-range interactions on the variable and constant regions were 
determined by fitting experimental data of 20 IgG1 monoclonal antibodies at 150 mg/mL. The root-mean- 
square deviation improved from 1 to 0.68, and the correlation coefficient improved from 0.63 to 0.87 
compared to that of a previous model that assumed the short-range interactions were the same for all the 
beads. Our model is also able to calculate the viscosity over a wide range of concentrations without 
additional parameters. A tabulated viscosity based on our model is provided to facilitate antibody 
screening in early-stage design.
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Introduction

Predicting the viscosity of antibodies at high concentrations is 
important for the manufacturing and delivery of therapeutic 
drugs in development.1–4 However, the cost of producing 
a large amount of any antibody in early-stage design is high. 
Therefore, computational methods that can calculate viscosity 
at high concentrations are desired. Since antibody viscosity is 
primarily governed by protein–protein interactions,5–8 mole-
cular simulations are promising tools to study these 
interactions.9–11 Nevertheless, all-atom simulations are too 
computationally expensive to study high concentration sys-
tems for large biomolecules.12 An alternative way is to apply 
coarse-grained (CG) models to improve the computational 
efficiency.13,14

CG models have been applied to study the self-association 
of therapeutic monoclonal antibodies (mAbs).15–17 The all- 
atom antibody models are represented by a few domains 
(beads) in the CG models. Among different CG models, a 10- 
bead and a 12-bead model have been applied to study the 
viscosity of mAb solutions.18–20 Although these works showed 
progress in computational methods for viscosity calculation, 
there are some disadvantages of these methods. The method of 
Chowdhury et al.20 requires fitting to experimental viscosity 
data using the cluster size distribution. This is not actually 
a predictive model for viscosity. The method of Izadi et al.19 

assumes an inverse relationship between calculated diffusion 
coefficients and experimental viscosity based on the Stokes– 
Einstein equation. However, it remains uncertain how well the 
Stokes–Einstein equation applies to the antibody molecules 

with nonspherical shape.21 The method of Wang et al.18 pro-
vides a direct way to calculate viscosity from hydrodynamic 
calculations. Nevertheless, it assumed all the CG beads have the 
same short-range interaction parameters. This may not be 
applicable to the variable region where high sequence diversity 
exists for each mAb. This could also be the reason that Wang’s 
model failed to describe the large viscosity of one antibody they 
studied. Moreover, all these methods have only been tested for 
a small number of distinct antibodies (2 or 3 mAbs). Larger 
datasets are needed to validate the model performance.

In this work, we develop and improve a computational 
model based on Wang et al.18 The goal of this project is to 
determine the short-range interaction parameters, the 
Hamaker constants (AH), of the CG model for different anti-
bodies. We propose that the Hamaker constants are divided 
into two contributions, from the variable regions (Av

H) and the 
constant regions of the antibodies (Ac

H). The Av
H values are 

determined by a high viscosity index (HVI), previously devel-
oped from a machine learning approach.22 The HVI values 
only depend on the sequence on the variable fragment (Fv) 
region. We assume that Av

H ¼ α�HVI and α is a scaling 
parameter. The Ac

H values are the same for all the antibodies. 
The two parameters (α and Ac

H) are determined by fitting to 20 
experimental data at 150 mg/mL. The new model can calculate 
antibody viscosity over a wide range of concentrations without 
additional fitting. This method will facilitate drug development 
and assist the understanding of the mechanism of antibody 
viscosity behavior. Finally, a tabulated viscosity table based on 
our new model is provided. It requires only the sequence 
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information to estimate viscosity, which allows fast antibody 
screening in early-stage design.

Results

Sensitivity analysis of the viscosity model

In the CG model, the viscosity depends on the charges and the 
short-range interaction parameters, the Hamaker constants. It 
is informative to analyze the sensitivity of these parameters. 
Figure 1 shows a heatmap of viscosity as a function of the 
charges in the VH region and the Hamaker constants on the 
variable region (Av

H).

Effect of the Ac
H values on viscosity

The viscosity is also sensitive to interactions with the constant 
region. Figure 2 depicts the calculated viscosity as a function of 
Ac

H for Av
H ¼ 0:4 kcal/mol and Av

H ¼ 1:0 kcal/mol.

Effect of the system size on viscosity

The simulation system can be adjusted by the number of 
molecules and box size to reach a target concentration. It is 
imperative to examine the effect of system size on viscosity 
because the viscosity calculations depend on the cluster size 
distribution. Figure 3 reports the viscosity at 150 mg/mL using 
three different numbers of molecules in the system as 
a function of Av

H.

Determination of the best model for viscosity

The characterization in the previous sections facilitates the 
parameter tuning to calculate viscosity of therapeutic mAbs. 
We selected 20 immunoglobulin G1 (IgG1) mAbs from our 
previous work with experimental data in a wide range of 
concentrations.22 As a benchmark, the model developed by 

Wang et al. was used to calculate the viscosity.18 In the original 
model, all the beads had the same Hamaker constants (0.4 kcal/ 
mol). Figure 4 (a) shows the result of the original model.

In this study, we attempted to find a mapping function (or 
the scaling parameter α) to relate HVI to the short-range 
interaction parameters on the Fv region (orange spheres in 
Figure 5). 

Av
H ¼ α�HVI (1) 

Another goal was to find a short-range interaction parameter 
for the constant region Ac

H that applies to all the mAbs (gray 
spheres in Figure 5).

We performed a grid search approach and assigned α from 
0.02 kcal/mol to 0.06 kcal/mol with a step size of 0.01 kcal/mol, 
and Ac

H from 0.1 kcal/mol to 0.5 kcal/mol with a step size of 

Figure 1. A viscosity heatmap as a function of the charges on the heavy chain variable region (VH) and the Hamaker constants on the Fv region (Av
H). The Hamaker 

constant on the constant region is 0.4 kcal/mol. mAb4 at 150 mg/mL is used for analysis.

Figure 2. Viscosity as a function of the Hamaker constants on the constant region 
(Ac

H) for small and large Av
H values at 150 mg/mL. The error bars indicate standard 

deviation. mAb4 is used as a template.
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0.1 kcal/mol. The objective is to minimize the error of the 
logarithm of viscosity at 150 mg/mL between models and 
experiment for the 20 IgG1 mAbs. The best parameter set we 
found was α ¼ 0:04 kcal/mol and Ac

H ¼ 0:2 kcal/mol. Table 1 
summarizes the key parameters for the CG models of the 20 
mAbs.

Figure 4 (b) reports the results of the new model. The same 
plot on a linear scale is also provided in supporting informa-
tion (Figure S1). The root-mean-square deviation (rmsd) 
improved from 1.00 (-) to 0.68 (-), and the linear correlation 
coefficient improved from 0.63 to 0.87.

Concentration dependence of the viscosity model

The CG model can be applied to calculate mAbs viscosity at 
different concentrations. The parameters are the same as that at 
150 mg/mL without the need for refitting. Figure 6 presents the 
viscosity for the 20 mAbs at 50, 100, 125 and 150 mg/mL. The 

same plot on a linear scale is also provided in supporting 
information (Figure S2).

The overall performance of the original model and the new 
model for the 20 mAbs at different concentrations is summar-
ized in Table 2.

Figure 3. Viscosity as a function of Av
H for different numbers of molecules in the 

system at 150 mg/mL. The error bars indicate standard deviation. mAb4 is used as 
a template. The Ac

H is equal to 0.4 kcal/mol.

Figure 4. Comparison of the viscosity model with the experimental data at 150 mg/mL for (a) the original model where Av
H = Ac

H = 0.4 kcal/mol and (b) the new model 
where Av

H = 0.04 × HVI (kcal/mol) and Ac
H= 0.2 kcal/mol.

Figure 5. The 12-bead CG model of antibodies. The cartoon representation shows 
the all-atom model. In the CG model, each antibody domain is represented by one 
sphere. The orange spheres represent the variable region, and the gray spheres 
represent the constant region.
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Additionally, the analysis of cluster distribution and radial 
distribution function of high and low viscosity mAbs are dis-
cussed in the supporting information.

Tabulated viscosity for antibody screening

Tabulated viscosity values at 150 mg/mL based on our model 
are calculated in Table 3. The solution condition is at pH 6.0 in 
10 mM histidine hydrochloride. In this table, three inputs, 
VH_charge, VL_charge and Av

H, are needed. These inputs 
require only the sequence information of the Fv region. The 
constant region is based on mAb4, which is an IgG1 antibody. 
Therefore, this table should be used for IgG1 mAbs. We 
assumed small sequence variation in the IgG1 constant region 
does not affect the viscosity.

Discussion

From Figure 1, the general trend is that viscosity increases with 
more negative charge and higher Av

H values. For mAbs in low 
viscosity conditions, the viscosity increases exponentially or 
follows a power-law function with amount of negative charge 
or Hamaker constants. The viscosity depends in a more com-
plicated way at lower net charge and higher Av

H region. For 
example, the relative viscosity reduces from 173.5 (-) to 163.4 
(-) as VH_charge changes from 1 e to −1 e when Av

H ¼ 0:8 
kcal/mol. From radial distribution function analysis, the nega-
tively charged beads interact with other positive beads on the 
constant regions, which disrupt the interactions on the variable 
regions in high viscosity conditions.

In therapeutic antibody development, the syringeability 
limit is approximately 30 centipoise (cP) for subcutaneous 
injection.23 Figure 1 covers a wide range of net charges, from 
+12 e to +32 e. It is feasible to reduce the viscosity below the 
syringeability limit by increasing the net positive charges even 
when the short-range interactions favor self-association at 

high-protein concentrations because the repulsive interactions 
of the whole antibody prevent protein association.

From Figure 2, the smaller Av
H value indicates weak inter-

actions between the variable regions. For Av
H ¼ 0:4 kcal/mol, 

the viscosity increases exponentially or follows a power-law 
function with the Ac

H values from 0.2 kcal/mol to 0.6 kcal/mol. 
On the contrary, for Av

H ¼ 1:0 kcal/mol, the viscosity is high 
when Ac

H ¼ 0:2 kcal/mol and decreases slightly as Ac
H 

increases. It is noted that the short-range interactions between 

two beads take a form of 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ai
H � Aj

H

q

. When the short-range 
interactions between the variable regions are weak, increasing 
the short-range interactions in the constant region will 
enhance the association between variable to constant, and 
constant to constant regions, resulting in large cluster forma-
tion and higher viscosity. However, when the short-range 
interactions between the variable regions are strong, large 
clusters can form by connecting the two arms of mAbs. 
Under this circumstance, the increased Ac

H values could lead 
to the interference of the cluster formation through the variable 
regions. As Ac

H values increase from 0.2 kcal/mol to 0.6 kcal/ 
mol when Av

H ¼ 1:0 kcal/mol, the average pairwise distance 
between beads decreases, indicating that the large cluster is 
more compact. In addition, radial distribution function 
shows that peaks for light chain variable region (VL)-heavy 
chain constant region (CH3) and VH-CH3 also increase, indi-
cating head-to-tail bindings, leading to more branched struc-
tures and less elongated structures.24

In Figure 3, when Av
H ¼ 0:4 kcal/mol, the three systems that 

exhibit low viscosity give very similar results. As Av
H increases 

to 0.6 kcal/mol, a difference between the viscosity is observed. 
Larger systems exhibit significantly higher viscosity compared 
to that of the smaller systems. The viscosity gaps between 
different system sizes further increase with higher Av

H values. 
Furthermore, the viscosity only increases marginally when 
Av

H ¼ 1:0 kcal/mol compared to when Av
H ¼ 0:8 kcal/mol for 

the three systems.
As far as we know, the system size effect on viscosity has not 

been investigated. Previous works characterize their viscosity 
using only one system size. However, the viscosity calculation 
is based on the cluster size. For example, consider an extreme 
case where all molecules form a single huge cluster. Equation 
18 indicates the hydrodynamic stress is scaled by the system 
volume; however, the term in the summation does not scale 
linearly with the cluster size. Therefore, we observe a system 
size dependence of the viscosity. For strongly interacting mole-
cules, the cluster should extend beyond the system box due to 
the periodic boundary condition. However, the hydrodynamic 
calculation can only consider the clusters within the simulation 
box. For Av

H ¼ 0:4 kcal/mol, the molecular interactions are 
relatively weak. Most of the clusters are either monomers or 
dimers, and the cluster size distribution is similar for all system 
sizes. As a result, there is no system size dependence of the 
viscosity. In contrast, for larger Av

H values, there is a single huge 
cluster occupying the simulation box, so the cluster size dis-
tribution is not the same for different system sizes. As 
a consequence, the viscosity depends on the system sizes.

The goal of this work was to tune the parameters to calculate 
low and high viscosity of mAbs. The high viscosity mAbs from 

Table 1. Parameters for the CG model of the 20 mAbs in this study. CH1, CH2 and 
CH3 indicate heavy chain constant regions 1, 2 and 3, respectively. CL indicates 
light chain constant region. Av

H = 0.04 × HVI (kcal/mol).

charge (e)
Hamaker constant 

(kcal/mol)

system VH CH1 CH2 CH3 VL CL Total Av
H Ac

H
mAb1 −1.0 4.5 4.5 0.0 6.0 −1.0 26 0.67 0.2
mAb2 1.0 4.5 4.5 0.0 2.0 −1.0 22 0.50 0.2
mAb4 3.0 4.5 4.5 0.0 0.0 −2.0 20 0.81 0.2
mAb5 1.0 5.5 4.5 0.0 2.0 0.0 26 0.40 0.2
mAb8 −1.0 5.5 4.5 0.0 2.0 0.0 22 0.58 0.2
mAb10 4.0 6.5 4.5 0.0 2.0 0.0 34 0.53 0.2
mAb11 0.0 4.5 4.5 0.0 0.0 −1.0 16 0.95 0.2
mAb12 3.0 5.5 4.5 1.0 2.0 −1.0 30 0.59 0.2
mAb14 3.0 5.5 4.5 −1.0 1.0 −1.0 24 0.54 0.2
mAb15 3.0 5.5 4.5 0.0 3.0 0.0 32 0.67 0.2
mAb16 2.0 4.5 4.5 0.0 2.0 0.0 26 0.61 0.2
mAb17 3.0 4.5 4.5 0.0 −2.0 0.0 20 0.86 0.2
mAb18 3.0 4.5 4.5 0.0 3.0 −1.0 28 0.60 0.2
mAb21 1.0 4.5 4.5 −1.0 3.0 0.0 24 0.69 0.2
mAb22 3.0 5.5 4.5 0.0 3.0 −1.0 30 0.52 0.2
mAb23 4.0 4.5 4.5 0.0 4.0 −2.0 30 0.69 0.2
mAb24 1.0 5.5 4.5 0.0 2.0 0.0 26 0.69 0.2
mAb25 5.0 4.5 4.5 0.0 3.0 0.0 34 0.88 0.2
mAb26 2.0 4.5 4.5 0.0 3.0 −1.0 26 0.69 0.2
mAb27 0.0 5.5 4.5 0.0 3.0 0.0 26 0.77 0.2
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Figure 6. Concentration dependence of the relative viscosity with the experimental data for the original model where Av
H = Ac

H = 0.4 kcal/mol and the new model where 
Av

H = 0.04 × HVI (kcal/mol) and Ac
H = 0.2 kcal/mol. Black circles indicate experimental measurement. Blue squares indicate results from the original model. Red triangles 

indicate results from the new model.

Table 2. RMSD of the logarithm of relative viscosity for the previous work and this work at different concentrations.

RMSD ln(viscosity) (-)

Concentration Previous work This work
50 0.49 0.48

100 1.01 0.83
125 1.13 0.82
150 1.00 0.68
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the experimental data exhibit viscosity up to 200 cP. Therefore, 
we chose to use N = 1728 for all the characterization.

As can be seen in Figure 4 (a), the original model under-
estimates the high viscosity mAbs significantly. This is consis-
tent with the observations from Wang et al.18 There are 
different types of short-range interactions of proteins, includ-
ing hydrogen-bonding, dipole–dipole interactions, and hydro-
phobic interactions.20 However, the original model assumed 
that all beads have the same short-range interactions, so the 
viscosity only depends on the charge distribution on the beads. 
Assigning the short-range interaction parameters for the CG 
model is still challenging. Based on our previous work,22 we 
found a key parameter, HVI, which is a low/high viscosity 
classifier and it only depends on the sequence on the Fv region. 
It is noted that the CG model cannot model all short-range 
interactions explicitly. The van der Waals form is used to 
model the effective short-range interactions.

The new model for the high viscosity mAbs is considerably 
enhanced. The Av

H values range from 0.4 kcal/mol to 0.95 kcal/ 
mol (Table 1). In the original model, the assignment of the 
Hamaker constant to 0.4 kcal/mol for the variable region 
apparently underestimates the short-range interactions.

In Figure 6, there are five high viscosity mAbs (mAb4, 
mAb11, mAb17, mAb24, mAb27). The original model signifi-
cantly underestimates the viscosity at all concentrations. For 
mAb4 and mAb17, the new model agrees with the experimen-
tal viscosity very well. For mAb11, the new model overesti-
mates the viscosity at concentrations >100 mg/mL. It is worth 
noting that mAb11 has the lowest net charge (+16 e). From the 
sequence analysis, we found that mAb11 exhibits many nega-
tive charges on the framework regions rather than on 
the surface-exposed complementarity-determining regions. 
The 12-bead model does not capture the charge distribution 
within each region. This may overestimate the negative charge 
contribution on the bead. Future work should address the 
effect of different charge distribution on the CG models. It is 
noted that the negative curvature for mAb11 and mAb17 at 
high concentrations is due to a finite size effect that clusters 

exceed the box size. For mAb27, the new model slightly under-
estimates the viscosity; however, it still performs better than 
that of the original model. For mAb24, the new model did not 
describe the high viscosity. It is noted that mAb24 has the 
smallest Av

H among the high viscosity mAbs, and the short- 
range interactions are not strong enough to overcome the 
charge repulsion.

For low viscosity mAbs, they generally have smaller Av
H 

values. One exception is mAb25, which has a high Av
H value 

(0.88 kcal/mol). However, it also has a high net charge (+34 e). 
The strong charge repulsion prevents the protein association 
despite favorable short-range interactions. Interestingly, our 
previous work suggests filtering out the mAbs with high net 
charges first and apply HVI to classify low/high viscosity 
mAbs. The CG model takes into account both effects.

The rmsd at concentrations of 50, 100, 125 and 150 mg/mL 
of the new model were all better than that of the original model 
(Table 2). The improvement is more significant at higher 
concentrations.

The computational time for CG simulations is still too long to 
allow screening efficiently for over hundreds of antibody drug 
candidates in early-stage design. We provided tabulated viscosity 
values at 150 mg/mL based on our model. Taking mAb4 and 
mAb5 for example, the parameters (VH_charge, VL_charge, Av

H) 
are (3,0,0.81) and (1,2,0.40), respectively (Table 1). By linear 
interpolation from Table 3, the estimated relative viscosities are 
115.6 (-) and 9.4 (-), respectively. The experimental results are 
93.7 (-) and 8.7 (-), respectively. The tabulated relative viscosity 
from our model will facilitate antibody screening in the early-stage 
design. The CG simulations can be extended to other formulation 
and solution conditions to build new tables for screening.

In conclusion, here we combined a 12-bead CG model for 
antibodies, hydrodynamic calculations and the HVI para-
meters to calculate antibody viscosity over a wide range of 
concentrations. Two adjustable parameters were determined 
by fitting to 20 IgG1 viscosity data. The comparison of a large 
number of experimental data provides credibility to this model. 
This model is able to calculate viscosity of new mAbs without 

Table 3. Tabulated relative viscosity values at 150 mg/mL as a function of charges on the heavy and light chain variable regions and Av
H. The charges have a unit of e, 

and Av
H has a unit of kcal/mol. The constant region of mAb4 was used as a template.

VH_charge VH_charge

Av
H=0.4 −2 0 2 4 6 Av

H=0.5 −2 0 2 4 6
VL_charge −2 71.4 38.3 24.4 16.1 10.7 VL_charge −2 104.4 71.9 41.5 25.4 16.1

0 34.2 19.4 11.7 8.2 6.4 0 60.3 32.3 16.4 9.9 7.3
2 18.7 11.5 7.3 5.7 5.4 2 30.4 14.7 8.4 6.2 5.8
4 11.9 6.6 5.4 4.8 4.8 4 16.1 8.0 5.6 5.2 4.9
6 7.7 5.8 4.9 4.8 4.8 6 10.1 6.1 5.2 4.9 4.7

VH_charge VH_charge
Av

H=0.6 −2 0 2 4 6 Av
H=0.7 −2 0 2 4 6

VL_charge −2 127.3 118.4 84.3 46.9 25.2 VL_charge −2 145.6 151.0 145.2 112.6 64.6
0 106.1 72.0 30.3 14.2 8.6 0 150.6 141.4 84.9 23.7 12.4
2 72.6 25.5 10.7 6.8 5.9 2 138.1 66.5 16.4 8.6 6.5
4 28.8 10.9 6.7 5.4 5.0 4 77.9 17.4 7.8 5.9 5.1
6 14.4 7.0 5.5 5.0 4.9 6 28.7 8.7 5.8 5.3 5.2

VH_charge VH_charge
Av

H=0.8 −2 0 2 4 6 Av
H=0.9 −2 0 2 4 6

VL_charge −2 155.5 168.4 174.9 171.1 142.5 VL_charge −2 154.4 169.1 175.8 180.8 181.9
0 167.4 176.0 160.1 71.1 21.3 0 170.7 177.1 183.3 158.0 59.7
2 172.4 150.4 43.9 11.8 7.4 2 176.6 182.0 136.4 19.4 9.6
4 162.1 46.3 10.4 6.4 5.5 4 182.8 141.1 17.3 7.4 6.2
6 92.4 12.7 6.6 5.3 5.2 6 168.6 28.1 7.7 5.6 5.4
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additional fitting parameters. A viscosity table was provided 
that requires only three sequence-based inputs to estimate the 
high concentration viscosity. This approach facilitates fast 
screening in early-stage design. For future work, this model 
can be extended to other solution conditions, isotypes and 
antibody formats to investigate the viscosity behavior and 
study protein–protein interactions at the molecular level.

Materials and methods

Homology modeling of mAbs

The sequences of the 20 mAbs used in this study were obtained 
from a previous work.22 The mAb molecules were constructed 
followed the protocol proposed by Brandt et al.25 The antigen- 
binding fragment (Fab) structures were obtained from either 
available crystal structures or homology models built from 
RosettaAntibody.26–28 The structures of the Fab regions were 
superimposed on a template structure of a full-length IgG1 
model. The IgG1 template was obtained from the KOL/ 
Padlan structure.29,30 The glycan structure was G0F. The 
homology models were energy-minimized to remove steric 
clashes in protein structures using NAMD2.31

All-atom molecular dynamics simulation

Molecular dynamics (MD) simulations were performed 
using all-atom structures with explicit solvent using the 
TIP3P water model.32 Simulation boxes were set up using 
VMD33 to place a single antibody in a water box extending 
12 Å beyond the protein surface. Simulations were per-
formed at 300 K and 1 atm in the NPT ensemble, using 
the NAMD231 software package and the CHARMM36m 
force field.34 The system pH was set to 6.0 to match the 
experimental pH by adjusting the protonation states of the 
histidine residues using the PROPKA3 protocol.35 

Electrostatic interactions were treated with the Particle 
Mesh Ewald method and van der Waals interactions were 
calculated using a switching distance of 10 Å and a cutoff 
of 12 Å. The integration time step was set to 2 fs. Each 
mAb system was pre-equilibrated for 10 ns, followed by 50 
ns production runs.

Construction of coarse-grained models

A 12-bead CG model derived from all-atom MD simulations 
was used to construct the structure of all the mAbs in this work 
(Figure 5).15 The 12 beads include two heavy chains (VH, CH1, 
CH2 and CH3) and two light chains (VL and CL). It is noted 
that although the glycans are not incorporated in the CG 
structure. The presence of the glycans in the all-atom model 
will affect the interactions and distance between each domain 
in the MD simulations, which will subsequently affect the 
structure and conformation of the CG model. The intramole-
cular interaction parameters were obtained from the dynamic 
averages of the MD simulations. The intramolecular interac-
tions consist of bond, angle, Urey-Bradley (UB) and dihedral 
interactions. 

Ebond ¼
1
2

kbond r � r0ð Þ
2 (2) 

Eangle ¼
1
2

kangle θ � θ0ð Þ
2
þ

1
2

kUB r � rUBð Þ
2 (3) 

Edihedral ¼
1
2

kdihedral 1 � cos ϕð Þð Þ (4) 

The equilibrium values for bond, angle and UB were obtained 
from the mean of the coordinate displacement and their spring 
constants were calculated from the variance of the coordinate 
fluctuation. 

kspring ¼
kBT
2σ2 (5) 

where kB, T and σ2 are the Boltzmann constant, temperature 
and the variance of the coordinate fluctuation, respectively. 
The spring constants for the dihedrals are 200 (kcal/mol).

The charges on the beads are the sum of all the atomic 
charges on the corresponding domains. The radii of the 
beads were calculated from the average radius of gyration 
from MD simulations. The radius of gyration (Rg) is calculated 
using the formula 

Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 mir2

i
PN

i¼1 mi

s

(6) 

where mi is the mass of the atom i, ri is the distance of atom 
i from the center of mass of the bead. The radius of the bead 
averaged from simulations is summarized in Table S1.

Brownian dynamics simulation and hydrodynamic 
interactions

The CG models were treated as colloidal particles as applied in 
a previous work.18 Brownian dynamics simulation was used to 
describe the dynamic behaviors of the CG beads. For any CG 
particle, its motion satisfies the Langevin equation 

m
dU
dt
¼ FH þ FB þ FP (7) 

where m is the mass of the bead, and U is the translational 
velocity vector. FH is the hydrodynamic force, generated by the 
drag of solvents on the particles. FB is the stochastic force, 
caused by the Brownian motion of the particles. FP is the 
deterministic nonhydrodynamic force, produced by the inter-
actions between particles.

The hydrodynamic force FH in the overdamped regime is 
linear in the bead velocity, FH ¼ � R � U, where R is the 

Table 4. Parameters used in CG simulation.

parameter value

hydrodynamic radius 2 nm
time step 2.17 ps
simulation time 2.17 µs
number of CG antibodies in a box 512, 1728, 4096
relative permeability 80
antibody concentration 50, 100, 125, 150 mg/mL
Debye length 3.08 nm
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hydrodynamic resistance tensor. Neglecting the inertia term, 
the Langevin equation reads as 

0 ¼ � R � Uþ FB þ FP (8) 

dx
dt
¼M � FB þ FP� �

(9) 

where M¼ R� 1 is the mobility tensor, and x is the vector of 
particle positions.

Following a previous work, the mobility tensor is approximated by 
the Rotne-Prager-Yamakawa tensor.36 A recently developed algorithm, 
positively split Ewald method,37 was applied to solve the Langevin 
equation coupled with hydrodynamic calculations with the RPY mobi-
lity tensor. The PSE method is implemented as a plugin to HOOMD- 
blue,38 a general-purpose particle simulation toolkit. The box length 
was adjusted to reach different concentrations. A list of parameters used 
in the CG model and the hydrodynamic calculations is summarized in 
Table 4 and Table S1 to Table S4.

Force fields for coarse-grained models

The force fields for the CG models were modified from 
a previous work.18 The electrostatic interactions between the 
beads were approximated as a form of the Yukawa potential 

Eelec ¼
q1q2

4π�r�0

� �
exp κa1ð Þ

1þ κa1

� �
exp κa2ð Þ

1þ κa2

� �
exp � κrð Þ

r
(10) 

where q1, q2 and a1, a2 are the charges and radii of the two 
beads, respectively. κ� 1 is the Debye length, which is 3.08 nm in 
10 mM histidine-HCl buffer. �0 is the vacuum permeability. �r 
is the relative permeability, which is 80 in this work.

The dispersion interactions were described as van der Waals 
interactions39 

EvdW ¼ �
AH

6

2a1a2
r2� a1þa2ð Þ

2 þ
2a1a2

r2� a1 � a2ð Þ
2

þ ln r2� a1þa2ð Þ
2

r2� a1� a2ð Þ
2

2

4

3

5 (11) 

where AH is the Hamaker constant, and a1 and a2 are the radii 
for the two particles. The Hamaker constant for all the 12 beads 
was set to 0.4 kcal/mol in the previous work.18 In this study, AH 
is further divided into Av

H and Ac
H to account for variable and 

constant regions of the antibodies. The cross-term for different 
types of beads takes the form of a geometric mean 

AH;ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AH;i � AH;j

p
(12) 

The primary goal of this study is to determine the values of Av
H 

and Ac
H. For Ac

H, it is the same for all mAbs of the IgG1 isotype. 
For Av

H, we applied a mapping function to assign the values 
based on HVI previously proposed 

Av
H ¼ α�HVI (13) 

HVI ¼

N hydrophilic residues in Fv� N hydrophobic
residues in Fv

N residues in Fv
� 100

(14) 

The scaling parameter α is determined by minimizing the error 
of the viscosity between the model and experiment at 150 mg/ 
mL for 20 IgG1 mAbs.22,23 The details are discussed in the 
Results and Discussion sections.

Viscosity calculation

The total viscosity η is contributed from hydrodynamic (ηh), 
interparticle (ηp) and solvent (ηs) interactions18 

η ¼ ηh þ ηp þ ηs (15) 

In this work, all the viscosity values are expressed as the relative 
viscosity (η=ηs). 

η=ηs ¼ ηh=ηs þ ηp=ηs þ 1 (16) 

In the hydrodynamic calculations, the solvent viscosity (ηs) was 
scaled so that the drag coefficient 6πηsah ¼ 1.

The interparticle viscosity (ηp) was calculated from the 
Green-Kubo relation.40,41 

ηp ¼
V

kBT
ò
1

0
hσxy 0ð Þσxy tð Þidt (17) 

where V is the volume of the simulation box. σxy is the off- 
diagonal stress. The ensemble average of the auto-correlation 
function was averaged from the three off-diagonal components 
(xy, xz and yz).

The hydrodynamic viscosity (ηh) was calculated from 
static structures of antibody rigid clusters. Two antibody 
molecules are identified as connected if the nearest distance 
between any of their beads is shorter than a cutoff length of 
1.65ah. The cutoff distance was determined from the first 
minimum after the highest peak of the radial distribution 
function.18 This includes molecules within the first ring of 
nearest neighbors. The viscosity was obtained by measuring 
the hydrodynamic stress (σH) when the rigid bodies are 
immersed in an imposed linear flow with the strain rate 
tensor e. 

σH ¼ �
1
V

X

N
RSU RSΩ½ � �

RFU RFΩ
RTU RTΩ

� �� 1

�
RFE
RTE

� �

� RSE

 !

� e

(18) 

The resistance tensors couple force (F), torque (T), transla-
tional velocity (U), angular velocity (Ω), stresslet (S) and strain 
(E). The solution for this equation is detailed in the previous 
work.18 The ensemble averaged stress tensor in an isotropic 
medium is related to the strain rate tensor by the hydrody-
namic contribution to the equation 

< σH > ¼ 2ηhe (19) 

The hydrodynamic viscosity (ηh) was obtained by averaging 
the shear stress produced by different antibody configurations 
exposed to a simple shear flow via Equation 18.
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Abbreviations

CG coarse-grained
CH1 heavy chain constant region 1
CH2 heavy chain constant region 2
CH3 heavy chain constant region 3
CL light chain constant region
cP centipoise
Fab antigen-binding fragment
Fv variable fragment
HVI high viscosity index
IgG1 immunoglobulin G1
mAbs monoclonal antibodies
MD molecular dynamics
RMSD root-mean-square deviation
UB Urey-Bradley
VH heavy chain variable region
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