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Abstract

Mendelian disorders in glucose-6-phosphate metabolism can present with inflammatory bowel 
disease [IBD]. Using whole genome sequencing we identified a homozygous variant in the 
glucose-6-phosphatase G6PC3 gene [c.911dupC; p.Q305fs*82] in an adult patient with congenital 
neutropenia, lymphopenia and childhood-onset, therapy-refractory Crohn’s disease. Because 
G6PC3 is expressed in several haematopoietic and non-haematopoietic cells it was unclear 
whether allogeneic stem cell transplantation [HSCT] would benefit this patient with intestinal 
inflammation. We show that HSCT resolves G6PC3-associated immunodeficiency and the Crohn’s 
disease phenotype. It illustrates how even in adulthood, next-generation sequencing can have a 
significant impact on clinical practice and healthcare utilization in patients with immunodeficiency 
and monogenic IBD.
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1. Introduction

Inflammatory bowel disease [IBD] is a chronic inflammatory con-
dition triggered and perpetuated by a breakdown in mucosal 

homeostasis.1 For most patients with IBD, many genetic variants 
contribute a small risk of developing the disease, in line with a com-
plex polygenic disorder.2 However in some patients, a single gene has 
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a dominant impact on the risk of IBD.1,3 These ‘monogenic’ forms 
of IBD are often severe and therapy-refractory, with uncommon 
extra-intestinal manifestations and immunodeficiency.4,5 One im-
munodeficiency group is characterized by congenital neutropenia 
with persistent neutrophil counts under 0.5 × 109/L, leaving patients 
vulnerable to recurrent or fatal infection.6,7 Among the 24 identified 
genes causing congenital neutropenia,7 WAS, SLC37A4 and G6PC3 
have been particularly associated with monogenic IBD.5

Therapeutic options for patients with congenital neutropenia 
include granulocyte-colony stimulating factor [G-CSF] to increase 
neutrophil counts and antimicrobials to manage infection.8 Whilst 
these treatments are standard of care to prevent neutropenia and in-
fection, they often do not resolve intestinal inflammation.9–14

Allogeneic haematopoietic stem cell transplant [HSCT] is in-
creasingly being used to treat patients with congenital neutropenia 
and other immune-mediated disorders of monogenic IBD.15

However, each condition needs to be evaluated, as the intes-
tinal response to allogeneic HSCT is very variable amongst dif-
ferent causes of monogenic IBD. HSCT cures interleukin-10 (IL10) 
signalling defects causing IBD.4 In contrast, it does not improve intes-
tinal inflammation in TTC7A deficiency,16 a disease manifesting with 
IBD, intestinal atresia and immunodeficiency. Similarly, in NEMO-
deficient patients caused by defects in IKBKG, HSCT resolves the 
immunodeficiency but does not cure intestinal inflammation.17 The 
indication, concept and prognosis of allogeneic HSCT differs from 
the autologous HSCT trialled in classical IBD.18,19

As G6PC3 is expressed in the cells of multiple organs and tis-
sues, including non-haematopoietic cells such as epithelial cells and 
fibroblasts,20 the outcome of HSCT on intestinal inflammation re-
quires confirmation. We present a patient with congenital neutro-
penia resulting from bi-allelic variants in the catalytic subunit-3 of 
glucose-6-phosphatase [G6PC3] whose markers of systemic inflam-
mation and symptoms of therapy-resistant Crohn’s disease resolved 
with HSCT.

2. Case Presentation

From 14 months of age the male patient developed recurrent infec-
tions. He was diagnosed with congenital neutropenia and treated 
with G-CSF.

At 10 years of age the patient began losing weight, dropping to 
the 3rd centile on growth charts. By age 13 years, he had developed 
abdominal pain, diarrhoea and mouth ulcers [Figure 1A]. On col-
onoscopy he was found to have patchy colonic and terminal ileal 
inflammation with stricture formation, leading to a diagnosis of 
Crohn’s disease. Given his immunodeficiency, the intestinal inflam-
mation was managed conservatively with an elemental diet, nasogas-
tric feeding and steroids, which was initially successful.

At 16 years of age, the patient developed intestinal obstruction 
secondary to a fibrotic stricture and inflammatory mass in his trans-
verse colon [Figure 1B, C]. He required parenteral nutrition and 
underwent strictureplasties and an extended right-hemicolectomy 
with ileocaecal resection at 17 years of age. Histological reports con-
firmed inflammation with lymphocytic infiltration consistent with 
Crohn’s disease [Figure 1D].

One year post-operatively pain and diarrhoeal symptoms re-
turned, with recurrent neutropenic sepsis. Gastrointestinal inflamma-
tion did not resolve with adalimumab (anti-tumour necrosis factor 
[anti-TNF]) or vedolizumab [alpha-4-beta-7 integrin antagonist] des-
pite dose escalation, adequate therapeutic levels and a lack of anti-
biologic antibody detection. Colonoscopy showed a fibrotic stricture 

at the ileo-colonic anastomosis. The patient was steroid-, antibiotic- 
and G-CSF-dependent. Unfortunately, his condition deteriorated, 
resulting in 25 admissions and >130 blood tests over 2 years for 
neutropenic sepsis and abdominal pain [Figure 1E–G]. Eventually he 
was being admitted every 2–3 weeks, with C-reactive protein [CRP] 
raised over a long period. As a neutrophil-derived protein, faecal 
calprotectin was not reliable as a marker of intestinal inflamma-
tion in this patient with repeat episodes of neutropenia. Peak faecal 
calprotectin values of 276 mg/kg stool corresponded to intestinal 
inflammation during times of normal or increased neutrophil counts, 
whereas normal levels of faecal calprotectin were noted during times 
of neutropenia [false negative test]. Immunophenotyping revealed a 
progressive lymphopenia, in particular T cell lymphopenia [0.49 × 
109/L] with low levels of CD8 cells [0.15 × 109/L], NK cells [0.02 × 
109/L] and high IgG [16.6 g/L].

At 18 years of age, he consented to genomic sequencing. This 
analysis revealed a rare homozygous c.911dupC; p.Q305fs*82 alter-
ation in G6PC3 [NM_138387.3] within a >5-Mb region of homozy-
gosity [Figure 2]. The parents of this patient are both heterozygous 
carriers of c.911dupC, without known consanguinity. The same 
c.911dupC indel/frameshift variant has been described previously in 
a patient with congenital neutropenia and an atrial septal defect.21

With severe pain, neutropenic sepsis and frequent hospital-
ization, conventional treatment strategies were exhausted and 
allogeneic HSCT was undertaken. Aged 20 years, in the absence 
of a matched sibling or matched unrelated donor, he underwent 
haploidentical HSCT from his father. A reduced intensity condi-
tioning regimen of fludarabine 30 mg/m2 daily was used from day 
−6 to −2, cyclophosphamide [CY] 14.5 mg/kg on days –6 and –5, 
and total body irradiation of 2 Gy on day –1. Post-graft immuno-
suppression involved high-dose CY 50 mg/kg on days +3 and +4, 
mycophenolate mofetil [day +5 to +35] and tacrolimus from day 
+7 continuing for 12 months.22 Neutrophil and platelet engraftment 
occurred on days +15 and +17, respectively. At 3 months there was 
full donor myeloid chimerism [CD15 99%] and mild mixed T-cell 
chimerism [CD3 92%] with subsequent full donor T-cell chimerism. 
His post-transplant course was uneventful apart from grade II 
graft-versus-host disease of the skin that did not require systemic 
treatment.

Almost immediately the patient’s pain and gastrointestinal symp-
toms dramatically improved. He weaned off opiate analgesia, his 
neutropenia and lymphopenia resolved and he has not been hospital-
ized again in 2.5 years of follow-up. His body mass index increased 
from a range of 12.5–17.10 pre-transplant to 19.9 and 23.6 in the 
first and second year, respectively, post-transplant. His CRP reduced 
from a yearly median of 76 mg/L [interquartile range 17–148 mg/L] 
pre-transplant to 7 mg/L [6–24 mg/L] post-transplant [Figure 1E]. 
Intestinal obstructive symptoms resolved and artificial nutrition 
could be stopped, with no further treatment needed for IBD. Because 
his clinical symptoms had so markedly improved, the patient did not 
consent to any further imaging or colonoscopies.

3. Discussion

We describe the first case of HSCT-mediated clinical remission of 
Crohn’s disease in a patient with a pathogenic G6PC3 gene variant. 
The patient exhibited congenital neutropenia, lymphopenia, NK cell 
loss and IBD, which responded to allogeneic HSCT at the age of 20 
years.

G6PC3 is required for glucose homeostasis of cells, where it 
catalyses the hydrolysis of glucose-6-phosphate [G6P] to glucose 

IBD Remission and Allogeneic Haematopoietic Stem Cell Transplantation 143



within the endoplasmic reticulum [ER].23 Although G6PC3 is ex-
pressed ubiquitously,20 neutropenia is a consistent finding in patients 
with G6PC3 deficiency.24 The related syndrome glycogen storage 
disorder-1b [GSD-1b] also manifests neutropenia and enterocolitis24 
and is caused by defects affecting the G6PC3-coupled glucose-6-
phosphate transporter. In both disorders, defective G6P metab-
olism causes an increased propensity towards cellular apoptosis.25 
Granulocytes rely on anaerobic glycolysis for energy generation and 
are unable to utilize compensatory gluconeogenesis.24,26 With limited 
activity of glucose-dependent pathways, NADPH, lactate and ATP 
substrates are reduced.23 The effects on energy generation, increased 
ER stress and impaired superoxide production may contribute to 
myeloid cell dysfunction.14,23,27

IBD-like colitis has been described in at least 8% of patients with 
G6PC3 deficiency.14,24 Patients present with Crohn’s-like inflamma-
tion, frequent stricture formation and severe oral aphthous ulcer-
ation.12–14,24 Myeloid cells are particularly dependent on G6PC3, 
lacking compensatory alternative phosphatases [Supplementary 
Figures 1–3]. Hence, colitis in G6PC3 deficiency is attributed to 
haematopoietic cell defects, rather than intestinal epithelial or 
other non-haematopoietic cell defects. Defective antimicrobial ac-
tivity by the innate immune system is one mechanism proposed to 
underlie colitis in G6PC3-deficient patients. This impairment may 
arise from the altered survival and function of myeloid-lineage cells 
seen in G6PC3 deficiency.24,27 Neutrophils deficient in G6PC3 show 
increased rates of apoptosis and early arrest of maturation.23,24,27 
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Figure 1. Phenotypic characteristics of a G6PC3-deficient patient with IBD. [A] Clinical course of the patient [symptoms, hospitalization, operations]. [B] 
Colonoscopy imaging of an impassable stricture at the anastomosis of the neo-terminal ileum illustrating deep ulceration [yellow arrow]. [C] Correlated cross-
sectional axial magnetic resonance imaging scan showing colonic dilatation proximal to the stricture encountered in B [orange arrow]. [D] Haematoxylin and 
eosin staining of colonic biopsy showing inflammatory infiltrate. The muscularis mucosae is indicated [orange arrow]. [E–G] Biochemical results over time of 
CRP [mg/L, E], total lymphocyte count [F] and neutrophil counts [G] per 109/L. The normal range [yellow band] and yearly median result [red line] are indicated. 
The timing of HSCT is illustrated by the dashed black line.
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G6PC3-deficient myeloid cells demonstrate diminished respiratory 
burst, impaired superoxide production, chemotaxis and phagocyt-
osis,23,24 which may also contribute to the defective antimicrobial 
immune response.

Autoinflammation occurring through activation of the 
inflammasome has also been proposed as an driver of IBD,14 with 
G6PC3-deficient neutrophils producing significantly increased levels 
of pro-inflammatory cytokines in response to lipopolysaccharide.14 
As rates of apoptosis in G6PC3-deficient neutrophils are consistently 
enhanced upon TNF-α stimulation,27 pro-inflammatory states may 
perpetuate neutropenia. In addition, our case and a number of colitic 
G6PC3-deficient patients exhibited lymphopenia with low levels of 
recent thymic-emigrant T lymphocytes [CD4+CD31+CD45RA+ T 
cells].12 Our patient exhibited 12.1% of CD+CD31+CD45RA+ T 
cells [normal range 19.2–60%].

G-CSF is often effective in normalizing neutrophil counts,27 al-
though in some patients, G-CSF therapy may be unable to control 
intestinal inflammation or correct neutropenia.13,15,28 In keeping with 
the metabolic component of the disease in patients with GSD-1b dis-
ease, liver transplant has been trialled to improve metabolic homeo-
stasis and hypoglycaemia.29 Unexpectedly, neutropenia improved in 
64% of transplanted patients in one study,29 but IBD-related out-
comes and the genetic status of the patients were not reported.

Two patients with G6PC3 deficiency have undergone HSCT for 
refractory neutropenia.12,15 The presence or outcome of IBD in these 
patients is not known [F. Fioredda, pers. comm.]. Whilst the curative 
potential of HSCT for congenital neutropenia patients is an exciting 
prospect, it is not undertaken lightly given the potential for adverse 
effects or mortality. In HSCT of 136 patients with congenital neu-
tropenia, the cumulative incidence of acute graft-versus-host disease 
was 21%, with 17% transplant-related mortality.15

HSCT has been associated with better outcomes in congenital 
neutropenia when administered at a younger age,15 but the present 
case illustrates the clinical benefit of a genetic diagnosis and the life-
transforming potential of allogeneic transplantation in adulthood. 
Further studies are required to evaluate the efficacy and safety of 
HSCT as a treatment for neutropenia and IBD in G6PC3 deficiency. 
This patient illustrates the importance of whole genome sequencing, 

where curative precision medicine for immununodeficiency and IBD 
may be offered on the basis of the molecular diagnosis.

4. Materials and Methods

4.1. Patient
The patient was recruited to the prospective Oxford IBD Cohort. 
The study was approved by the local ethics committee [Inflammatory 
Bowel Disease in Oxford: prospective cohort for outcomes, treat-
ment and predictors. Research Ethics Committee Reference: 09/
H1204/30.

4.2. Genome sequencing
For whole genome sequencing, parent–child trio samples were pre-
pared using an Illumina TruSeq DNA PCR-free library preparation 
kit and sequenced using an Illumina HiSeq 2500 device [read length 
2 × 100]. Reads were mapped to hg19 and variants were called with 
Isaac v.2.0.17 [Illumina].

Sanger sequencing for genotype validation was performed using 
standard techniques.

4.3. Variant screening
To prioritize rare IBD-associated variants of clinical significance, 
59 genes associated with Mendelian forms of IBD were screened.5,30 
We focused on rare deleterious or potentially deleterious variants 
that had minor allele frequency < 1% and were consistent with 
the reported inheritance pattern of the given gene [as previously 
summarized30].

We screened VCF files manually using custom scripts and with 
VariantStudio v2.2 [Illumina]. We investigated functional variants 
with transcript ablation, stop gained/lost, stop retained, splice donor/
acceptor/region, frameshift, inframe insertion/deletion, initiator 
codon and missense variants with a PolyPhen-2 and SIFT pathogen-
icity predictions of ‘possibly damaging/deleterious’ [or greater]. A 
secondary analysis was performed using Ingenuity Variant Analysis 
[Qiagen].
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