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Abstract

Yeasts have been used for thousands of years to make fermented foods and

beverages, such as beer, wine, sake, and bread. However, the choice for a par-

ticular yeast strain or species for a specific industrial application is often based

on historical, rather than scientific grounds. Moreover, new biotechnological

yeast applications, such as the production of second-generation biofuels, con-

front yeast with environments and challenges that differ from those encoun-

tered in traditional food fermentations. Together, this implies that there are

interesting opportunities to isolate or generate yeast variants that perform bet-

ter than the currently used strains. Here, we discuss the different strategies of

strain selection and improvement available for both conventional and

nonconventional yeasts. Exploiting the existing natural diversity and using

techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling

and directed evolution to generate artificial diversity, or the use of genetic

modification strategies to alter traits in a more targeted way, have led to the

selection of superior industrial yeasts. Furthermore, recent technological

advances allowed the development of high-throughput techniques, such as ‘glo-

bal transcription machinery engineering’ (gTME), to induce genetic variation,

providing a new source of yeast genetic diversity.

Introduction

Microorganisms, such as yeasts, bacteria, and algae, are

key players in numerous industrial processes, ranging

from the production of traditional fermented foods and

beverages to recombinant proteins and other high-value

molecules.

Many of these industrial processes rely heavily on the

model yeast Saccharomyces cerevisiae. This yeast is tradi-

tionally used in the food industry for the production of

alcoholic beverages, such as beer, wine, and sake, as well

as for bread fermentation. More recently, S. cerevisiae has

also been used in the bioethanol industry and for the

production of heterologous compounds, such as human

insulin, hepatitis vaccines, and human papillomavirus

vaccines (Hou et al., 2012). Notwithstanding the fact that

S. cerevisiae remains by far the most widely used industrial

yeast species to date, other, so-called nonconventional

yeasts, such as Scheffersomyces stipitis, Yarrowia lipolytica,

Kluyveromyces lactis, and Dekkera bruxellensis, have also

claimed their stake as valuable contributors to industrial

fermentation processes.

Despite the intensive use of these and other yeasts in

biotechnological applications and industrial fermenta-

tions, there is still significant room for improvement:

industrial processes are rarely using the most suited or

best-performing strain. This is because many industrial

strains are currently used because of historical grounds,

rather than being carefully selected for a specific applica-

tion, and are therefore often suboptimal for their pur-

poses. Additionally, demands for increased productivity,

wider substrate range utilization, and production of non-

conventional compounds in industry, as well as changing

consumer preferences, lead to a great interest in further

improving the currently used industrial strains and the

selection or development of strains with novel properties.
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This review aims to give a comprehensive overview of

the different strategies that can be used to obtain strains

with improved properties. The relevance and importance

of these different techniques are illustrated with specific

examples from the beer, wine, bread, and biofuel indus-

try. Both the classical approaches of strain improvement

and more recent techniques are discussed. In the first sec-

tion, we discuss natural yeast diversity and the underlying

genetic principles and also summarize how the existing

natural diversity can be exploited to select strains with a

suitable phenotype for a specific industrial application. In

the second part, we show how this natural diversity can

be further increased by artificially generating variants

through mutagenesis, various hybridization methods,

and/or directed evolution. Subsequently, the principles of

genetic modification are explained, together with specific

examples illustrating the applicability of this strategy to

food-based fermentations and production of biofuels and

high-value chemical compounds. In the final part, we

outline several recent advances in genetic modification for

the creation of phenotypic variation, illustrating how

these cutting-edge techniques combine aspects of tradi-

tional technologies with genetic modification and how

they could contribute to future improvement strategies

for industrial yeasts. Although the major focus of this

review is the improvement of the main fermentation

workhorse S. cerevisiae and its close relatives, such as Sac-

charomyces pastorianus, we also highlight the advances

that have been made with other, industrially relevant

nonconventional yeasts.

Natural and artificial diversity

Introduction

There are multiple strategies developed that aim to pro-

vide suitable yeast strains for specific industrial goals. A

deceivingly simple, yet very powerful way is to exploit the

natural biodiversity by selecting a strain that performs best

in a particular industrial process. Indeed, recent (meta)ge-

nomics studies indicate that the natural fungal biodiversity

is enormous and largely unexplored, with the current

industrial strains only representing a small fraction of the

natural biodiversity (Liti et al., 2009; Wang et al., 2012b).

This implies that nature possibly harbors multiple, as yet

unknown species and strains that may prove superior for

certain industrial fermentations. Even if many of these

strains (for various reasons) turn out to be unsuitable for

direct industrial implementation, they may possess certain

industrially relevant characteristics. Specific strategies

could allow transfer of these properties to industrial

strains, thereby creating novel yeasts with extra beneficial

features (Fig. 1).

In addition to exploring naturally occurring yeast vari-

ants, several techniques allow researchers to further

increase the diversity of yeasts by artificially generating

variants, starting from feral or industrial strains. The

applicability of these techniques depends on both the tar-

geted phenotype and genetic background. The targeted

phenotype is sometimes limited by its selectability (cf.

infra), while the complex or understudied genetic back-

ground of certain yeasts can sometimes hamper their use

in improvement strategies. For example, many industrial

S. cerevisiae strains have a much more complex genetic

architecture compared to laboratory strains, the latter

being carefully bred and selected for sexual reproduction,

optimal growth, and easy handling in the laboratory (e.g.

no flocculation) (Mortimer & Johnston, 1986), while

industrial strains often show aneuploidy and/or poly-

ploidy, poor sporulation efficiency, unstable mating

types, etc. Moreover, recent full-genome sequencing and

large-scale phenotyping experiments underscore that

these ‘tamed’ laboratory strains are not representative for

the majority of industrial strains (Liti et al., 2009; Born-

eman et al., 2011; Warringer et al., 2011). Together, this

implies that although most fundamental studies were

performed on easy-to-use laboratory strains, such as

S288c or EM93, many of these results cannot be simply

extrapolated to industrial strains. Therefore, we also

address the potential problems accompanying improve-

ment strategies for genetically complex or understudied

yeast strains and species. While this section only focuses

on so-called non-genetically modified organisms (non-

GMO) techniques to create artificial diversity, the last

section will further discuss techniques based on recombi-

nant DNA technologies, such as metabolic engineering

and synthetic biology, which generate genetically modi-

fied (GM) yeasts.

Before we address examples of how natural or artifi-

cially generated diversity can provide industrially relevant

strains, we first summarize the genetic mechanisms

driving the genetic diversity in yeast. Next, different strat-

egies to yield improved yeast strains are described, pros

and cons are discussed, and the challenges associated with

the selection of optimal strains are given.

Origins of yeast diversity

Yeasts represent a very diverse group of organisms, and

even strains that are classified as the same species often

show a high level of genetic divergence. The natural

diversity of yeasts (between and even within species) has

become very clear with the advent of next-generation

sequencing technologies that enable in-depth characteriza-

tion of the genetic variation (Dujon et al., 2004; Liti

et al., 2009; Borneman et al., 2011; Wang et al., 2012b;
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Borneman et al., 2013; see section on ‘Natural yeast

diversity and how it can be exploited in industry’).

Genetic variability can be generated by several different

processes, including sexual reproduction (where the ge-

nomes of two parents are mixed and shuffled), changes

in the DNA sequence such as point mutations (i.e.

changes in single nucleotides), and InDels (i.e. insertion

or deletion events of relatively short pieces of DNA),

changes in ploidy level (where a whole genome, or large

parts, is duplicated or lost), transposons (mobile genetic

elements that can cause mutations by insertion in the

genome), genetic recombination (where parts of the gen-

ome are re-organized; it can act on both homologous

and nonhomologous loci), or acquisition of exogenic

pieces of DNA by horizontal gene transfer (HGT)

(Fig. 2). Whereas each of these processes described above

has been shown to occur in nature and therefore contrib-

ute to genetic diversity, the phenotypic outcome and

importance of each of these processes is hard to estimate

and often also depends on the exact environmental con-

ditions.

Sexual recombination is the single most important pro-

cess that generates genetic diversity in higher eukaryotes

such as animals and plants. Similarly, in yeasts with a sex-

ual life cycle, such as Saccharomyces spp., sexual repro-

duction can reshuffle the genomes of different yeast

strains, thereby altering their characteristics, and poten-

tially even lead to the evolution of new species. Although

sexual recombination is mostly thought of as a ‘natural’

process, mating also occurs between strains or species in

industrial settings. A notable example is S. pastorianus, an

interspecific hybrid of S. cerevisiae and Saccharomyces

eubayanus, which may have originated in the fermenta-

tion tank of lager breweries (Libkind et al., 2011). The

added advantage of cryotolerance (typical for S. eubay-

anus) may have led to its observed ability to carry out

fermentations better at low temperatures than S. cerevisiae

alone (Dunn & Sherlock, 2008).

Artificial diversity

Genetic modification

Mutagenesis Sexual hybridization Protoplast fusion

Cytoduction

EMS, UV

Evolutionary engineering

Modified gene

Natural diversity

Fig. 1. Overview of strategies to obtain superior industrial yeast strains. In order to select novel yeast strains for industrial applications, several

strategies can be applied. First, the existing natural diversity can be explored by genotyping and phenotyping isolated feral strains or strains from

yeast collections to select the most interesting variants. Apart from investigating naturally occurring yeasts, diversity can also be generated artificially.

There are multiple strategies to induce genetic diversity in a single strain or shuffle the genomes of multiple strains. Strains resulting from these

strategies are all considered non-genetically modified yeasts, implying that they can be freely used in industrial fermentations. These strategies will be

further discussed in the section on ‘Generation of artificial diversity’. Lastly, strategies based on genetic engineering, where a recombinant piece of

DNA is transformed in a target strain to confer a specific, industrially relevant phenotype to this strain, can be very efficient. However, this technique

genetically modifies yeasts, currently limiting their use in food or beverage fermentations because of consumer concerns.
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In contrast to higher eukaryotes, yeasts such as Saccharo-

myces spp. also have the ability to reproduce asexually.

Moreover, this vegetative asexual proliferation is a much

more prevalent way of reproduction, with on average only

one meiotic cycle for every 1000 mitotic divisions (Ruder-

fer et al., 2006; Tsai et al., 2008; Z€org€o et al., 2012). During

these asexual reproductive cycles, spontaneous mutations,

such as point mutations, InDels, transposon insertions, and

recombination events, can occur. The rate at which sponta-

neous mutations occur varies across the yeast genome, but

has been estimated to be around 3.80 9 10�10 and

6.44 9 10�10/(bp 9 generation) when measured at two

specific loci that allowed for phenotypic detection of muta-

tions (Lang & Murray, 2008). However, spontaneous muta-

tions occur much more frequently in so-called mutation

hotspots such as subtelomeric regions and tandem repeats

(Ellegren, 2004; Brown et al., 2010; Gemayel et al., 2010;

Christiaens et al., 2012), where the mutation rates are often

10–100 000 times higher than average mutation rates in

other parts of the genome (Gemayel et al., 2010). One par-

ticular category of spontaneous mutations which occurs

often in these hotspots is genetic recombination. An inter-

esting example of a gene family that is extremely prone to

spontaneous mutations, because they are located subtelo-

merically and additionally contain tandem repeats, are the

genes encoding flocculins (FLO genes). These flocculins are

(a) Sexual reproduction

n

2n

A C

(b) Point mutations
Insertion

Deletion

(c)  InDels (d) Transposons

Whole genome 
duplication

Chromosomal 
duplication

Loss

(e) Changes in ploidy level

Aneuploidy

(f) Horizontal gene transfer

Not integrated 
in genome

Integrated 
in genome

(g) Genetic recombination

Cross-over 
(reciprocal)

Gene conversion 
(nonreciprocal)

Between homologous loci Between non-homologous loci

Transposon

2n

n

Meiosis + crossover Meiosis + crossover

Mating

2n

External DNA

Ectopic recombination

Fig. 2. Origins of genetic variation in yeast. Genetic variation can be caused by several different mechanisms. For sake of simplicity, only one

chromosome per yeast cell is displayed (green or purple). Different color shades represent homologous chromosomes. In (e), a second

chromosome is represented in red. (a) Sexual reproduction: after sporulation and concomitant meiotic cross-over events in the parental strains

(2n), genomes of two haploid (n) segregants can hybridize, a process called mating. (b) Point mutations: changes in single nucleotides. These

mutations can be synonymous or nonsynonymous: synonymous mutations do not change the amino acid sequence, while nonsynonymous

mutations do. Nonsynonymous mutations are therefore more likely to alter the phenotype. (c) InDels: insertion and deletion events of relatively

short pieces of DNA. (d) Transposons: insertion of transposable elements in the genome. (e) Changes in ploidy level: the whole genome, or large

parts, is duplicated or lost, which can result in poly- or aneuploidies. (f) Horizontal gene transfer: transfer of genes by means other than regular

sexual reproduction. (g) Genetic recombination: reorganization of parts of the genome. It can act on both homologous (cross-over and gene

conversion) and nonhomologous loci (ectopic recombination). Homologous recombination such as gene conversion (nonreciprocal transfer of

genetic material between highly homologous genes) occurs relatively frequently and can sometimes give rise to novel or modified traits. Ectopic

recombination events such as TY-promoted chromosomal translocations are more rare, but can drastically rearrange the genome, and even

generate novel genes.
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responsible for ‘flocculation’ of yeast cells, a trait of major

importance in the wine, beer, and biofuel industry. The

instability of the tandem repeats in these genes, which are

causing expansion and contraction in the gene size, has

allowed for the fast isolation of spontaneous mutants with

altered flocculation characteristics (Hammond, 1996;

Verstrepen et al., 2005; Ma et al., 2009). Additionally, the

available arsenal of flocculins in Saccharomyces yeasts is

hugely increased by the generation of chimeric FLO genes

by ectopic recombination, which resulted in a huge diver-

sity in the flocculation phenotype of industrial strains

(Christiaens et al., 2012).

Although spontaneous mutations are one of the main

driving forces behind evolution and enable organisms to

adapt to specific ecological niches, most mutations are

neutral or even deleterious (Drake, 1991). Most yeast spe-

cies (including S. cerevisiae) generally exist in a diploid

stage, which can mask the effect of (heterozygous) delete-

rious mutations. This can cause these mutations to accu-

mulate during continuous asexual growth, leading to

strains with a high mutational load. However, because of

its complex sexual life cycle, yeast can filter out these dele-

terious mutations by a process called ‘genome renewal’

(Mortimer et al., 1994; Mortimer, 2000; Wang et al.,

2012b). In essence, genome renewal results in the elimina-

tion of cells carrying deleterious recessive mutations from

the population, while generating homozygous diploid cells

in which these mutations are not present. Genome renewal

is mainly described for indigenous Saccharomyces wine

yeasts, which often show a high sporulation capacity and

are homothallic (see Fig. 3), two important prerequisites

for genome renewal. Asexually growing cells (with a

potentially high mutational load) will undergo meiosis

and sporulate. After germinating, viable haploids will start

reproducing asexually, and subsequently, mating can occur

between neighboring ‘sister’ cells of the opposite mating

type (a process called haplo-selfing), yielding a homozy-

gous diploid inbred cell. In this way, the haploid stage fil-

ters out lethal recessive mutations and the subsequent

haplo-selfing enables recessive, heterozygous mutations to

become homozygous and thus influence the phenotype.

Intratetrad mating (automixis) after sporulation will have

the same effect (Katz Ezov et al., 2010). Together, this can

improve cellular fitness and adaptability to the environ-

ment (Pretorius, 2000).

In addition to sexual recombination and spontaneous

mutations, the transfer of genetic material through asex-

ual mechanisms, called horizontal gene transfer (HGT),

can contribute to genetic diversity. HGT is rare in yeast,

and the mechanisms underlying HGT are not yet

elucidated, but natural transformation and conjugation

have been proposed (Hall et al., 2005). An interesting

example of how HGT altered industrially relevant

phenotypes in yeast is described for the commonly used

wine strain EC1118. Genetic analysis of EC1118 showed

strong evidence for the HGT of three DNA regions,

encompassing 34 genes involved in key wine fermentation

functions (Novo et al., 2009). For example, FSY1, a gene

coding for a high-affinity fructose/H+ symporter present

in one of the regions, could confer a significant advantage

during the wine fermentation process by enabling the

yeast to efficiently utilize left-over fructose at the end of

the fermentation (Galeote et al., 2010). Interestingly, two

of these regions were acquired from non-Saccharomyces

species, and Zygosaccharomyces bailii, a typical contami-

nant of wine fermentations, was identified as the donor

of one region; indicating that HGT in yeast can cross

genus boundaries.

Lastly, changes in ploidy level also occur and can have

profound phenotypic effects. This is best described for

the Saccharomyces lineage, which has undergone a whole-

genome duplication (WGD) event about 100 million

years ago. The most important consequences of this

WGD are that an extra copy of the genome allowed a

global rewiring of the yeast transcriptional network and

gave the duplicated genes a chance to mutate and gain

new or adapted functions compared to the original genes

(reviewed by Piskur et al., 2006). Additionally, duplica-

tion of single genes pre- or post-WGD, such as the dupli-

cation of the alcohol dehydrogenase (ADH) gene approx.

80 million years ago, also contributed to the success of

Saccharomyces species in the fermentation industry. In the

case of ADH, reconstruction of the ancestral gene

revealed that the encoding enzyme had a preference to

convert acetaldehyde to ethanol and was therefore

involved in the generation, and not the consumption, of

ethanol (Thomson et al., 2005). Spontaneous duplication

of this ancestral gene generated the genes encoding the

Adh1 and Adh2 enzymes. These present-day enzymes

show a different kinetic behavior, with Adh2 binding eth-

anol (its substrate) more strongly than Adh1. Duplication

of the ancestral ADH gene as well as duplication of sev-

eral other genes involved in ethanol metabolism, com-

bined with the ability of Saccharomyces spp. to ferment

glucose and accumulate ethanol even in the presence of

oxygen (a phenomenon known as the Crabtree effect),

resulted in the so-called make-accumulate-consume strat-

egy of ethanol production, giving them a competitive

advantage over other microorganisms during fermenta-

tion processes (Piskur et al., 2006).

Natural yeast diversity and how it can be

exploited in industry

Although the basic principles underlying genetic variation

are known (cf. supra), the extent of genetic biodiversity

FEMS Microbiol Rev 38 (2014) 947–995 ª 2014 The Authors. FEMS Microbiology Reviews
published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

Development of superior industrial yeasts 951



in Saccharomyces strains has only recently been elucidated.

Two recent seminal papers provided a first comprehen-

sive overview of the genetic architecture of feral (wild)

and industrial Saccharomyces strains (Liti et al., 2009;

Schacherer et al., 2009). Interestingly, genetic diversity

within Saccharomyces paradoxus, a widespread feral spe-

cies closely related to S. cerevisiae, can almost completely

be explained by geographical origin. However, diversity

within S. cerevisiae, the main yeast associated with human

activity, was at least partly linked to its industrial applica-

tion (Legras et al., 2007; Dunn & Sherlock, 2008; Liti

et al., 2009; Schacherer et al., 2009).

Additionally, despite that it was generally believed that

S. cerevisiae was a domesticated species with no truly nat-

ural strains existing, it was recently shown that diverged

populations of wild S. cerevisiae exist independently of

domesticated isolates (Fay & Benavides, 2005; Liti et al.,

2009; Sicard & Legras, 2011; Wang et al., 2012b). More-

over, genetic analysis of these feral and industrial strains

revealed that the genetic diversity within industrial strains

α
Haploid

a
HaploidBudding

Budding

a/α
Diploid

Sporulation

Mating

Budding

a

α

a/α

Mating

Germination

Germination

a haploid cell

α haploid cell

a/α diploid cell

HMLα HMRaMAT locus

SIR gene products silence 
HMLα and HMRa
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Chr.III

Chr.III Chr.III

a aα

a aα α aα
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(b)
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Fig. 3. Life cycle of S. cerevisiae. Yeast cells can exist in both a haploid and diploid state. (a) Diploid cells are heterozygous for the mating type

locus (mating type a/a), which makes diploids incapable of mating. Haploid cells have either mating type a or mating type a, making them

capable of mating with a cell of the opposite mating type. In nutrient-rich conditions, both haploid and diploid cells can proliferate asexually by

budding. When exposed to some nutrient-poor conditions, diploids can undergo sporulation (meiosis followed by spore formation), resulting in

the conversion of a diploid cell into four haploid spores, two possessing mating type a and two having mating type a, which can germinate into

haploid cells when conditions improve. In homothallic strains, the haploid derivatives can undergo a mating type switch (together with the

mother cell), mediated by an endonuclease encoded by the HO gene. In this way, a mating type-switched cell can mate with neighboring sister

cells of the opposite mating type, resulting in a homozygous (except for the MAT locus, which determines the mating type) diploid. In

heterothallic strains, the HO gene is typically inactive and therefore haploid derivatives cannot switch mating type. (b) Mechanism of the mating

type switch of homothallic strains. On chromosome III, the MAT locus is flanked by Hidden MAT Left and Right (HML and HMR, respectively),

carrying a silenced copy of MATa and MATa, respectively. Homothallic strains contain the HO gene, a gene coding for an endonuclease that

cleaves DNA specifically at the MAT locus. After breakdown of the MAT locus by exonucleases, a gene conversion event occurs, where HML or

HMR is used as a template to repair the DNA strand. Because cells prefer to change their mating type, that is, a MATa cell will rather use HMR

as a template and vice versa, mating-type switch occurs frequently.
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is rather limited compared to the full spectrum of natural

biodiversity. For example, while the nucleotide diversity

(p, the average number of nucleotide differences per site

between any two DNA sequences chosen randomly from

the sample population) was calculated to be 0.56 9 10�3

in 14 representative wine yeasts, a more elaborate analysis

of 138 strains, including both industrial and feral strains,

revealed a sequence diversity that was more than one

order of magnitude larger (7.27 9 10�3) (Wang et al.,

2012b). It is important to note that this is truly remark-

able, because the nucleotide diversity within Homo sapiens

is estimated to be ‘only’ 1 9 10�3 (Jorde & Wooding,

2004). Furthermore, even the genetic diversity within geo-

graphically isolated feral S. cerevisiae populations can be

substantial, illustrated by the fact that isolates from the

primeval rainforests in Hainan, a tropical island in south-

ern China, exhibited a magnitude of genetic diversity

equivalent to the diversity of the complete human popu-

lation (Wang et al., 2012b). Together, these observations

suggest that the fermentation industry currently relies on

only a very small fraction of the available genetic diversity

of S. cerevisiae, ignoring a huge pool of unexplored (feral)

strains. Although currently used strains have adapted well

to the fermentation environment, this largely uncharted

yeast pool might contain strains with characteristics

potentially valuable for industrial applications.

To exploit this huge natural diversity, several teams

have screened diverse feral yeast collections for industri-

ally relevant traits (e.g. Pellegrini et al., 1999; Comitini

et al., 2011). Additionally, isolation and analysis of feral

or even contaminating yeast strains from niches similar

(or identical) to a specific fermentation environment can

yield interesting strains for starter cultures. Indeed, con-

tinuous evolution and adaptation of indigenous yeast

strains to their environment have equipped these strains

with phenotypes valuable for industry. For example, sev-

eral research papers have described the isolation, selec-

tion, and incorporation of indigenous wine yeasts as

starter cultures in the production of wine (Zagorc et al.,

2001; Mannazzu et al., 2002; Lopes et al., 2007; Tosi

et al., 2009; Capece et al., 2010; de Ullivarri et al., 2011;

Scacco et al., 2012; Tristezza et al., 2012). Similarly, the

application of indigenous yeast strains revolutionized the

biofuel industry, where the initially used baker’s strains

were replaced by ‘contaminating’ strains, which were well

adapted to the harsh fermentation environment (Basso

et al., 1993, 2008; da Silva-Filho et al., 2005). Moreover,

two recently isolated S. cerevisiae strains are now responsi-

ble for up to 70% of the total Brazilian biofuel production

(Basso et al., 2008; Della-Bianca et al., 2012). Likewise,

the identification of Dekkera bruxellensis as a contaminat-

ing yeast in a Swedish bioethanol production site has

raised interest in applying this species as a starter culture,

because this strain did not show a compromised fermen-

tation efficiency and exhibited a more energy-efficient

metabolism under oxygen limitation than the initially

applied S. cerevisiae starter culture (Passoth et al., 2007;

Blomqvist et al., 2010).

Generation of artificial diversity

Despite the immense wealth of natural yeast diversity, the

extremely selective and specific conditions of industrial

fermentations sometimes require (a combination of) phe-

notypic traits that might not be commonly encountered

in nature. While the physiological behavior of feral yeasts

is exclusively dedicated to survival and reproduction,

most industrial fermentations require maximization of

processes and characteristics that may not be beneficial in

natural environments. Several techniques have therefore

been developed to artificially increase the existing yeast

diversity and generate variants that may perform better in

industrial settings than the strains that are selected in nat-

ural environments.

Perhaps the most intuitive way to generate artificial

diversity in yeasts is by (human-driven) sexual hybridiza-

tion (also known as crossing or mating; Tables 1 and S1).

This practice is very similar to the common ‘selective

breeding’ (or ‘artificial selection’) encountered in, for

example, agriculture. This technique has been used by

humans for thousands of years, for example by farmers

who intuitively chose superior plants from their cultiva-

tions or animals from their stock to crossbreed in order

to obtain crops or livestock with desired traits (Chambers

et al., 2009; Steensels et al., 2012). Similarly, the close

association of S. cerevisiae with human activities has led

to the so-called domestication of this species, resulting in

an organism that excels in its industrial task, but per-

forms suboptimal in most other, more ‘natural’ environ-

ments (Fay & Benavides, 2005; Liti et al., 2009; Sicard &

Legras, 2011). Moreover, human selection may even have

given rise to new chimeric species in the Saccharomyces

sensu stricto complex in industrial environments, such as

the lager yeast S. pastorianus (Libkind et al., 2011).

Although these processes occurred naturally (brewers,

winemakers, or other craftsmen did not intentionally

breed novel yeast strains), recent technological advances

and the rapidly increasing knowledge about yeast physiol-

ogy (e.g. the description of its sexual life cycle) paved the

way for more targeted and large-scale approaches of yeast

breeding, even beyond species barriers. This targeted

breeding of yeast strains can now be used to create novel

strains that combine different characteristics of the

selected parents, or to optimize a single, often complex,

trait, by crossing parents selected for the same phenotype.

Using the latter approach, traits can theoretically be
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improved even beyond the phenotypic boundaries of the

parental strains, a phenomenon called heterosis, or hybrid

vigor (Lippman & Zamir, 2007). This phenomenon is

occasionally encountered for certain traits in breeding

experiments (Marullo et al., 2006; Timberlake et al.,

2011), but the incidence is generally low (Z€org€o et al.,

2012). Later in this section, four approaches for strain

improvement using sexual hybridization approaches will

be discussed: direct mating, rare mating, mass mating,

and genome shuffling.

However, because many industrial strains are, in con-

trary to most laboratory strains, polyploid or aneuploid

and display a low sporulation efficiency and/or low spore

viability (Mortimer et al., 1994; Codon et al., 1995),

strain improvement by sexual hybridization is not always

possible. Still, the unique features of yeast (such as its

exceptional life cycle that combines sexual and asexual

replication strategies (Fig. 3) and their short generation

time) facilitate several other strain improvement strate-

gies. For example, a hybridization technique referred to

as protoplast (or spheroplast) fusion was designed to

hybridize cells asexually, thereby fully precluding the need

for sporulation capacity of and sexual compatibility

between both parental strains. Additionally, the transfer

of non-Mendelian traits, caused by cytoplasmic factors

such as dsRNA virus-like particles or prions, without

compromising the genome structure of the parental cells,

can be accomplished by cytoduction. These techniques,

all aiming to combine traits from two parental strains by

hybridization, are summarized in Fig. 4. Other tech-

niques, such as mutagenesis and directed evolution, use

the asexual reproductive cycle of yeast and fully rely on

Table 1. Several key studies using hybridization techniques for the improvement of industrial yeasts. The phenotypes of interest from both

parental strains are indicated. For a more extensive list, see Table S1

Parental strain 1 Parental strain 2

Hybridization

technique

Industrial

application References

Intraspecific hybridization

S. cerevisiae x S. cerevisiae Protoplast fusion Biofuel Javadekar et al. (1995)

Fermentation performance Flocculation

S. cerevisiae x S. cerevisiae Cytoduction Beer Hammond & Eckersley (1984)

Fermentation performance Killer phenotype

S. cerevisiae x S. cerevisiae Rare mating Bread Oda & Ouchi (1990)

Fermentation performance Fermentation performance

S. cerevisiae x S. cerevisiae Spore-to-cell mating Biofuel Benjaphokee et al. (2012)

Temperature tolerance Ethanol tolerance

Interspecific hybridization

S. cerevisiae x S. cerevisiae (var. diastaticus) Rare mating Beer Tubb et al. (1981)

Fermentation performance Dextrin degradation

S. cerevisiae x S. mikitae/S. paradoxus/

S. kudriavzevii

Rare mating Wine Bellon et al. (2011, 2013)

Fermentation performance Flavor profile

S. cerevisiae x S. bayanus Protoplast fusion Biofuel Choi et al. (2010)

Ethanol tolerance Flocculation

S. cerevisiae

Fermentation performance

x S. kudravzevii

Low temperature

Spore-to-spore/rare

mating/protoplast;fusion

Wine Perez-Traves et al. (2012)

S. cerevisiae x S. bayanus Spore-to-spore mating Wine Coloretti et al. (2006)

Flocculation Fermentation performance

Intergeneric hybridization

S. cerevisiae x K. lactis Protoplast fusion Biofuel Taya et al. (1984)

Fermentation performance Lactose utilization

S. cerevisiae

Fermentation performance/

ethanol tolerance

x Sc. stipitis

Xylose utilization

Protoplast fusion and

genome shuffling

Biofuel Zhang & Geng (2012)

S. cerevisiae x T. delbrueckii Protoplast fusion Polyol production/bakery Lucca et al. (1999, 2002)

Fermentation performance Osmotolerance

S. cerevisiae x Sc. pombe Protoplast fusion Wine Carrau et al. (1994)

Fermentation performance Malic acid degradation

S. cerevisiae (var. diastaticus) x Z. rouxii Protoplast fusion Bakery Spencer et al. (1985)

Fermentation performance Osmotolerance

K. lactis, Kluyveromyces lactis; S. bayanus, Saccharomyces bayanus; S. cerevisiae, Saccharomyces cerevisiae; S. cerevisiae (var. diastaticus), Saccha-

romyces cerevisiae (var. diastaticus); S. kudravzevii, Saccharomyces kudravzevii; S. mikitae, Saccharomyces mikitae; S. paradoxus, Saccharomyces

paradoxus; Sc. pombe, Schizosaccharomyces pombe; Sc. stipitis, Scheffersomyces stipitis; T. delbrueckii, Torulaspora delbrueckii; Z. rouxii, Zygo-

saccharomyces rouxii.
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random genetic mutations and strict selection procedures

to isolate phenotypically improved variants. This section

provides a comprehensive overview of all these tech-

niques, which do not rely on recombinant DNA technol-

ogy and for which resulting strains are thus considered

non-GMO, and discusses their practical applicability,

advantages, and limitations. Additionally, specific exam-

ples indicating how industrial fermentation processes have

benefited from the resulting improved strains are given.

Direct mating

Direct mating is the most intuitive way of breeding

organisms. Similar to selective breeding in agriculture, it

consists of the crossing of two carefully selected parents

possessing an interesting phenotype. In case of yeast

strains, three distinct approaches exist: cell-to-cell, spore-

to-cell, and spore-to-spore mating. The applicability of

these approaches depends on the sexual cycle of the

parental strains.

If both parental strains are heterothallic (Fig. 3b), a

prescreening of the stable vegetative haploid segregants of

both parents can be carried out, after which the best hap-

loid segregants can be selected for the hybridization

experiment. This technique dates back to 1943, when it

was described in a seminal paper by Lindegren & Linde-

gren (1943), and is now called ‘cell-to-cell’ mating. By

simply mixing cell cultures of the two selected stable hap-

loid parents and subsequent screening for diploid cells,

hybrids can be isolated. The major advantage of cell-to-

cell over mass and spore-to-spore mating (cf. infra) is

that both haploid parents can be fully phenotyped prior

to the breeding experiment (Lindegren, 1949), which

increases the chance of yielding a superior hybrid. Addi-

tionally, no inbreeding can occur, because no cells of the

opposite mating type from the same parental strain are

present in the same experiment. Furthermore, the same

parent can be used many times in a variety of different

mating experiments and can theoretically be preserved

indefinitely (Lindegren, 1949). Although there are some

clear advantages to this approach, it is not used regularly

to develop novel yeast hybrids. This is mainly due to the

homothallic nature of most industrial and feral yeast

strains, making them unsuited for this approach. How-

ever, it was recently described that several feral strains

show a stable haploid mating type, due to a mutation in

the HO endonuclease gene, a gene responsible for

mating-type switching (Katz Ezov et al., 2010), making

these strains fit for cell-to-cell mating experiments. In

principle, also homothallic strains would be amenable to

this approach after genetically disrupting the HO endonu-

clease gene (van Zyl et al., 1993; Walker et al., 2005; Blas-

co et al., 2011; Fig. 3). However, this requires a genetic

transformation, which implies that the resulting hybrid is

classified as a GMO and is therefore subject to the GMO

legislation. In addition, due to the heterozygous nature of

many industrial strains, for some complex phenotypes

that are difficult to measure, it can be laborious to iden-

tify a haploid descendant that exactly recapitulates the

parental phenotype.

When one (‘spore-to-cell’ mating) or both (‘spore-to-

spore’ mating) parental strains are homothallic, no stable

haploid segregants can be obtained, and the additional

prescreening step is not feasible. However, direct mating

is still possible by placing two single spores of the strains

to be hybridized close to one another on an agar surface,

monitoring the hybridization event by microscopy, and

isolating the developed zygotes (which can be formed if

the spores are of the opposite mating type) using a

micromanipulator. This approach is preferred when both

parental strains are homothallic or when the hybridiza-

tion efficiency of the two parental strains (outcrossing) is

low compared to the hybridization efficiency of cells of

the same parent (inbreeding) and no suitable hybrid

selection markers are available to specifically isolate

outbreds. The latter is, for example, the case in some

interspecific crossing experiments, where the (however

weak) pre- and postzygotic barriers (such as differences

in germination timing or mating preferences) favor

inbreeding (Maclean & Greig, 2008; Morales & Dujon,

2012; Murphy & Zeyl, 2012). In this case, spore-to-spore

mating (instead of, e.g., mass mating) can be used to

promote outcrossing. A major disadvantage of spore-to-

spore compared to cell-to-cell mating is that the spores

used in the experiment cannot be characterized prior to

the mating and therefore might not display the desired

phenotype of the parental strain, due to the segregation

of causative alleles (Attfield & Bell, 2003). An additional

step that can increase the frequency of developing hybrids

with the desired phenotype is a phenotypic prescreening

of the self-mated homozygous diploids formed after

sporulation and tetrad dissection of the homothallic

parental strains (Romano et al., 1985; Marullo et al.,

2009), or use of a well-designed backcrossing scheme

(Marullo et al., 2009).

Although time-consuming, direct mating has proven to

be an effective way to obtain hybrids (Sipiczki, 2008);

spore-to-spore and spore-to-cell mating are applied regu-

larly to create novel, mainly interspecific hybrids for the

fermentation industry (Table 1). It has been used success-

fully to generate wine yeasts with improved cryotolerance,

by crossing S. cerevisiae with cryotolerant species such as

S. kudriavzevii or S. bayanus (Kishimoto, 1994; Zambonel-

li et al., 1997; Perez-Traves et al., 2012), or to introduce

flocculation in a yeast strain for the production of spar-

kling wines (Coloretti et al., 2006). Recently, spore-to-cell
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Fig. 4. Overview of different strain improvement techniques using hybridization. Sexual and asexual hybridization is a powerful technique to

generate artificial diversity in yeast. Due to the sometimes complex genetics (ploidy, sporulation, . . .) of yeast, different techniques have been

developed. Most techniques start from two parental (P) strains, selected for the target phenotype. The color scheme indicates the strength of

the phenotype, for example red = strong ethanol tolerance, yellow = weak ethanol tolerance. In these examples, the parental strains are

selected for the same phenotype, but combining different phenotypes of both parents is also possible. (a) In direct mating, two haploid cells or

spores of opposite mating types are crossed. When the parental strains are both heterothallic, these haploids can be prescreened and selected,

and cell-to-cell mating can be applied. When both or one of the parental strains is homothallic, spore-to-spore or spore-to-cell mating,

respectively, can be used. In these latter cases, the selection step (indicated with *) cannot be applied. (b) In rare mating, strains are crossed

without a sporulation step. This is possible because diploid yeasts occasionally (but rarely) undergo a homothallic mating-type switch, yielding an

a/a or a/a diploid cell. These cells can subsequently hybridize with a haploid cell of the opposite mating type. It is important to note that rare

mating is not limited to the development of triploid yeasts. For example, tetraploid hybrids can be obtained if P2 would be an a/a type yeast. (c)

In mass mating, multiple parental strains, or a heterogeneous population of the same parental strain, can be used. After mass sporulation and

mixing of the resulting spores, mass mating will occur. These rounds of mass sporulation and mass mating can be repeated multiple times, a

process which is one way to perform so-called genome shuffling. In genome shuffling, the mass sporulation and mass mating steps can also be

replaced by protoplast fusion. (d) Cytoduction can be used to transfer cytoplasmically inherited traits. First, the KAR1 gene of the parental strain

containing the targeted cytoplasmic trait is deleted. Next, both parental strains are crossed (or fused by protoplast fusion), but because

karyogamy is blocked, the heterokaryon segregates into cells containing a nucleus of only one parent but the cytoplasmic components of both

parents (=heteroplasmons). With proper selection, this technique can also yield so-called disomic strains that contain the full chromosome

complement of one parent plus one chromosome from the other parent. (e) In protoplast fusion, cells are asexually merged after cell wall

removal in osmotically supportive medium. After cell wall regeneration, the formed transient heterokaryons may undergo karyogamy and form

hybrids.
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mating was applied to develop thermotolerant (Marullo

et al., 2009) and multistress-tolerant S. cerevisiae strains

(Benjaphokee et al., 2012). Also, novel hybrids with

improved characteristics developed by cell-to-cell mating

have been reported. Hara et al. (1981) used this approach

to construct cryotolerant wine yeasts able to produce killer

toxins. Russell et al. (1983) described the use of cell-to-cell

mating to eliminate the unwanted ‘phenolic off-flavor’

phenotype from brewer’s yeast. This approach was also

used to construct wine, bread, and beer yeasts with opti-

mal fermentation characteristics (Gjermansen & Sigsgaard,

1981; Eschenbruch et al., 1982; Nakagawa & Ouchi, 1994;

Marullo et al., 2006). More recently, it was used to com-

bine specific phenotypes of ale and lager yeasts in order to

improve stress resistance and fermentation performance

(Garcia Sanchez et al., 2012).

Rare mating

As mentioned above, many natural and industrial yeasts

show low sporulation efficiencies and/or low spore viabil-

ity, hampering their use in direct mating (or mass mat-

ing, cf. infra) experiments. In these cases, rare mating can

offer a way to obtain hybrids. Rare mating is based on

the rare event that some cells in a diploid population can

become homozygous for the mating-type locus (resulting

in an a/a or a/a cell) and can subsequently be ‘force-

mated’ with a cell of the opposite mating type (Gunge &

Nakatomi, 1972), see also Figs 3 and 4. Typically, in a

rare mating experiment, dense cell suspensions of the

parental strains are mixed, and subsequently outcrossed

hybrids are isolated using a strong selection step. This

selection is often achieved by using a respiratory-deficient

and an auxotrophic parental strain, making rare hybrids

easily selectable by their prototrophy and respiratory pro-

ficiency (Pretorius, 2000; Hammond, 2003; see ‘Selection

of outcrossed hybrids’).

Although the frequencies of the mating-type switch

and subsequent mating are usually very low (Gunge &

Nakatomi, 1972; Hammond, 2003), rare mating has been

used to study interspecific hybridization events (de Barros

Lopes et al., 2002) as well as for the improvement of

multiple yeast traits. Saccharomyces cerevisiae and S. cere-

visiae (var. diastaticus) were crossed to develop yeasts able

to ferment dextrins (low molecular weight carbohydrates,

produced by the hydrolysis of starch) in order to produce

low-calorie beers (Tubb et al., 1981). It has also

been applied to construct cryotolerant wine yeasts

(Perez-Traves et al., 2012), dextrin-fermenting and high

ethanol-producing yeasts (Kim & Kim, 1996), and yeasts

with higher leavening ability in dough fermentations

(Oda & Ouchi, 1990). Recently, Bellon and coworkers

used rare mating to construct triploid interspecific

hybrids of S. cerevisiae and other Saccharomyces sensu

stricto species (like Saccharomyces mikatae) to diversify

the flavor profile of wines (Bellon et al., 2011, 2013).

Mass mating and genome shuffling

Because yeasts are such small organisms with short life

cycles, it is possible to cultivate billions of individual cells

and generate many crosses quickly and to execute consecu-

tive rounds of crossing. These more evolved techniques,

often referred to as ‘mass mating’ or ‘genome shuffling’,

can significantly increase the throughput and thus success

rate of the experiment. Mass mating is a technique in which

large numbers of haploid yeast cells, often from different

parental strains are mixed and allowed to randomly mate.

Mass mating is a particularly useful improvement tech-

nique for homothallic strains, for strains that show low

mating efficiency, or for the creation of interspecific

hybrids if strong selective markers for outbreds are avail-

able (Kunicka-Styczynska & Rajkowska, 2011).

Mass mating has been used to generate industrial

strains with improved characteristics. For instance, Hig-

gins and coworkers used mass mating and selection to

combine different properties of two types of bakery

strains, namely high osmotolerance, which is typical for

strains used in sweet dough, and good maltose utilization,

a characteristic of strains used in unsugared dough. First,

haploid segregants of seven industrial strains used in

sweetened dough were mass-mated followed by selection

for osmotolerance, and this procedure was repeated sev-

eral times. Second, three strains used for unsugared

dough fermentations were subjected to repeated cycles of

mass mating and selection for growth on maltose. In a

final step, the two enriched populations were sporulated

and mass-mated, and strains capable of leavening both

sweet and unsugared dough were recovered after

additional rounds of mass mating and alternating selec-

tion for osmotolerance and growth on maltose (Higgins

et al., 2001). Mass mating was also used to create new

interspecific wine strains by crossing strains of S. cerevisi-

ae and S. bayanus (Sato et al., 2002; Table 1).

Conceptually related to mass mating, genome shuffling

is one of the most recent techniques to improve complex

phenotypes in microorganisms in a fast and relatively easy

manner (see Gong et al., 2009). In a heterogeneous

population, a cell displaying a specific phenotype might

harbor beneficial mutations that differ from those pres-

ent in another, phenotypically similar cell within this

population. By applying repeated rounds of genetic

recombination (either by protoplast fusion or by mass

mating) and selection to this population, genome shuf-

fling aims to combine many of these different beneficial

mutations in the same cell, leading to additive or syner-
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gistic effects on the phenotype under study (Santos &

Stephanopoulos, 2008).

Compared to other improvement techniques, genome

shuffling has the advantage of exploiting the full genetic

diversity in a population and makes it possible to com-

bine useful mutations from many different individuals,

while other hybridization methods, such as direct mating,

typically involve only a limited number of haploid cells

(Fig. 4). Additionally, while classical methods of strain

improvement often only select the best-performing

mutant for the next round, genome shuffling exploits a

much larger proportion of the diversity present in the

population. The first convincing example of genome shuf-

fling showed rapid improvement of tylosin production in

the bacterium Streptomyces fradiae (Zhang et al., 2002).

While it initially took 20 rounds of mutagenesis and

selection to improve the tylosin titer ninefold, the same

result was obtained by applying only two rounds of gen-

ome shuffling on a mutagenized population of the same

starting strain, demonstrating the potential of this tech-

nique to take much larger leaps in the fitness landscape,

enabling rapid improvement of a phenotype.

Most studies applying genome shuffling to yeast have

focused on enhancing the tolerance to an industrially rel-

evant stress factor and overall fermentation performance.

To this end, variation is typically induced by mutageniz-

ing a single strain. Mutants are then screened for the phe-

notype of interest, and cells showing phenotypic

improvement are used as a starting population for multi-

ple rounds of genome shuffling. After each round of gen-

ome shuffling, the severity of the stress is (usually)

increased. In this way, both laboratory and industrial

strains of S. cerevisiae have been improved for phenotypes

such as ethanol tolerance, thermotolerance, acetic acid

tolerance, and fermentation performance (Table 2). Some

recent studies also combine metabolic engineering with

genome shuffling (Wang & Hou, 2010; Jingping et al.,

2012; Tao et al., 2012; Wang et al., 2012a; Demeke et al.,

2013). These approaches are promising to optimize

strains for second-generation bioethanol production.

Although the production of inferior, so-called crippled

strains (cf. infra) is a potential disadvantage of genome

shuffling because the prevalence of deleterious alleles may

result in a majority of variants that perform better at the

task they are selected for, but not other important traits,

the first proof-of-principle use of a genome-shuffled S. ce-

revisiae strain in an industrial fermentation environment

was recently published (Zheng et al., 2011a, b).

Genome shuffling has been applied to non-Saccharomy-

ces yeasts as well. In high-salt soy sauce fermentations,

salt-tolerant yeast strains are added for improved flavor.

Cao et al. (2009) enhanced salt stress resistance and flavor

formation of Zygosaccharomyces rouxii using three rounds

of genome shuffling. In a similar approach, Cao et al.

(2012) could increase the salt stress tolerance and soy

sauce fermentation performance of Hansenula anomala.

Bajwa et al. (2010) exploited the sexual cycle of the pen-

tose-fermenting yeast Sc. stipitis to improve its tolerance

to hardwood spent sulfite liquor. Lastly, the acetic acid

tolerance of Candida krusei was improved using a proto-

plast fusion-based genome shuffling strategy (Wei et al.,

2008).

Protoplast fusion

Although the rationale for protoplast fusion (often

referred to as spheroplast fusion) is very similar to sexual

hybridization (they both strive to combine positive traits

of multiple parents in one hybrid strain), this technique

can be used for strains that do not meet the requirements

for sexual hybridization. This means that this technique

is useful for strains that cannot sporulate, yield inviable

spores, show unstable mating type or for strains that are

incapable to mate with each other (Pretorius, 2000;

Attfield & Bell, 2003), see also Fig. 4. In this way, inter-

specific or even intergeneric crosses can be obtained.

Because meiosis is not required, protoplast fusion can

also be used to increase the ploidy of strains, which in

some cases can increase cell productivity (Attfield & Bell,

2003).

In practice, protoplast fusion generally consists of

three major steps: yeast cell wall degradation (generation

of protoplasts), induction of hybridization, and cell wall

regeneration. After hybridization, the parental nuclei

temporarily coexist within a shared cytoplasm before

(potentially) proceeding to karyogamy (Kavanagh &

Whittaker, 1996). The success rate of the hybrid

formation mainly depends on the taxonomic proximity

of the strains and applied fusion protocol (Peberdy,

1980; Pina et al., 1986; Kavanagh & Whittaker, 1996;

Attfield & Bell, 2003). Intraspecific fusion frequencies

usually vary from 10�3 to 10�4, while for intergeneric

fusions, it can be as low as 10�6 to 10�7 (Pina et al.,

1986; Urano et al., 1993). Consequently, development of

an optimal hybrid selection procedure is a crucial step

in order to maximize the chance of achieving the desired

genetic combination (further discussed in ‘Selection of

outcrossed hybrids’).

An important disadvantage of using protoplast fusion

as a strain improvement strategy is that many of the

hybrids are mitotically unstable and chromosomal loss

(resulting in aneuploidy) or dissociation into the parental

strains often occurs (Pina et al., 1986; Attfield & Bell,

2003). Distantly related species are more prone to show

this effect than closely related species (Morgan, 1983).

Generally, protoplast fusion experiments result in hybrids
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containing the full genome of one parent, with a (few)

extra chromosome(s) of the second parent (Yamazaki &

Nonomura, 1994; Kavanagh & Whittaker, 1996). As a

consequence, the phenotype and genotype of the resulting

fused strain are very difficult to predict. The ratio at

which both genomes are present in the hybrid might be a

result of the fusion protocol employed, or the selection

procedure used to isolate the hybrids (Kavanagh & Whit-

taker, 1996). Additionally, strains obtained by protoplast

fusion are in some regions considered GMOs.

Although protoplast fusion is sometimes used in bio-

technology to increase productivity of a strain by increas-

ing the ploidy, it is mostly applied to combine

characteristics from two parental strains. These parental

strains can be from the same species, but often a Saccha-

romyces strain is combined with a nonconventional yeast

displaying a specific trait, such as lactose utilization (Taya

et al., 1984; Farahnak et al., 1986; Krishnamoorthy et al.,

2010; Guo et al., 2012), temperature tolerance (Sakanaka

et al., 1996), osmotolerance (Spencer et al., 1985;

Loray et al., 1995; Lucca et al., 2002), starch degradation

(Kishida et al., 1996), killer activity (Gunge & Sakaguchi,

1981), malic acid degradation (Carrau et al., 1994), or

(hemi)cellulose hydrolysate utilization (Pina et al., 1986;

Heluane et al., 1993; Table 1).

Interestingly, protoplast fusion rarely yields nuclear

hybrids (Chambers et al., 2009). While most research

addressing protoplast fusion focuses on traits embedded

in the genomic DNA, mitochondrial transfer without

karyogamy occurs at a much higher frequency. Much like

the strains resulting from cytoduction experiments (cf.

infra), ‘cybrids’ can be defined as fusion products in

Table 2. Studies using genome shuffling for the improvement of industrial yeasts. The phenotypes of interest from the parental strain(s) are

indicated. The technique used to generate genetic variation and used for recombination is indicated

Strain(s) Phenotype Technique variation

Recombination

technique

Industrial

application Reference

S. cerevisiae (industrial haploid) Ethanol tolerance,

thermotolerance

UV mutagenesis Protoplast fusion Biofuel Shi et al. (2009)

S. cerevisiae (laboratory diploid) Ethanol tolerance EMS mutagenesis Mass mating Biofuel Hou (2009)

S. cerevisiae (industrial diploid) VHG fermentation capacity EMS mutagenesis Mass mating Biofuel/beer Hou (2010)

S. cerevisiae (industrial diploid ale) Wort and ethanol

tolerance

EMS and UV

mutagenesis

Mass mating Beer Wang & Hou (2010)

S. cerevisiae

(industrial diploid biofuel)

Acetic acid tolerance UV mutagenesis Mass mating Biofuel Zheng et al. (2011a)

S. cerevisiae (industrial strains) Multistress tolerance Use of two strains Mass mating Biofuel Zheng et al. (2011b)

S. cerevisiae (laboratory diploid) VHG fermentation capacity EMS mutagenesis Mass mating Biofuel/beer Liu et al. (2011)

S. cerevisiae

(industrial haploid strains)

Spent sulfite liquor

tolerance

UV mutagenesis Mass mating Biofuel Pinel et al. (2011)

S. cerevisiae

(diploid soil isolate + GMO)

Ethanol production Use of multiple strains Protoplast fusion Biofuel Jingping et al. (2012)

S. cerevisiae (industrial strain) Heat, acetic acid, and

furfural tolerance

DES mutagenesis Protoplast fusion Biofuel Lu et al. (2012)

S. cerevisiae (industrial strain) VHG fermentation capacity GMO strain Mass mating Biofuel Tao et al. (2012)

S. cerevisiae (industrial strain) VHG fermentation capacity GMO strain and

EMS/UV mutagenesis

Mass mating Biofuel Wang et al. (2012a)

S. cerevisiae

(industrial near triploid)

VHG fermentation capacity MCB mutagenesis Mass mating Biofuel Zheng et al. (2013a)

S. cerevisiae

(industrial near triploid)

VHG fermentation

capacity and

dessication tolerance

MCB mutagenesis Mass mating Biofuel Zheng et al. (2013b)

S. cerevisiae (industrial strain) Xylose fermentation GMO strain and EMS

mutagenesis

Mass mating Biofuel Demeke et al. (2013)

Z. rouxii (wild-type strain) Salt tolerance EMS mutagenesis Protoplast fusion Soy sauce Cao et al. (2009)

H. anomala (wild-type strain) Salt tolerance EMS and UV

mutagenesis

Protoplast fusion Soy sauce Cao et al. (2012)

Sc. stipitis (wild-type strain) Spent sulfite liquor

tolerance

UV mutagenesis Mass mating Biofuel Bajwa et al. (2010)

C. krusei Acetic acid tolerance UV mutagenesis Protoplast fusion Biofuel Wei et al. (2008)

C. krusei, Candida krusei; H. anomala, Hansenula anomala; S. cerevisiae, Saccharomyces cerevisiae; Sc. stipitis, Scheffersomyces stipitis; Z. rouxii,

Zygosaccharomyces rouxii; DES, diethylsulfate; EMS, ethyl methane sulfonate; GMO, genetically modified organism; UV, ultraviolet; MCB, methyl

benzimidazole-2-yl-carbamate; VHG, very high gravity.
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which the cytoplasmic contents of the fusing protoplasts

merge, without the concomitant fusion of, or exchange of

genetic information between, the nuclei (Kavanagh &

Whittaker, 1996). This phenomenon has been successfully

used for the transfer of cytoplasmically inherited traits

like the killer phenotype (Seki et al., 1985), respiratory

competence (Richard et al., 1987; Kavanagh & Whittaker,

1996), or resistance to oligomycin (Matsuoka et al.,

1982).

Cytoduction

Some factors underlying industrially relevant phenotypes

are not embedded in the nuclear DNA, but are located in

the mitochondrial DNA (e.g. several respiration-related

genes) or present in the cytoplasm (e.g. killer plasmids).

To selectively transfer these non-Mendelian traits from a

donor to a recipient strain without disrupting the nuclear

integrity of the recipient strain, a technique called cyto-

duction can be applied (Pretorius, 2000).

In cytoduction procedures, the donor strain (which

contains the cytoplasmically transferable factor) carries a

dysfunctional KAR1 gene. A kar1 mutant is defective in

karyogamy (=nuclear fusion) after hybridization (Conde

& Fink, 1976; Georgieva & Rothstein, 2002). As a conse-

quence, through mating or protoplast fusion of donor

and recipient strain, a zygote-like transient heterokaryon

is formed which by subsequent mitotic divisions can bud

off haploid heteroplasmons, containing only one genome

but mixed cytoplasmic factors (Conde & Fink, 1976;

Fig. 4). These heteroplasmons, which still contain the full,

undisrupted genome of the recipient strain but are sup-

plemented with the (desired) cytoplasmic factors of the

donor strain, have the desired combined phenotype.

Occasionally, one or a few chromosomes of the second

parent are transferred to the other nucleus, a process

called ‘single-chromosome transfer’ (Nilsson-Tillgren

et al., 1980; Dutcher, 1981). This results in ‘exceptional’

cytoductants that are sometimes used to examine individ-

ual chromosomes of industrial yeast strains in detail, for

example chromosome III of lager yeasts (Nilsson-Tillgren

et al., 1981; Kielland-Brandt et al., 1995).

Cytoduction is frequently used to obtain industrial

strains with a positive killer phenotype, a trait encoded

by a dsRNA virus-like particle (Ouchi et al., 1979; Young,

1983; Hammond & Eckersley, 1984; Seki et al., 1985;

Yoshiuchi et al., 2000). Alternatively, it can be used to

transfer flocculation characteristics (Barre et al., 1993),

factors influencing carbon source utilization (Spencer

et al., 1992) or yeast artificial chromosomes (YACs;

Spencer et al., 1994). Cytoduction is also applied in fun-

damental research when studying amyloids (e.g. prions)

in yeast (Saifitdinova et al., 2010; Wickner et al., 2012).

It is important to note that development of kar1 mutants

does require genetic modification, which could hamper the

use of this technique for industrial applications.

Mutagenesis

The in vivo induction of random mutations by chemical

or physical mutagens and subsequent selection of pheno-

typically improved cells is one of the most widely used

techniques to generate optimized microorganisms. One of

the most impressive examples is the enormous increase,

estimated to be more than three orders of magnitude, in

penicillin production by Penicillium chrysogenum, which

was achieved over a period of 60 years using multiple

mutagenesis procedures (Demain, 2010). Over the last

decades, mutagenesis has been applied to improve both

monogenic and polygenic traits in a wide range of micro-

organisms (Giudici et al., 2005). Strain improvement

using mutagens consists of two key steps: mutagenesis

and screening. The screening is very similar to the screen-

ing procedures used in other procedures and will there-

fore be discussed in a separate paragraph (see section on

‘Selection of phenotypically improved cells’).

A typical mutagenesis experiment consists of overnight

growth of the strain under study followed by the actual

mutagenic treatment and a recovery step. Both the type

of mutagen (different mutagens induce different types of

mutations, see Table 3) and the dose should be carefully

selected or determined (see detailed reviews by Rowlands,

1984; Crook & Alper, 2012). However, it is often hard to

predict which type of genetic alteration is required to

improve a certain phenotype and hence which mutagen

should be used. Therefore, it is advised to change the type

of mutagen in a mutagenesis program consisting of mul-

tiple rounds, in order to sample as many different types

of genetic changes as possible (Rowlands, 1984).

As important as the type of mutagen is the mutagenic

dose and exposure time. In general, a very low dose will

yield a low proportion of mutants, making improved

mutants hard to identify. Moreover, most mutants may

only carry one or a few mutations, which reduces the chance

to find improvements for which combinations of different

mutations are needed. On the other hand, a high dose gen-

erates mutants that carry multiple mutations, of which

many may be deleterious, leading to a large fraction of infe-

rior or even unviable cells. Consequently, the optimal dose

is the one that gives the largest proportion of beneficial

mutants out of all cells that manage to survive; something

which largely depends on the nature of the phenotype.

Simple phenotypes that depend on one or a few mutations,

like auxotrophy, typically show a monotonic dose–response
curve, meaning that the fraction of desired mutants per sur-

vivor increases with increasing dose and reaches saturation
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at some point, after which the number of superior mutants

may decline again because of the increasing proportion of

individuals with deleterious mutations (Crook & Alper,

2012). For complex phenotypes, like the production of a

compound/metabolite in a high concentration, that are

influenced by many different genes, the ideal dose and the

dose–response curve are harder to predict. Although a high

dose will usually lead to fast phenotypic improvement,

researchers usually prefer to use a low dosage. In this way,

they avoid the accumulation of deleterious mutations and

only increase the mutation rate when low killing rates do

not yield improved mutants (Rowlands, 1983).

In both the wine and brewing industry, early studies

applied random mutagenesis to generate mutants with

improved industrial characteristics. In wine strain

improvement, mutagenesis is often used to purge unde-

sired monogenic traits (Giudici et al., 2005). Industrial

yeast strains are (at least) diploid, implying that only

dominant mutations can alter the phenotype directly.

Therefore, haploid derivatives are preferred for mutagene-

sis programs (Pretorius, 2000). However, these yeasts are

often homothallic, so no stable haploid cell cultures can

be maintained for these strains. To circumvent this issue,

mutagenesis can be applied to spores (instead of vegeta-

tive haploid cells) derived from such homothallic strains

(Romano et al., 1983; Rous et al., 1983). After autodiploi-

dization, these recessive mutations become homozygous

and potentially influence the phenotype. However, it is

not essential to use haploid strains or spores in a muta-

genesis program. Mutagenesis of polyploid brewing yeasts

yielded strains producing lower amount of the off-flavors

diacetyl and H2S (Molzahn, 1977). In a recent study, the

commercial diploid wine strain PDM was mutagenized

directly using EMS, and mutants with reduced H2S pro-

duction were obtained (Cordente et al., 2009). Also, sake

strains in their natural ploidy were successfully mutage-

nized to obtain auxotrophic mutants (Hashimoto et al.,

2005), which can be of great value in breeding and meta-

bolic engineering strategies (Crook & Alper, 2012). Auxo-

trophic mutants were also developed by applying EMS

mutagenesis to a haploid derivative of a commercial wine

strain, in order to decrease higher alcohol production

(Rous et al., 1983). Mobini-Dehkordi et al. (2008) used

EMS mutagenesis to develop mutants with increased eth-

anol production. In a different study, EMS was used to

develop mutants with increased dough fermentation

capacity (Angelov et al., 1996).

Mutagenesis approaches are not limited to Saccharomy-

ces yeasts. For instance, EMS mutagenesis has been used

to increase astaxanthin production in Xanthophyllomyces

dendrorhous (Phaffia rhodozyma; Brehm-Stecher & John-

son, 2012). Recently, EMS mutagenesis was successfully

applied to improve the secretion of a heterologous pro-

tein in Ashbya gossypii (Ribeiro et al., 2013). Induced

mutants of Sc. stipitis for improved lignocellulose fermen-

tation were generated in various studies (Watanabe et al.,

2010; Hughes et al., 2011), whereas multiple rounds of

mutagenesis boosted the ethanol production of Kluyver-

omyces marxianus (Pang et al., 2010).

In recent studies, mutagenesis is often the first step to

generate genetic variation in a population, after which

genome shuffling of the best-performing mutants is

applied to combine multiple beneficial mutations in the

same cell, or the mutant population is subjected to direc-

ted evolution (cf. infra). Alternatively, strains obtained by

genetic modification or breeding can also be further

improved using random mutagenesis. For instance, Ku-

mari & Pramanik (2012) subjected a hybrid between S.

cerevisiae and Pachysolen tannophilus to multiple rounds

of mutagenesis in order to increase its tolerance to high

temperature, ethanol, and toxic compounds.

Directed evolution

Strain improvement through evolutionary engineering, a

term first coined by Butler et al. (1996) and later also

often referred to as adaptive, directed, or experimental

evolution, relies on the basic principles of (natural and/or

induced) genetic variation and subsequent selection acting

on this variation. In general, a population of cells is

Table 3. Mutagens often used in mutagenesis programs in yeast. Indicated are the mode of action of the mutagen and the resulting genetic

alterations that it can induce. See for more information: Rowlands (1984) & Rubio-Texeira et al. (2010)

Mutagen Mode of action Genetic alterations

Physical UV Mitotic crossing over; mitotic gene conversion; pyrimidine

dimers; hydroxylated bases; cross-linking DNA strands;

reverse mutations

Frameshift mutations, base pair

substitutions, transversions

Ionizing

radiation

Single- and double-strand breaks in DNA; deamination and

dehydroxylated bases

Point mutations

Chemical EMS Alkylation GC-AT transitions

MNNG Alkylation, acts close to replication points Transitions, transversions;

clustered mutations

EMS, ethyl methanesulfonate; MNNG, methylnitronitrosoguanidine; UV, ultraviolet.
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grown under continuous selection for the phenotype of

interest for many generations (cell divisions). Over time,

random mutants will arise in this population. Directed

evolution can also be combined with the use of mutagens

and/or sexual hybridization within the evolving popula-

tion(s) in order to increase the genetic and phenotypic

variability that selection can act on. If a specific mutation

(or mutations) endows a cell with a fitness advantage,

this variant will be selected and enriched for in the popu-

lation. Because of the short generation time and easy

manipulation and cultivation of microorganisms in the

laboratory, evolutionary engineering is a feasible route to

generate yeast strains with improved phenotypes in a rela-

tively fast fashion (Elena & Lenski, 2003; Buckling et al.,

2009).

Different experimental setups can be used for growing

cells under the desired selective conditions: batch culture,

with serial passaging of cells, or a continuous culture sys-

tem such as a chemostat or a turbidostat. In a chemostat,

cells are kept at physiological steady state, and growth

occurs at a constant rate. This constant growth rate is

maintained by the continuous influx of a growth-limiting

substrate, setting a fixed dilution rate (Dykhuizen &

Hartl, 1983). In a turbidostat, there is continuous feed-

back between the inflow of the medium and the cell den-

sity of an exponentially growing culture, measured

through, for example, an optical sensor (Bryson & Szybal-

ski, 1952). In principle, it is also possible to evolve popu-

lations directly in the industrial setting where they are to

be employed. It is important that the selection conditions

match the industrial parameters as closely as possible in

order to avoid ‘crippled’ strains that show improvement

for the selected trait, but are inferior to the parent for

other relevant traits (cf. infra). In fact, in applications

where yeasts are continuously used for longer time peri-

ods, for example serial repitching of brewer’s yeast in beer

fermentations (Gibson et al., 2007), these populations are

(unintentionally) being subjected to directed evolution,

yielding strains with (sometimes positively) adjusted phe-

notypes. For example, at the end of the beer fermentation

process, yeast cells sediment to the bottom of the fermen-

tation tank. It has been shown that re-using cells from

specific layers (near the top or bottom) of this pack of

sedimented cells can influence the sedimentation behavior

(including flocculation) in later fermentation rounds

(Powell et al., 2004).

Directed evolution has proven to be a valuable tool to

create yeast strains with specific, improved characteristics

(Sauer, 2001). Examples of industrially relevant phenotypes

improved through this strategy can be found in Table 4.

Several studies have investigated how yeast cells adapt to

specific nutrient limitations, for example glucose, phos-

phate, or sulfate limitation (Paquin & Adams, 1983a, b;

Dunham et al., 2002; Gresham et al., 2008). Because the

main focus of these studies was to determine the exact

genetic underpinnings of how cells adapt to a specific stress

and also how reproducible the adaptation was, this research

was performed with standard laboratory yeast strains that

have only limited industrial relevance. However, several

more applied studies have started from strains commonly

used in the wine, beer, biofuel, and baking industry. The

phenotypes targeted include resistance to individual stres-

ses, such as high levels of acetate (Aarnio et al., 1991) or

ethanol (Brown & Oliver, 1982; Dinh et al., 2008), osmotic

stress (Ekberg et al., 2013), and high concentrations of

metal ions such as copper (Adamo et al., 2012) and cobalt

(Cakar et al., 2009), as well as (improved) utilization of

alternative carbon sources such as xylose and arabinose

(starting from metabolically engineered strains, see also

below; Sonderegger & Sauer, 2003; Wisselink et al., 2009;

Scalcinati et al., 2012; Demeke et al., 2013). However, in

industrial settings, cells are often faced with a combination

of different stresses: during brewing fermentations for

example, cells encounter osmotic stress, high levels of etha-

nol, and nutrient deprivation (Gibson et al., 2007). By per-

forming the selection steps under conditions resembling

this harsh environment, researchers have succeeded to iso-

late multistress-tolerant lager strains with improved fer-

mentation capacity in high-gravity wort (Blieck et al.,

2007; Huuskonen et al., 2010). Using long-term batch cul-

turing on gluconate, a carbon source poorly assimilated by

S. cerevisiae, Cadi�ere et al. evolved a commercially used

wine strain with increased flux through the pentose phos-

phate pathway (Cadi�ere et al., 2011). Evolved strains

showed higher fermentation rates and increased aroma

production compared to the parental strain in laboratory-

scale fermentations. Interestingly, similar phenotypic

improvements were observed when this evolved strain was

used in pilot-scale fermentation trials (Cadi�ere et al.,

2012). Most evolutionary engineering studies have been

performed using the model organism S. cerevisiae, but

other yeast species have been subjected to evolutionary

engineering as well. Examples include lager strains (S. pas-

torianus), subjected to sequential selection for tolerance to

high ethanol levels and rapid growth at high osmolarity, to

obtain strains with enhanced fermentation capacity under

industrially used brewing conditions (Ekberg et al., 2013).

Directed evolution is most commonly used to fine-tune

a specific phenotype that is already present in the starting

strain but is not optimal yet. The initial population can

be completely isogenic, using a single, often already com-

mercially used, strain as starting point. To increase

genetic variability of the starting population, researchers

have also used UV- or EMS-mutagenized populations to

initiate directed evolution strategies (see also paragraph

on ‘Mutagenesis’ and Table 4). Directed evolution can
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also be used to further optimize characteristics of (indus-

trial) yeast strains created through other methods, such as

metabolic engineering or genome shuffling. A prime

example of a phenotype improved in such a way is fer-

mentation of the pentose sugar xylose (Sonderegger &

Sauer, 2003; Wisselink et al., 2009; Demeke et al., 2013).

Although this sugar is present in high amounts in the lig-

nocellulosic biomass that is frequently used for second-

generation bioethanol production, S. cerevisiae is unable

to metabolize xylose. Several studies have engineered this

novel metabolic capacity into S. cerevisiae and subse-

quently used a directed evolution approach to further

optimize xylose fermentation. Starting from a commer-

cially used bioethanol strain, Demeke et al. (2013) applied

metabolic engineering to introduce the necessary enzymes

for xylose utilization, followed by mutagenesis and

genome shuffling. Finally, the resulting strains were

evolutionarily adapted by serial transfer in spruce hydro-

lysate containing D-xylose. One of the final clones iso-

lated showed an increased fermentation performance on

xylose and was also tolerant to growth inhibitors com-

monly found in lignocellulosic hydrolysates. Importantly,

the evolved phenotype remained stable in the absence of

selective pressure.

The advent of novel sequencing technologies has now

also made it possible to sequence the complete genomes

of evolved strains. Together with expression analysis of

evolved clones, this can yield insight into how a specific

phenotype is established. It can yield valuable information

to guide other methods of strain improvement, such as

reverse metabolic engineering.

Selection of phenotypically improved cells and

outcrossed hybrids

A crucial factor determining the success rate of the

improvement techniques mentioned above is the select-

ability of the targeted trait and, in case of hybridization

experiments, of the outcrossed hybrids. Whereas some

phenotypes, such as stress resistance, allow for a relatively

Table 4. Studies using directed evolution for the improvement of industrial yeasts. The targeted phenotype, target species, and technique used

to generate variation in the starting population are indicated

Improved phenotype Species Starting population Reference

Ethanol tolerance S. uvarum EMS-mutagenized and nonmutagenized Brown & Oliver (1982)

S. cerevisiae EMS-mutagenized and nonmutagenized Dinh et al. (2008)

S. cerevisiae EMS-mutagenized and nonmutagenized Stanley et al. (2010)

Acetic acid tolerance S. cerevisiae Nonmodified Aarnio et al. (1991)

Thermotolerance S. cerevisiae UV and EMS-mutagenized Balakumar et al. (2001)

Copper resistance S. cerevisiae Nonmodified Adamo et al. (2012)

C. humilis Nonmodified

Cobalt resistance S. cerevisiae EMS mutagenized Cakar et al. (2009)

Tolerance to inhibitors in lignocellulosic

hydrolysates

S. cerevisiae Nonmodified Almario et al. (2013)

Freeze tolerance S. cerevisiae UV mutagenized Teunissen et al. (2002)

Glycerol production S. cerevisiae Nonmodified Kutyna et al. (2012)

Wine fermentation properties S. cerevisiae Metabolic engineered and EMS

mutagenized

Cadi�ere et al. (2011)

Flux through pentose phosphate pathway S. cerevisiae Metabolic engineered and EMS

mutagenized

Cadi�ere et al. (2011)

Fermentation under high-gravity conditions S. pastorianus EMS mutagenized Huuskonen et al. (2010)

S. pastorianus UV mutagenized Blieck et al. (2007)

Ethanol tolerance, growth, and high

osmotic stress

S. pastorianus EMS mutagenized Ekberg et al. (2013)

Oxidative, freeze–thawing, high

temperature, and ethanol stress

S. cerevisiae EMS mutagenized Cakar et al. (2005)

Utilization of glucose, xylose, and

arabinose mix

S. cerevisiae Metabolic engineered and EMS

mutagenized

Wisselink et al. (2009)

Anaerobic growth on xylose S. cerevisiae Metabolic engineered and EMS

mutagenized

Sonderegger & Sauer (2003)

Xylose fermentation S. cerevisiae Metabolic engineered Shen et al. (2012)

S. cerevisiae Metabolic engineered, EMS mutagenized,

and genome shuffled

Demeke et al. (2013)

C. humilis, Candida humilis; S. cerevisiae, Saccharomyces cerevisiae; S. pastorianus, Saccharomyces pastorianus; S. uvarum, Saccharomyces uva-

rum; EMS, ethyl methane sulfonate; UV, ultraviolet.
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easy high-throughput screening, selecting for so-called

difficult phenotypes, such as general fermentation perfor-

mance or flavor production, is much more labor-inten-

sive and can limit the applicability of the strain

improvement technique. Below, different approaches to

select improved cells or hybrids from a heterogeneous

population are discussed.

Selection of phenotypically improved cells

In all screens of natural or artificially created yeast diver-

sity, the choice of the selection procedure is vital.

Depending on the targeted phenotype, this selection step

can be straightforward or extremely difficult and/or

labor-intensive. Cells with improved tolerance for a spe-

cific stress factor can be readily selected from a pool of

millions of different cells by applying this specific stress

and selecting the surviving or growing cells. For exam-

ple, cells with improved thermotolerance are easily iso-

lated by mass growth on high temperatures (Steinmetz

et al., 2002). Apart from selection procedures based on

improved stress tolerance, the use of chemical analogs of

nutrient sources or intermediary metabolites to select

mutants with an altered metabolism is a widely used

selection technique. The best-known examples are the

isolation of mutants defective in URA3 or LYS2 using a

selection medium supplemented with 5-fluoroorotic acid

(5-FOA) or a-aminoadipic acid (a-AA), respectively (Za-

ret & Sherman, 1985; Boeke et al., 1987). 5-FOA and

a-AA are analogs of intermediary metabolites in the bio-

synthesis of uracil and lysine, respectively, and each is

converted to a toxic compound by URA3 (in the case of

5-FOA) and LYS2 (in the case of a-AA). Cells that have

acquired a disruptive mutation in URA3 (or LYS2) will

not produce and accumulate the toxic compound any-

more and can thus grow on the supplemented medium.

Mutants containing these so-called counter-selectable

‘auxotrophic’ markers can then be used in, for example,

hybridization experiments (see section on ‘Generation of

artificial diversity’). Other examples where chemical ana-

logs can be used to select phenotypically improved vari-

ants are approaches to select cells lacking catabolite

repression. These experiments used fermentation med-

ium supplemented with nonmetabolizable glucose ana-

logs, such as glucosamine (Hockney & Freeman, 1980)

or 2-deoxyglucose (Jones et al., 1986). In addition, the

growth medium used in these experiments contained

maltose (or a different nonpreferred sugar) as the sole

assimilable carbon source. Consequently, only cells in

which the genes required for utilization of the nonpre-

ferred sugar are not inhibited by the glucose analog are

able to multiply. These mutants are of particular interest

for the beer industry, where efficient co-fermentation of

glucose and maltose, two important carbon sources in

beer wort, can significantly shorten the fermentation

time.

In other cases, it is difficult to directly select superior

variants. However, the close association of certain easy

and difficult phenotypes sometimes allows efficient selec-

tion for these latter phenotypes. For instance, genome

shuffling studies often ultimately aim for improving gen-

eral fermentation performance. However, because it

would be too laborious to test each of the newly gener-

ated hybrids individually in small-scale fermentations

(therefore making general fermentation performance a

‘difficult’ phenotype), researchers have found several ways

to circumvent this issue. Firstly, it is possible to carry out

a prescreening by subjecting the hybrid population to a

severe stress by plating the cells on medium that contains

for instance high ethanol or acetic acid levels, conditions

encountered during fermentation. Next, only fast-growing

colonies are tested individually in small-scale fermenta-

tions, and only superior hybrids are used for a next

round of shuffling (Shi et al., 2009; Zheng et al.,

2011a, b, 2013a, b; Tao et al., 2012). Other investigators

have instead tried to first improve stress tolerance and

found that hybrids generated after multiple rounds of

genome shuffling and selection also showed increased

general fermentation performance (Wei et al., 2008; Cao

et al., 2009, 2010, 2012; Hou, 2009; Wang & Hou, 2010;

Jingping et al., 2012; Lu et al., 2012; Wang et al., 2012a).

Alternatively, some researchers inoculated their entire

hybrid population in a very high-gravity fermentation

and harvested cells for a next round of shuffling when

the viability of the culture had considerably dropped,

thereby enriching for the best adapted hybrids (Hou,

2010; Liu et al., 2011).

Similar to general fermentation performance, screening

for cells with an improved flavor production profile can

be extremely difficult, because differences in flavor pro-

duction do not result in a clear and easily selectable fitness

advantage for the yeast cell. Therefore, the main bottle-

necks of strain improvement strategies for flavor produc-

tion are the labor-intensive fermentation experiments of

each individual hybrid or mutant, followed by measure-

ments of the produced flavor compounds to select the

individuals showing an improved flavor profile. To avoid

this, several strategies that use chemicals that favor strains

with a higher production of flavor (precursors) were

developed. For example, an increased production of spe-

cific aromatic higher alcohols can be achieved by selecting

strains with higher resistance to amino acid precursor ana-

logs, such as 5,5,5-trifluoro-D,L-leucine, a leucine analog,

2-fluoro-L-tyrosine, a tyrosine analog, or p-fluoro-DL-

phenylalanine, a phenylalanine analog (Fukuda et al.,

1991). These analogs select for cells with decreased feed-
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back inhibition of amino acid synthesis and increase the

production of, respectively, isoamyl alcohol, tyrosol, and

b-phenethyl alcohol. Cerulenin, an inhibitor of fatty acid

synthesis, is used to select for increased fatty acid synthesis

(Ichikawa et al., 2002; Vicente et al., 2006; de Souza et al.,

2012), yielding strains with increased ethyl ester produc-

tion. An increased production of isoamyl acetate (without

increasing ethyl acetate production) was achieved by

screening for resistance to pregnenolone. This steroid is

detoxified by Atf2, an enzyme also responsible for isoamyl

acetate, but not ethyl acetate, production (Kitagaki &

Kitamoto, 2013). These chemicals can therefore be used to

select cells with higher production of flavor compounds

from a huge heterogeneous pool of cells, thereby facilitat-

ing high-throughput selection of this difficult phenotype.

Other techniques exploit the physiological differences

(more specifically the tolerance to stress) of actively grow-

ing cells and cells in stationary phase. For example, the

higher temperature sensitivity of exponentially growing

cells compared to cells in stationary phase can be used to

enrich for auxotrophic mutants in a heterozygous popula-

tion (Walton et al., 1979). In this setup, a mutagenized

(and thus heterogeneous) pool of cells in stationary

phase, presumably containing some auxotrophic mutant

cells, are transferred to fresh fermentation medium, coun-

ter-selecting for specific auxotrophies and inducing expo-

nential growth of prototrophic cells. Next, exponentially

growing cells are selectively killed by high temperatures,

thereby enriching for auxotrophic mutants. Similarly, nys-

tatin (instead of high temperatures) can be applied,

because it acts selectively on actively growing cells (Snow,

1966; Sanchez et al., 1978).

Selection of outcrossed hybrids

In hybridization experiments, the hybridization efficiency

is often very low (e.g. in protoplast fusion), or inbreeding

is hugely favored (e.g. in interspecific mating experi-

ments), highlighting the importance of a good screening

strategy to select for outcrossed hybrids. Four main strat-

egies are designed to isolate outcrossed hybrids. Firstly,

both parental strains can be genetically transformed to

introduce resistance against different antibiotics, so that

outcrossed hybrids can be selected on medium supple-

mented with both antibiotics. To this end, plasmid-based

approaches (Nakazawa et al., 1999), genomic insertion of

resistance markers, and induction of antibiotic resistance

using mutagenic agents (Putrament & Baranowska, 1973;

Putrament et al., 1978) have been described. However, an

important disadvantage of the first two strategies is that

the resulting strains are GM strains, limiting their use in

the food and beverage industries. Secondly, if each start-

ing strain contains a different auxotrophy, outcrossed

hybrids will be prototrophic and can be selected on

appropriate selective medium. However, industrial strains

are rarely auxotrophic, and screening for spontaneous or

induced auxotrophic mutants is necessary (cf. infra).

Thirdly, phenotypic complementation is a method in

which each starting strain possesses a unique phenotype

that can be easily selected by, for instance, cryotolerance

or utilization of a specific carbon source, such as melibi-

ose, in which case the hybrids can be selected for the

presence of both phenotypes (Sato et al., 2002). Lastly,

each strain can be reversibly stained with a different fluo-

rescent dye, and after hybridization, fluorescence activated

cell sorting (FACS) can be used to enrich for dual-stained

cells (Bell et al., 1998). Alternatively, a combination of

each of these strategies can be used.

Discussion – pros and cons of exploiting

natural and artificial diversity

The existing natural diversity of yeast strains provides a

rich, yet underexplored source of strains with industrial

potential. Recent advances in next-generation sequencing

technologies have allowed scientists to chart the diversity

to an unprecedented level of detail. This revealed that the

genetic diversity of currently employed industrial strains

is relatively limited. Therefore, high-throughput screening

of (natural) yeast collections or investigation of the phe-

notypic potential of indigenous strains might already

yield yeasts with superior characteristics compared to the

currently used strains. Moreover, additional (artificial)

diversity can be generated through different strain

improvement techniques like mutagenesis, sexual hybrid-

ization, protoplast fusion, and directed evolution. These

strategies have successfully enriched the available biodi-

versity and yielded strains that valuably contributed to

many different industrial fermentation processes. Perhaps

the greatest promise lies in the combination of carefully

selecting the best strains from the immense natural biodi-

versity, followed by a (combination of) technique(s) to

further improve these natural yeasts in order to generate

superior variants for industrial use.

In contrast to the genetic modification approaches

described in the next section, one of the advantages of

the approaches described above is that the resulting supe-

rior yeasts are mostly considered to be non-GMO, and

food and beverages produced with these yeasts do not

suffer from any problems with specific legislation and/or

consumer acceptance. Moreover, they do not require an a

priori knowledge of the genetic circuitry underlying the

phenotype under study. In this way, complex polygenic

phenotypes, such as ethanol tolerance, can be improved,

without knowing exactly which genes need to be targeted.

This allows scientists to use less well-described, noncon-
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ventional yeasts in improvement experiments. For exam-

ple, efficient mutagenesis experiments targeting the basid-

iomycetous yeast P. rhodozyma have been performed for

many decades (Brehm-Stecher & Johnson, 2012), while

only very rudimentary genetic manipulation techniques

are available for this organism (Lin et al., 2012). Addi-

tionally, detailed analysis of improved strains (whole-gen-

ome sequencing, expression analysis,. . .) can yield

valuable insights into how a specific trait is established.

This in turn can point to possible targets for genetic or

metabolic engineering and can thus guide other methods

of strain improvement.

On the other hand, these ‘non-GMO’ techniques also

have important limitations. First and foremost, they only

allow changing yeasts within the limitations of what is

achievable through natural diversity, mutation, and cross-

ing. Secondly, it is often difficult to select the few cells

that show improved properties from the large and hetero-

geneous pool of cells. This prevents some industrially

desired phenotypes, such as increased production of spe-

cific flavor compounds, for which a clear fitness advan-

tage has not been discovered (yet), from being efficiently

improved through these approaches. In these cases, selec-

tion has to be carried out on individual clones (e.g. in

separate fermentation experiments), thereby severely lim-

iting the pool of variants from which improved strains

can be selected. In these cases, the best strategy to obtain

improved variants is often the use of directed mating,

rare mating, or protoplast fusion, where (in contrast to,

e.g., mass mating or genome shuffling) parental strains

can be thoroughly screened prior to the hybridization

event. Thirdly, selection is often limited to the specific

phenotype targeted, while other phenotypes are not under

selection and may therefore deteriorate during the experi-

ment. This can result in so-called crippled strains: strains

performing only well for the targeted phenotype, but per-

forming worse than the parental strain for other (indus-

trially) important phenotypes that were not selected for.

To circumvent this issue as much as possible, investiga-

tors have tried to evolve (in case of experimental evolu-

tion) or select (in case of the other approaches) strains or

mutants under conditions very similar to the conditions

in which the improved strain will be used in industry.

However, practical limitations often prevent mimicking a

full-scale industrial setting. Fourth, the complex ploidy of

feral and industrial strains (which are often polyploid or

even aneuploid) and their distinctive sexual life cycle

(which is often characterized by poor sporulation effi-

ciency, low spore viability, and/or homothallism) can

severely hamper the success of improvement strategies

such as sexual hybridization. Additionally, because of the

lack of a sexual life cycle (or if it is not yet discovered),

sexual hybridization experiments of several nonconven-

tional yeasts, such as Candida stellata (an indigenous

wine yeast with interesting oenological properties, cf.

infra), are not possible.

Nonetheless, several of these disadvantages can be cir-

cumvented by carefully considering the genetic character-

istics of the target strain(s) when one selects an

improvement strategy, or by combining different tech-

niques. For example, induction of auxotrophies by muta-

genesis in industrial strains unable to sporulate (and thus

unfit for use in sexual hybridization experiments) can

provide mutants with appropriate selection markers for

rare mating or protoplast fusion experiments. Alterna-

tively, recombinant DNA technologies can be used, an

approach that allows a more targeted strain improvement,

which enables researchers to cross the borders of what is

present in nature or achievable by mutations or hybrid-

ization. This approach will be further discussed in the

next section.

Genetic modification

Introduction

The best documented approach of yeast improvement is

genetic modification. Genetic modification comprises the

controlled and precise modification of an organism’s gen-

ome using recombinant DNA and other molecular tech-

niques, in order to alter a trait of interest. Initial

applications of genetic modification consisted of produc-

ing human proteins in bacteria and yeast for therapeutic

treatments (e.g. Itakura et al., 1977). By modifying exist-

ing biochemical pathways, or even introducing complete

heterologous pathways, a huge array of genotypic and

phenotypic variability can be generated using recombi-

nant DNA technology. Although this technique is already

widely accepted in the pharmaceutical industry, the

implementation of GMOs in the food or biofuel industry

is still heavily debated.

Strain improvement by genetic modification differs

from the non-GMO approaches described above in two

important characteristics. Firstly, the DNA of the organism

is changed in a specific, predetermined manner, without

changing other parts of the genome. This implies that, in

theory, one or several phenotypes can be changed, without

negatively affecting other important characteristics. This

reduces the chance of creating ‘crippled’ strains (cf. supra).

Second, the technique is not limited to naturally occurring

or randomly induced mutations. Modern technologies

enable changing the DNA code in almost any possible way

– including the transfer of DNA between different species,

genera, or kingdoms, and the construction of completely

artificial, man-made DNA fragments or even complete

chromosomes and genomes (Gibson et al., 2008; Dymond
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et al., 2011). On the other hand, genetic modification also

has several limitations compared to non-GMO techniques.

Most importantly, genetic modification requires insight

into the genetic alterations needed to obtain a desired phe-

notype. However, some of the newest applications of

genetic modification circumvent this problem by, for

example, applying ‘inverse metabolic engineering’ or by

combining high-throughput and ‘semi-random’ genetic

modification with selection techniques described above

(e.g. ‘global transcription machinery engineering’). A sec-

ond limitation is that genetic modification often involves

optimization of specific cloning vectors and transforma-

tion protocols and tools for each organism.

Here, we summarize traditional as well as more recent

and future approaches for genetically modifying industrial

yeasts and discuss several recent industrially relevant out-

comes. Although interesting, a historical overview and a

discussion of the currently applied shuttle vectors and

transformation protocols are only briefly mentioned, but

are described extensively elsewhere (e.g. by Struhl, 1983;

Gietz & Woods, 2001; Da Silva & Srikrishnan, 2012). The

first part of this section will focus on Saccharomyces

yeasts, while the genetic improvement of a few other,

nonconventional yeasts with a well-established role in the

fermentation industry is discussed separately.

Principles of genetic modification

Recombinant DNA technology

Whereas model bacteria like Escherichia coli are relatively

easy to manipulate genetically because of their natural pro-

pensity to take up and incorporate foreign extracellular

DNA, the uptake of foreign DNA into yeast is less efficient,

and it was not until the seminal work by Hinnen, Hicks,

and Fink in 1978 that yeast was genetically transformed

efficiently (Hinnen et al., 1978). Since then, multiple differ-

ent techniques and strategies have been developed to intro-

duce recombinant DNA in yeast cells (reviewed by Gietz &

Woods, 2001), and many different vectors (usually shuttle

plasmids) and transformation protocols were designed to

efficiently introduce DNA fragments.

There are two major ways to efficiently express foreign

DNA in yeasts: using plasmids or fixed integration in the

host’s genome (or a combination of both). Several types

of plasmid vectors exist, which allow variation of the

copy number of the introduced DNA fragment (e.g. 10–
40 copies per cell for ‘YEp’ vectors and 1–2 copies per

cell for ‘YCp’ vectors; Clarke & Carbon, 1980; Christian-

son et al., 1992; Romanos et al., 1992). To ensure stability

over multiple generations, these low-copy number ‘YCp’

vectors carry an origin of replication and a centromere

sequence which allows for a high segregational stability of

the plasmid under selective conditions. On the other

hand, multicopy plasmids have limited segregational sta-

bility, which can lead to copy number variation between

cells of the same population and thus also cell-to-cell

expression heterogeneity.

Engineering of a yeast strain (e.g. for the production of

a specific compound) often requires the introduction of

multiple heterologous genes or genetic modifications.

However, stably maintaining multiple plasmids in one

cell, each with a different gene construct, can be difficult

(Futcher & Carbon, 1986). Bidirectional promoter plas-

mid series as well as yeast artificial chromosomes exist for

these purposes (Murray & Szostak, 1983; Miller et al.,

1998; Li et al., 2008). However, the method of choice for

introducing multiple genes is usually integration into the

yeast genome. Issues with segregational stability and copy

number control when plasmids are used for the introduc-

tion of heterologous genes, as well as the need for specific

selective conditions during cell propagation to ensure

plasmid maintenance and stability, make that a genetically

stable engineered strain is usually created by integrating

DNA into the yeast genome by homologous recombina-

tion. Vector- or PCR-based generated DNA fragments are

generally used for insertion. Homologous recombination

is highly efficient in S. cerevisiae: small flanking regions of

homology (30–45 bp) are sufficient for targeted integra-

tion into the yeast genome (Manivasakam et al., 1995).

Locations in the yeast genome that are often used for the

integration of heterologous DNA fragments include rRNA

genes (Lopes et al., 1989) and delta sequences (Sakai

et al., 1990; Lee & Da Silva, 1997). When multiple genes

need to be integrated, a dispersed nature of integration

sites causes the inserted DNA fragments to be more stably

maintained than when tandemly inserted (Da Silva &

Srikrishnan, 2012).

As mentioned above, there are also several different

transformation protocols described. While the initial

transformation protocol (Hinnen et al., 1978) entailed

the spheroplasting of yeast cells prior to transformation,

protocols using intact cells are considered the golden

standard today. The use of intact cells in transformation

protocols was already mentioned in 1981. It was fine-

tuned in a decisive paper by Ito et al. (1983) describing

how alkali cations (such as Li+) in combination with

polyethylene glycol (PEG) increased the efficiency of plas-

mid DNA uptake. In the next decades, small changes

(including the addition of single-stranded carrier DNA or

RNA) were made to the protocol, ultimately leading to

the transformation method of choice for most yeast sci-

entists today (Gietz & Woods, 2001). Alternative methods

using electroporation or glass beads successfully increased

the speed of the protocol, but are often less preferred due

to higher equipment costs (electroporation) or a lower
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yield of transformants (glass beads; Gietz & Woods,

2001). For the introduction of mitochondrial genes, the

most effective current protocol includes the use of biolis-

tic methods, where yeast cells are bombarded with 0.5-

lm gold or tungsten projectiles coated with DNA using

compressed helium.

From genetic to metabolic engineering

In the 1980s and especially the 1990s, many research

groups adopted the principles of recombinant DNA tech-

nology and started developing new, improved yeast

strains for industrial processes using this technology (De-

quin, 2001). Initially, these experiments were focusing on

single genes and enzymes, aiming to manipulate genes

directly involved in creating the product of interest (Tyo,

2008). This approach is mostly referred to as ‘genetic

engineering’, although this term is often used in a

broader context. In 1991, two seminal papers (Bailey,

1991; Stephanopoulos & Vallino, 1991) introduced a

novel systematic approach of genetic modification where

multiple genes were targeted, termed ‘metabolic engineer-

ing’. This technique uses directed modification of meta-

bolic pathways and/or their regulation to optimize or

establish the synthesis of various products (Ostergaard

et al., 2000; Stephanopoulos, 2012). The main targets for

modulation are enzymes, transporters, and regulatory

proteins (Woolston et al., 2013). The opportunities of

metabolic (and genetic) engineering include adjusting or

fine-tuning the (1) gene expression level, (2) gene expres-

sion regulation, (3) in vivo protein/enzyme activity, and

(4) protein subcellular location (Nevoigt, 2008). Key in

this approach is the availability of detailed genetic infor-

mation about the relevant pathways, enzymes, and their

regulation. Using this information, a model on how these

protein activities can be optimized to achieve the desired

metabolic flux or phenotypic trait is built, and targeted

genetic modifications using recombinant DNA technology

are performed.

When aiming to optimize a specific trait by metabolic

engineering, there are several important factors to keep in

mind. First, high expression levels of heterologous genes

are not always desirable because it can impose a signifi-

cant metabolic burden on the cell (e.g. through the deple-

tion of cofactors). Moreover, high enzyme levels do not

necessarily correspond to the optimal level needed for

production of a specific compound (see, for example, the

article by Jin et al., 2003). Therefore, optimization of

both the promoter and terminator region of the targeted

gene(s) is crucial. Both constitutive and inducible

promoters of varying strength are available for metabolic

engineering of yeast, and several expression-enhancing

terminators for S. cerevisiae were identified (Curran et al.,

2013). Additionally, several methods to develop synthetic

promoter libraries with promoter variants spanning a

wide range of ‘activities’ have been developed (Jensen &

Hammer, 1998; Jeppsson et al., 2003; Alper et al., 2005).

This allows researchers to perform screenings with these

libraries in order to fine-tune gene expression for their

specific application. For example, error-prone PCR (see

‘Novel techniques’) was applied to the strong constitutive

TEF1 promoter of S. cerevisiae, generating promoters with

a strength ranging from 8% to 120% of the native TEF1

promoter (Alper et al., 2005; Nevoigt et al., 2006). A sim-

ilar approach was used to generate a promoter library

based on the constitutive GAP promoter for

Komagataella (Pichia) pastoris (Qin et al., 2011).

Secondly, expression levels of multiple genes of a par-

ticular pathway often need to be optimized to balance

metabolic flux within this pathway. For example, multiple

gene promoter shuffling allows to find the optimal levels

of expression of multiple genes at a time (Lu & Jeffries,

2007). In this approach, promoters of varying strength

are fused to the genes of interest, these constructs are

joined via ligation, and subsequently, a screen for the

phenotype of interest is performed. A similar method,

termed COMPACTER (customized optimization of meta-

bolic pathways by combinatorial transcriptional engineer-

ing), was used for fine-tuning the expression of

heterologous genes involved in xylose and cellobiose me-

tabolization pathways introduced in S. cerevisiae (Du

et al., 2012). This latter study also demonstrated that the

optimal expression level strongly depends on the genetic

background.

Thirdly, apart from regulation at the level of transcrip-

tion, protein levels also depend on translational efficiency,

and this in turn is highly influenced by codon usage.

Codon optimization of heterologous genes, by changing

codons to codons of highly expressed genes, such as gly-

colytic genes in the case of S. cerevisiae, can significantly

increase protein levels (Wiedemann & Boles, 2008; Brat

et al., 2012). Interestingly, even expression of endogenous

genes can be increased through codon optimization (Brat

et al., 2012).

Inverse metabolic engineering

As already indicated above, a crucial factor determining

the applicability of metabolic engineering is the detailed

knowledge and understanding of genetics underlying a

certain trait or pathway. The lack of knowledge often

impedes the success of metabolic engineering approaches,

even for an intensively characterized model organism like

S. cerevisiae. To circumvent this drawback, a novel

approach of metabolic engineering called ‘inverse meta-

bolic engineering’ was described (Bailey et al., 2002), con-
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ceptually identical to the more generally used term

‘reverse engineering’ (Oud et al., 2012). Roughly put, the

rationale of inverse metabolic engineering is very similar

to classical biochemical genetics, yet including newer

techniques.

In this approach, the initial step consists of unraveling

the genetics underlying an interesting, but genetically

cryptic phenotype observed in a certain strain or condi-

tion. Next, this information is used to optimize a produc-

tion strain. In practice, the first step can be achieved by

screening a heterogeneous yeast collection for the pheno-

type of interest. The diversity in the collection can both

be natural (e.g. a large collection of different industrial

strains) or artificially created (e.g. by mutagenesis or gen-

ome shuffling). Next, the genotype–phenotype relation-

ship of this trait must be unraveled. This can be

accomplished by genetic mapping or genetic association

analysis (reviewed by, e.g., Liti & Louis, 2012) or by using

-omics technologies to analyze differences in gene,

mRNA, protein, or metabolite abundance in different

conditions or in different strains and link it to the

observed phenotype. Lastly, this information is used to

genetically modify a production strain.

Inverse metabolic engineering has already yielded vari-

ous industrial strains (cf. infra; Bro et al., 2005; Blieck

et al., 2007; Rossouw et al., 2008; Yoshida et al., 2008;

Perez-Torrado et al., 2010; Duong et al., 2011). A clear

example of how inverse metabolic engineering can be

applied to target complex phenotypes is a study by

Rossouw et al. (2008). By studying the transcriptome

and exo-metabolome of several wine yeasts during

fermentation conditions, a link between expression of cer-

tain genes (BAT1, AAD10, AAD14, and ACS1) and pro-

duction of aroma compounds was identified and

subsequently confirmed by overexpressing these genes in

a commercial wine yeast (Rossouw et al., 2008). Similarly,

Yoshida et al. (2008) identified genes involved in sulfite

production of baker’s yeast by combined analysis of the

transcriptome and endo-metabolome, and successfully

applied this knowledge to engineer a lager’s yeast strain

that produced high sulfite, but not excessive sulfide con-

centrations (Yoshida et al., 2008).

Synthetic biology

A relatively new and incredibly powerful strategy for

creating novel industrial yeast strains relies on synthetic

biology. Broadly, the goal of synthetic biology is the

design and construction of new biological parts, devices,

and systems [ranging from (parts of) single genes to com-

pletely new organisms], or re-designing existing, natural

biological systems for useful purposes. Using individual

genetic elements (sometimes referred to as ‘biobricks’),

synthetic biology assembles more complex genetic systems

such as metabolic pathways (Stephanopoulos, 2012). The

term ‘synthetic biology’ comprises two different

approaches: The first is the use of man-made molecules

to mimic natural molecules with the goal of creating

artificial life. The second is the use of natural molecules

to assemble a system that acts unnaturally.

Although S. cerevisiae has many desirable characteristics

for use in synthetic biology, the preferred model organ-

ism of synthetic biologists is E. coli (see, e.g., the articles

by Fung et al., 2005; Levskaya et al., 2005). However, the

pioneering work of the J. Craig Venture institute has

shown that yeasts have the ability to assemble and main-

tain entire bacterial genomes, indicating that large syn-

thetic networks could be constructed and implemented in

the yeast’s DNA arsenal (Gibson et al., 2008). Moreover,

the Synthetic Yeast 2.0 (Sc2.0) project, a project seeking

to reconstruct and redesign the full S. cerevisiae yeast gen-

ome, is progressing swiftly. This recently yielded the pub-

lication of the first partially synthetic eukaryotic

chromosomes, synIXR, and semi-synVIL (Dymond et al.,

2011).

Production of certain valuable compounds through

complex pathways was already achieved in S. cerevisiae,

for example the antimalarial drug precursor artemisinic

acid (Ro et al., 2006). In this study, a mevalonate path-

way, amorphadiene synthase (ADS), and a novel cyto-

chrome P450 monooxygenase (CYP71AV1) from

Artemisia annua were introduced and expressed in S. ce-

revisiae, yielding titers up to 100 mg L�1 of artemisinic

acid when cultured in a simple growth medium.

Theoretically, the possibilities of synthetic biology are

endless. However, it is unlikely that creating fully func-

tional and optimal yeasts for industrial processes from

scratch will occur in the very near future. Although it is

often stated that the availability of biobricks will be the

major bottleneck in advances in synthetic biology, a more

fundamental challenge will likely be to completely map and

design a functional cell and optimize it to the level of

robust performance required for commercial operation

(Stephanopoulos, 2012). That is why, so far, the majority

of studies applying synthetic biology are still leaning more

toward basic biology rather than applied research (Serrano,

2007; Dymond et al., 2011; Voordeckers et al., 2013).

GM Saccharomyces yeasts for the production

of fermented foods

The use of GM yeasts in food fermentation processes is

still controversial and heavily debated. Nonetheless,

numerous research groups and companies are using

genetic modification to alter industrial yeast properties.

In this section, an overview of the most notable progress
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in industrial yeasts engineered with recombinant DNA

technologies for the production of foods and beverages is

given. Phenotypes that are often targeted in these strains

can be broadly categorized into four different groups: (1)

propagation, fermentation and storage efficiency, (2) sen-

sorial quality of the end product, (3) health-related qual-

ity of the end product, and (4) microbial stability. It is

important to note that some phenotypes show overlap

between these different areas; for example, the production

of a high concentration of glycerol can be both of senso-

rial importance and a health-driven approach to lower

the ethanol content of beverages. Below, some examples

of previous research studies in these areas are discussed;

an extensive overview is given in Supporting Information,

Table S2.

Propagation, fermentation, and storage efficiency

Environmental conditions during fermentation or propa-

gation are often harsh for yeast cells, which are faced

with, and must quickly respond to, fluctuations in dis-

solved oxygen concentration, pH, osmolarity, ethanol

concentration, nutrient supply, and temperature

(reviewed by Gibson et al., 2007). Hence, the develop-

ment of more robust strains that are still capable of pro-

ducing a high-quality end product is a prime focus in

biotechnology (Kim et al., 1996; Perez-Torrado et al.,

2002, 2010; Panadero et al., 2007; Kaino et al., 2008; Go-

mez-Pastor et al., 2012). For example, using an inverse

metabolic engineering approach, Perez-Torrado et al.

(2010) identified two genes, CAF19 and ORC2, important

for osmotolerance. Overexpression of these genes exerted

a positive impact on the leavening activity of baker’s

yeast. In a different study, Kaino et al. (2008) improved

the freeze tolerance of baker’s yeast by increasing the

intracellular proline accumulation. Disrupting PUT1

(encoding a proline oxidase) and replacing the wild-type

PRO1 (encoding a c-glutamyl kinase) by a modified allele

less sensitive to proline feedback inhibition significantly

increased the freeze tolerance of commercial baker’s yeast

without influencing the fermentation ability.

The composition of the medium used for fermentation

or propagation can be another cause of suboptimal yeast

performance. Molasses for example, a cheap medium

classically used for yeast propagation, is generally subopti-

mal for the generation of high amounts of biomass of

Crabtree-positive yeasts, like S. cerevisiae, because these

yeasts prefer a fermentative lifestyle when glucose is pres-

ent, which leads to inefficient use of the substrate. Regu-

lation of the central carbon flux to improve biomass yield

has been a major target in strain improvement. For

example, overexpression of HAP4, a transcriptional regu-

lator of respiration-related genes, led to a redirection

from fermentation to respiration flux and a concomitant

increase in biomass production (Duenas-Sanchez et al.,

2010). In many cases, multiple nonpreferred carbon

sources, like maltose, maltotriose, galactose, fructose, and

melibiose, or nonpreferred nitrogen sources, like proline

and arginine, are present in the propagation or fermenta-

tion medium used in industrial applications. Efficient uti-

lization of these nutrients can be achieved by neutralizing

catabolite repression or modifying various regulators,

enzymes, or transporters (Klein et al., 1996; Salmon &

Barre, 1998; Higgins et al., 1999; Guillaume et al., 2007).

For example, in the wine industry, stuck fermentations

are sometimes caused by the inability of yeast to metabo-

lize all fructose present in the wine must. By introducing

a mutated HXT3 gene (coding for a hexose transporter),

wine yeasts can become able to completely ferment grape

must sugars (Guillaume et al., 2007). Similarly, introduc-

tion of a modified high-affinity specific proline permease

gene (PUT4) in a lager yeast resulted in strains with an

improved proline assimilation profile during lager fer-

mentations (Omura et al., 2005). Furthermore, a beer

yeast able to utilize dextrins, leading to the production of

highly attenuated beers, was the first GM strain that was

approved by the British government for commercial use

(Hammond, 1995; cf. supra). However, due to the nega-

tive perception of GMOs by consumers (often fueled by

specific organizations), this strain has never attained com-

mercial success.

Lastly, yeast physiology can also be altered to facilitate

downstream handling of the fermentation product. For

example, flocculation facilitates the removal of the bio-

mass and thus clarification of, for example, beer or spar-

kling wine. Related to this phenotype is ‘flotation’, which

is the ability of yeast cells to trap CO2 bubbles in a fer-

menting liquid and form a film or vellum at the top of

fermentation vessels, for example in traditional ales or

flor sherry (Pretorius, 2000; Verstrepen et al., 2003a, b).

Both traits are linked to expression of FLO genes, and

modifying these genes (Ishida-Fujii et al., 1998) or cou-

pling their expression to a suitable promoter (Verstrepen

et al., 2001) can enable appropriate timing and intensity

of yeast aggregation.

Sensorial quality

The distinctive aroma of wine, beer, sake, spirits, bread,

and all other fermented foodstuffs is highly affected by

many yeast-associated compounds, including esters,

higher alcohols, ketones, phenolic compounds, sulfuric

compounds, and terpenes. Consequently, increased or

decreased production of these aroma-active compounds is

a main focus of several studies. In addition, yeast-induced

flavor stability has also received some attention, for
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example by increasing the production of antioxidants

such as glutathione and sulfite, which delays staling of

fermented beverages.

Although volatile esters and higher alcohols are only

present in trace amounts in fermented beverages such as

beer and wine, they are extremely important for the fla-

vor profile (Verstrepen et al., 2003b). As already men-

tioned above, strains with improved flavor production

cannot be easily selected from large pools of variants, and

therefore, many improvement strategies targeting this

phenotype, such as genome shuffling or directed evolu-

tion, require testing of individual clones. As a result,

much research has focused on the use of genetic modifi-

cation to produce strains with superior ester and higher

alcohol profiles. The regulatory mechanisms and factors

influencing the production of these secondary metabolites

are still not completely understood, but fine-tuning

expression of specific genes, like ATF1, BAT1, and EHT1,

has proven to be a fruitful strategy for strain improve-

ment (Hirata et al., 1992; Lilly et al., 2000, 2006; Verstre-

pen et al., 2003b; Blieck et al., 2007; Rossouw et al., 2008;

Zhang et al., 2013).

Similarly, reduction of unwanted off-flavors, like diace-

tyl and dimethyl sulfide (DMS) in beer or H2S in wine or

beer, is also an important target in strain improvement.

Interestingly, some aroma-active compounds, like 4-vinyl

guaiacol, a phenolic compound, are considered to be

unwanted off-flavors in some fermented beverages (e.g. in

most ale beers or sake), while in limited concentrations

they are perceived positively in certain wines. As a result,

some studies focus on eliminating phenolic compounds

from yeast metabolism, while others try to promote or

balance their production, for example by introducing het-

erologous genes encoding a phenolic acid decarboxylase

from Bacillus subtilis and the p-coumaric acid decarboxyl-

ase from Lactobacillus plantarum. This approach leads to

a significant increase in the formation of volatile phenols

(Smit et al., 2003).

The potential of yeast strains to produce or utilize cer-

tain organic acids, and therefore influence the (volatile)

acidity or rheology of the food, is another major focus

for strain improvement. Obtaining a balanced acidity

profile by fine-tuning production of citric, succinic, malic,

lactic, and acetic acid, or allowing yeasts to perform

malolactic wine fermentations, have all been studied in

detail. ML01, a strain engineered for this latter purpose,

has been approved for commercial wine production in a

number of countries, including the USA, Canada, and

Moldova (Chambers & Pretorius, 2010). This strain car-

ries two chromosomally integrated heterologous genes –
the Schizosaccharomyces pombe malate transporter

gene (mae1) and the Oenococcus oeni malolactic enzyme

gene (mleA) – regulated by the S. cerevisiae PGK1 pro-

moter and terminator, and is able to simultaneously

metabolize malic acid and perform an alcoholic fermenta-

tion (Husnik et al., 2006).

Health-related quality

There is an increasing interest to use genetic modification

to improve the nutritional and/or health-promoting qual-

ities of foods. For example, decreasing the concentration

of ethyl carbamate, a suspected carcinogen that occurs in

most fermented foods and beverages, is an important

goal. In aging wines or sake, the concentration of ethyl

carbamate, which is mainly formed by a spontaneous

reaction of ethanol with urea, can be relatively high (Pre-

torius & Bauer, 2002; Dahabieh et al., 2010). By adjusting

the urea catabolism of the yeast strain, ethyl carbamate

concentrations can be significantly lowered (Kitamoto

et al., 1991; Coulon et al., 2006; Dahabieh et al., 2010).

The most successful resulting strain so far, called 522EC�,
was approved for commercial use (Chambers & Pretorius,

2010). In 522EC�, DUR1,2 is constitutively expressed,

causing the degradation of urea and thus minimizing the

amount of urea released in the medium (Coulon et al.,

2006).

Secondly, the production of health-promoting sub-

stances such as antioxidants and/or compounds that are

believed to protect against DNA damage also becomes

more and more important (Becker et al., 2003; Wang

et al., 2011). Because S. cerevisiae does not produce most

of these compounds naturally, heterologous expression

of genes from other species is required. For instance,

carotenoids, tetraterpenoids consisting of 40 carbon

atoms, are of interest because they possess antioxidant

activities, but can also be applied as coloring agents (see

the review by Victor & Bhatia, 2012). Early studies

reported b-carotene and lycopene production, although

at low levels, in S. cerevisiae by overexpression of the bac-

terial genes involved in biosynthesis of carotenoids from

episomal vectors (Yamano et al., 1994). Higher levels

[5.9 mg g�1 (dry weight)] of b-carotene were achieved by

chromosomal integration and overexpression of genes

from the red yeast X. dendrorhous (Verwaal et al., 2007).

Terpenes are another class of molecules that, in addi-

tion to their contribution to the aroma of fermented

foodstuffs and use as dyes, are of interest for nutritional

and medical purposes. Various metabolic engineering

strategies in S. cerevisiae have been adopted to express

terpenes (described, for instance, by Liu et al., 2013). For

example, Rico et al. (2010) engineered a wine yeast to

produce linalool by the heterologous expression of the

linalool synthase gene from Clarkia breweri. In addition,

the titer could be doubled by overexpression of the

native enzyme 3-hydroxy-3-methylglutaryl coenzyme A
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reductase, which formed the rate-limiting step in the

endogenous mevalonate pathway.

Resveratrol is a compound that, apart from its antifun-

gal characteristics, has been proposed to reduce the risk

of cancer and coronary heart disease (Jang et al., 1997;

Becker et al., 2003). Introducing a low-affinity, high-

capacity E. coli arabinose transporter gene (araE) or

introducing a mutated, codon-optimized tyrosine ammo-

nia lyase gene from Rhodobacter sphaeroides into yeast sig-

nificantly enhanced resveratrol production (Wang et al.,

2011). In addition, Sydor et al. (2010) expressed the Ara-

bidopsis thaliana gene coding for 4-coumaroyl-coenzyme

A ligase and the Vitis vinifera gene for stilbene synthase

in various strains and found that, together with using rich

medium, an industrial sugarcane-fermenting yeast strain

reached a resveratrol titer of 391 mg L�1.

Thirdly, due to the increasing demand for healthier

foodstuffs, the reduction of ethanol and carbohydrates in

alcoholic beverages, especially beer and wine, is of consid-

erable commercial interest (Pretorius, 2000; Kutyna et al.,

2010; Saerens et al., 2010). Reducing the level of (nonfer-

mentable) dextrins in beer wort yields beers with less car-

bohydrates and thus a lower caloric content. The

production of such ‘light’ or ‘diet’ beers can be achieved

by adding exogenous enzymes (which is inefficient and

expensive) or by developing yeast strains that can pro-

duce and secrete starch-decomposing enzymes such as a-
amylase (Perry & Meaden, 1988; Steyn & Pretorius, 1991;

Hammond, 1995; Randezgil et al., 1995; Marin et al.,

2001). A dextrin-assimilating brewer’s yeast,

equipped with the S. cerevisiae (var. diastaticus) gene

STA2, encoding an extracellular glucoamylase, is one of

the few genetically engineered strains to receive official

approval for commercial use from the British Govern-

ment (Hammond, 1995; Dequin, 2001). However, as

already mentioned above, negative perception of this

GMO by consumers hampered its commercial success.

Next to low-calorie beverages, there is an increasing

demand from both consumers and producers for fer-

mented beverages with reduced alcohol content, but with-

out the loss of product quality (Kutyna et al., 2010). It is

argued that excessive alcohol levels in wines can compro-

mise wine quality and cause health issues, while the costs

to the consumer in countries where taxes are calculated

based on ethanol content increase. Approaches imple-

menting additional processing steps, like postfermentation

removal of alcohol, or modified fermentation parameters,

yielded only beverages with inferior quality and usually

implicated extra processing costs. Numerous strategies,

mainly based on targeting genes involved in glycerol pro-

duction or regulating the redox balance, have been

described to alter yeast carbon flux in order to reduce

ethanol production. Due to the drastic nature of this

metabolic reorganization, a balanced and well-considered

combination of different strategies, for example as

described in Cordier et al. (2007), will probably yield the

most useful outcome. This strategy employs the combined

effect of genes involved in glycerol production and trans-

port (FPS1 and GPD1), conversion of DHAP to GAP in

the glycolysis pathway (TPI), and the conversion of acet-

aldehyde to ethanol and acetic acid (ADH1 and ALD3).

Because of the high consumer concerns about safety

and other health-related properties of foodstuffs, and the

solutions GM yeasts can provide for these potential prob-

lems, it is plausible that the use of GMOs in this field

might be the key to a more rational and balanced con-

sumer attitude to GMOs in the field of foods and bever-

ages and pave the way for broader applications.

Microbial stability

The quality of fermentation products largely depends on

the microbial actors in the fermenter. Contamination

during the fermentation usually has dramatic effects on

the fermentation efficiency and/or sensorial quality of the

end product. To prevent contamination by other micro-

organisms during fermentation, yeast strains with antimi-

crobial properties have been developed, either by

hybridization or by genetic engineering. The most com-

monly applied strategy is to equip the yeast strain with a

killer phenotype, such as K1 (Boone et al., 1990), which

makes it capable of producing antifungal toxins, to

which the strain itself is immune (Schmitt & Breinig,

2002). Sporadically, there are reports of strains with other

engineered antifungal (Carstens et al., 2003) or antibacte-

rial properties (Schoeman et al., 1999).

GM Saccharomyces yeasts for the production

of biofuels

The modern biofuel industry confronts industrial micro-

organisms with specific challenges that differ from those

encountered in many food fermentations. Whereas S. ce-

revisiae has been used for thousands of years in a wide

range of food-related fermentations, the substrates used

for these traditional fermentations differ significantly

from the complex substrates and harsh conditions in sec-

ond-generation biofuel production processes. Moreover,

S. cerevisiae is now also used to produce a range of

different biofuels such as butanol, which is not a natural

fermentation product of the common brewer’s yeast.

Microorganisms that naturally utilize these complex sub-

strates or produce these compounds, such as Sc. stipitis

for xylose metabolism and Clostridium acetobutylicum for

butanol production, come with disadvantages. These

include a lack of knowledge on genetics and physiology,
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limited stress and/or alcohol tolerance, and the lack of a

molecular toolbox to modify the organism’s characteris-

tics (Alper & Stephanopoulos, 2009). Metabolic and

genetic engineering strategies have been and still are being

developed to modify the classical fermentation workhorse

S. cerevisiae in order to tackle these new challenges. A

detailed overview of all metabolic engineering strategies

for biofuel production falls outside the scope of this

review, but in this section we briefly discuss the most

important contributions of genetic modification to vari-

ous characteristics relevant to the modern biofuel indus-

try.

Substrate range

Saccharomyces cerevisiae efficiently ferments a range of

hexose sugars (including the disaccharide maltose and the

trisaccharide maltotriose) into ethanol, and it is therefore

the organism of choice in first-generation bioethanol pro-

duction. However, it cannot consume pentose sugars like

xylose, the most abundant pentose in lignocellulose and

the chief substrate for second-generation biofuels.

Researchers have explored two main strategies to introduce

and express genes from various pentose-utilizing microor-

ganisms into S. cerevisiae, in order to make it capable of

utilizing these nonpreferred sugars [see reviews by Van

Vleet & Jeffries (2009) and Young et al. (2010)]. In the

first strategy, expression of heterologous genes, typically

from Sc. stipitis, coding for xylose reductase (XR) and xyli-

tol dehydrogenase (XDH) allowed xylose fermentation

(Tantirungkij et al., 1993). However, the resulting strains

were suboptimal because XR and XDH require different

co-factors (NADPH vs. NAD+), causing a cellular redox

imbalance that in turn leads to the secretion of xylitol and

a low ethanol yield. Protein engineering, experimental

evolution, and fine-tuning of gene expression have been

used to further improve these strains. While some strains

show significant improvements, yields are often still too

low for successful commercial applications (reviewed by

Matsushika et al., 2009).

A second strategy to obtain xylose-fermenting S. cerevi-

siae strains exploits a metabolic route mainly present in

prokaryotes. A heterologous gene coding for xylose isom-

erase is expressed in S. cerevisiae, allowing a one-step con-

version from xylose to D-xylulose, which can be readily

utilized by S. cerevisiae, albeit at low rate (Kuyper et al.,

2003; van Maris et al., 2007; Madhavan et al., 2009). This

strategy circumvented the redox imbalance problem of

the first strategy, but xylose consumption rates turned

out to be lower (Madhavan et al., 2009). To further

improve these strains, additional metabolic and evolu-

tionary engineering strategies were used, again with

varying levels of success (Matsushika et al., 2009).

In addition to targeted metabolic engineering strategies

to further optimize xylose fermentation, other techniques

have also been used. Interestingly, these techniques com-

bine aspects of non-GMO techniques (where the best-per-

forming organisms are selected from a large pool of natural

or man-made variants) with genetic modification. For

instance, Liu et al. (2008) adopted global transcription

machinery engineering (gTME; see section on ‘Novel tech-

niques’ below) to select mutants on medium with xylose as

the only carbon source and were able to identify an isolate

with improved xylose fermentation. Ni et al. (2007) used

an insertional transposon mutagenesis screen (see section

‘Novel techniques’) to identify gene deletions that could

enhance growth on xylose in an engineered strain.

Although these strategies successfully expanded the

substrate range of S. cerevisiae, the resulting strains were

rarely directly applicable in an industrial setting because

the yields and/or fermentation efficiency and/or the stress

resistance of the resulting strains were too low. In addi-

tion to optimized xylose metabolism, efficient biofuel

strains must also be capable of dealing with general

(osmotic pressure, ethanol toxicity) and specific (inhibi-

tors formed during lignocellulose pretreatment) stress fac-

tors during the industrial fermentation. Equipping an

established industrial biofuel strain, instead of a labora-

tory strain, with xylose metabolism therefore seems a

promising strategy (Demeke et al., 2013).

Ethanol yield

One of the key parameters for industrial application of a

biofuel production strain is yield. Therefore, multiple

genetic modification approaches aim at improved

substrate utilization and decreasing byproduct formation

(Nissen et al., 2000a, b, 2001; Kong et al., 2006, 2007;

Zhang et al., 2007).

Stuck or sluggish fermentations are the most commonly

encountered reasons for the loss of biofuel yields, especially

in very high-gravity conditions. The main causes are shown

to be the high osmotic pressure in the first phase of the fer-

mentation, and (even more importantly) the gradually

increasing ethanol stress during the fermentation (Gibson

et al., 2007; Puligundla et al., 2011). In order to tackle this

issue, researchers aim at increasing the overall stress toler-

ance, thereby often increasing yield and/or productivity

(see sections ‘Mass mating & Genome Shuffling’ and

‘Enhancing cellular stress tolerance’).

Byproduct formation can also significantly lower the

yield of biofuel fermentations. The most abundant byprod-

uct of S. cerevisiae fermentations is glycerol, which is

formed both as an osmolyte to counteract osmotic stress in

the first phase of the fermentation (Hohmann, 2002) and

to convert excess NADH back to NAD+ to maintain the

FEMS Microbiol Rev 38 (2014) 947–995 ª 2014 The Authors. FEMS Microbiology Reviews
published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

Development of superior industrial yeasts 973



redox balance under anaerobic conditions (van Dijken &

Scheffers, 1986). Typically, glycerol accounts for up to 5%

of carbon flux (Oura, 1977). Various metabolic engineering

strategies have succeeded in reducing glycerol formation,

thereby increasing ethanol yield. However, a decrease in

growth or fermentation rate (Bj€orkqvist et al., 1997; Nissen

et al., 2000b; Hubmann et al., 2011) or decreased stress tol-

erance (Pagliardini et al., 2013) often hampers industrial

applicability of the resulting strains.

Production of novel compounds

The extensive use and knowledge of the production host S.

cerevisiae has led to commercial interest in using it to pro-

duce advanced biofuels. Because S. cerevisiae does not natu-

rally produce most of the advanced biofuels, which include

butanol and biodiesel, multiple research groups started to

explore metabolic engineering strategies to expand its prod-

uct range (see for review de Jong et al., 2012). For instance,

a S. cerevisiae strain capable of producing fatty acid ethyl

esters was created by targeted deletions of genes involved in

producing storage lipids and heterologous expression of a

bacterial acyltransferase (Kalscheuer et al., 2004). Multiple

studies have explored engineering yeast to produce butanol

(e.g. Avalos et al., 2013). Whereas yeast engineering for

advanced biofuels seems promising, more research is

needed to allow broad industrial implementation.

Cellular stress tolerance

During industrial fermentations, yeast cells are confronted

with many different stress factors, including heat or cold

stress, high osmotic pressure, and high ethanol levels

(Gibson et al., 2007; Puligundla et al., 2011). With some

notable exceptions, targeted metabolic engineering strate-

gies have yielded only limited success in increasing stress

tolerance (Larsson et al., 2001; Gorsich et al., 2006; Pet-

ersson et al., 2006). One of the most important reasons

for this is the fact that stress tolerance is a complex,

polygenic trait. A complete picture of the genes and

molecular mechanisms underlying these traits is often

lacking, which complicates targeted modification. In addi-

tion to classical non-GMO techniques, including muta-

genesis and experimental evolution, several GMO-based

approaches recently succeeded in increasing phenotypic

variation in an unbiased fashion, followed by the identifi-

cation of mutants with increased stress resistance. For

instance, Alper et al. (2006) used gTME to increase

osmotolerance and ethanol tolerance, whereas Park et al.

(2003) could significantly improve thermotolerance,

osmotolerance, or ketoconazole resistance by screening

the mutants expressing artificial transcription factors (see

section on ‘Novel Techniques’ below).

Genetic modification of nonconventional

yeasts

Although S. cerevisiae and closely related species are by

far the major producers of biotechnological products

worldwide, nonconventional yeasts have been utilized as

industrial organisms for a variety of applications (John-

son, 2013). Below, a selected overview of the recent pro-

gress in genetic modification of key nonconventional

yeasts is given.

Scheffersomyces (Pichia) stipitis

Scheffersomyces (Pichia) stipitis is an ascomycetous yeast

extensively studied for its capacity to ferment xylose to

ethanol, L-lactic acid, and other products (Johnson,

2013). Despite the capacity of Sc. stipitis to ferment xylose

to ethanol at nearly maximum yield with very limited

byproduct formation, few metabolic engineering studies

targeting this yeast species have been published (Van

Vleet & Jeffries, 2009). The main reasons are its respira-

tory (Crabtree-negative) lifestyle, low ethanol tolerance,

and its slow sugar consumption rate compared to S. cere-

visiae (Agbogbo & Coward-Kelly, 2008). Therefore,

biotechnological applications involving Sc. stipitis are at

this point mostly limited to the transfer of its genes to S.

cerevisiae to introduce the ability to ferment pentose sug-

ars. However, the sequencing of the full genome (Jeffries

et al., 2007) and the development of more efficient trans-

formation systems (e.g. plasmid vectors and a loxP/Cre

recombination system) and drug resistance markers (Lap-

laza et al., 2006) might create possibilities for genetic

modification of industrially applicable Sc. stipitis strains.

Indeed, recent introduction of the L-lactate dehydroge-

nase gene from Lactobacillus helveticus into Sc. stipitis

allowed it to efficiently produce L-lactate from xylose-

containing medium and illustrates its biotechnological

potential (Ilmen et al., 2007).

Yarrowia (Candida) lipolytica

Yarrowia (Candida) lipolytica is an ascomycetous yeast

that is the teleomorph (spore-forming form) of C. lipoly-

tica. With its fully sequenced genome (Dujon et al.,

2004), it is one of the most extensively studied noncon-

ventional yeasts. It is currently used as a model for the

study of protein secretion, peroxisome biogenesis, dimor-

phism, and degradation of hydrophobic substrates (Fick-

ers et al., 2005). One of its most remarkable features is

that it can efficiently use hydrophobic substrates, such as

n-alkanes, fatty acids, and oils, as sole carbon source

(Fickers et al., 2005; Beopoulos et al., 2009), and that it

can accumulate lipids to levels exceeding 50% of cell dry
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weight (Beopoulos et al., 2009). Yarrowia species are

mostly known for the production of ‘single-cell proteins’,

but they are currently also used in the production of

organic acids (mainly citric acid), aromas (e.g. b-decalac-
tone, 2-phenylethanol), polyols (such as mannitol and

erythritol), starters for the food industry, bio-oil, bio-

transformation of steroids, or waste treatment (Attfield &

Bell, 2003; Fickers et al., 2005; Beopoulos et al., 2009;

Guo et al., 2012; Celinska et al., 2013; Liu et al., 2013).

Additionally, they are important for the production of

certain fermented foods such as blue cheese, where they

contribute to the sensorial quality (Gkatzionis et al.,

2013). Because of its nonpathogenic nature, Y. lipolytica

has received a GRAS (generally regarded as safe) status

for these processes (Attfield & Bell, 2003), which facili-

tates further applications of this yeast in food industry.

Although the first publications on genetic recombina-

tion in Y. lipolytica date back to the early 1970s (Bassel

et al., 1971), the more recently developed molecular and

genetic tools to modify Y. lipolytica genomes (reviewed

by, e.g., Madzak et al., 2004; Nicaud, 2012) and the avail-

ability of its complete genome sequence led to promising

recent advances in genetic modification of this yeast. For

example, higher production of a-ketoglutarate was estab-

lished by introducing the acetyl-CoA synthetase gene

(ACS1) from S. cerevisiae and the ATP-citrate lyase gene

(ACL) from Mus musculus (Zhou et al., 2012), or by

using a gene dose-dependent overexpression of genes

encoding NADP+-dependent isocitrate dehydrogenase

(IDP1) and pyruvate carboxylase (PYC1; Yovkova et al.,

2014). Production of b-decalactone, a high-value

aromatic compound, was promoted by deleting POX3

and overexpressing POX2, two genes encoding acyl-CoA

oxidases with different substrate specificities (Guo et al.,

2012). By introducing codon-optimized genes crtB and

crtI of Pantoea ananatis and overexpressing native genes

GGS1 and HMG1, a metabolic pathway for lycopene pro-

duction in the otherwise non-carotenoid-producing Y. li-

polytica could be established (Matth€aus et al., 2013).

Because lipid production of Y. lipolytica can be enhanced

by the modification of several genes involved in the lipid

metabolism (Beopoulos et al., 2008; Dulermo & Nicaud,

2011; Tai & Stephanopoulos, 2013; Wang et al., 2013),

additional fine-tuning of the lycopene production path-

way could be achieved by deleting POX1-6 (thereby cut-

ting short the peroxisomal b-oxidation) and GUT2

(thereby preventing reduction of the glycerol-3-phosphate

pool). This increased the lipid accumulation (and conse-

quently the lycopene yield) significantly and led to the

production of 16 mg g�1 (dry weight) in fed-batch cul-

tures, the highest yield reported so far for eukaryotic

hosts (Matth€aus et al., 2013). Recently, a metabolic engi-

neering approach for the production of ricinoleic acid in

Y. lipolytica was described (Beopoulos et al., 2014),

describing a yield of 60 mg g�1 (dry weight), the most

efficient production of ricinoleic acid to date.

Kluyveromyces lactis and Kluyveromyces
marxianus

Kluyveromyces lactis and the closely related K. marxianus

have been studied for decades and have a well-established

track record of safe use in various food industry applica-

tions. The genomes of both species are sequenced (Dujon

et al., 2004), and several genetic techniques have been

developed for K. marxianus (e.g. plasmid vectors; Pecota

et al., 2007; Rocha et al., 2010; Wang et al., 2013; or pro-

tocols for the integration of linear DNA; Nonklang et al.,

2008) and K. lactis (reviewed by van Ooyen et al., 2006)

in the past 20 years. Historically, Kluyveromyces is best

known for its production of the bovine milk-clotting

enzyme chymosin. This protein was the first heterologous

enzyme originating from a higher eukaryote that was

produced at low cost in a microorganism. Nowadays,

Kluyveromyces is used in the production of many heterol-

ogous proteins, such as lactase and interleukin 1-b (van

Ooyen et al., 2006).

Other industrially relevant traits of Kluyveromyces are its

ability to utilize lactose as a primary carbon source (which

has applications in the dairy and biofuel industry), and

high production of lactate. For this latter application, the

central carbon flux of K. lactis was diverged from the pro-

duction of ethanol to enhance lactate production. This was

achieved by introducing a heterologous L-lactate dehydro-

genase gene (LDH) and deleting the unique pyruvate decar-

boxylase gene KlPDC1 and/or the pyruvate dehydrogenase

(PDH) E1 subunit gene (Porro et al., 1999; Bianchi et al.,

2001). Kluyveromyces lactis was recently also proposed a

host for L-ascorbic acid (vitamin C) production (Rosa

et al., 2013). In the metabolically engineered strains, GDP-

mannose 3,5-epimerase (GME), GDP-L-galactose phos-

phorylase (VTC2), and L-galactose-1-phosphate phospha-

tase (VTC4) from A. thaliana were introduced.

Brettanomyces (Dekkera) bruxellensis

Brettanomyces (teleomorph: Dekkera) is an ascomycetous

yeast important in the production of beverages and biofuel.

Interestingly, the role of Brettanomyces in the food industry

is very ambiguous. Brettanomyces species, with B. bruxellen-

sis as the most important representative, are generally

reported as spoilage yeasts. Their off-flavor production in

wine, beer, and cider results in huge economic losses. How-

ever, more and more authors report that in some cases

these yeasts may add positive effects and complexity to, for

example, red wines. Additionally, in specialty beers, sour
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beers, fruit beers, and one Belgian Trappist ale beer, the

presence of Brettanomyces is required to obtain the charac-

teristic and complex ‘Brett flavor’, which is (among others)

described as clovy, spicy, floral, and/or smoky (Licker et al.,

1999). Although still very premature, the growing interest

from industry, the multiple particular phenotypes, the

recent (independently performed) sequencing of three

complete genomes, the development of an efficient trans-

formation protocol, and the subsequent first transforma-

tion of B. bruxellensis (Miklenic et al., 2013) are all hinting

toward an upcoming field of Brettanomyces engineering.

However, more research on efficient and easy-to-use vector

systems is still needed.

Komagataella (Pichia) pastoris

The ascomycetous yeast Komagataella (P.) pastoris is

mostly known as the prime yeast species for recombinant

protein production for both research and industrial pur-

poses. Additionally, it is also a commonly used model

organism for methanol assimilation and peroxisomal

biogenesis.

Komagataella pastoris possesses several characteristics

that make it an excellent host for heterologous protein

production: its ability to grow to high cell densities, to

produce heterologous proteins at very high levels, and to

efficiently secrete them and the availability of straightfor-

ward procedures used for genetic transformation

(although with rather low efficiency). Nevertheless, the

amount of efficient genetic engineering tools available

was, until recently, rather disproportionate to its indus-

trial potential. The publication of the full genome in 2009

(De Schutter et al., 2009) provided the information

needed to create an extensive toolbox of Ko. pastoris

expression vectors, which is now commercially available

(reviewed by, e.g., Bollok et al., 2009; Logez et al., 2012).

Being a methylotrophic yeast, Ko. pastoris can utilize

methanol as a sole carbon and energy source. This pro-

vides a methanol-inducible transgene expression system,

where the target protein gene is usually put under control

of the strongly inducible promoter of the alcohol oxidase

1 (AOX1) gene (Cereghino & Cregg, 2000). Komagataella

pastoris has already been used to produce over 500 differ-

ent heterologous proteins (see Johnson, 2013; reviewed by

Cereghino & Cregg, 2000; Macauley-Patrick et al., 2005).

For example, the efficient biosynthesis of high-value

carotenoids, such as lycopene [1.141 lg g�1 (dry weight)]

and b-carotene [339 lg g�1 (dry weight)], was recently

described in Ko. pastoris (Araya-Garay et al., 2012). Three

carotenogenic enzymes were expressed for the production

of lycopene, geranylgeranyl diphosphate synthase (crtE),

phytoene synthase (crtB), and phytoene desaturase (crtI)

from Erwinia uredovora. To convert lycopene into b-caro-

tene, another gene encoding a lycopene b-cyclase (crtL)

from Ficus carica was additionally expressed. Another

example is the production of laccase (4.85 mg L�1) by

Ko. pastoris by expressing the lac4 gene of Pleurotus sajor-

caju (Soden et al., 2002). Additionally, several studies

describe the genetic modification of the glycosylation

pathway in Ko. pastoris, enabling these strains to produce

complex, mammalian- and human-type N-glycans (e.g.

Vervecken et al., 2004), such as functional recombinant

erythropoietin (Hamilton et al., 2006).

Schizosaccharomyces pombe

Schizosaccharomyces pombe, also called ‘fission yeast’, is

mostly known as a model organism for both molecular and

cell biology. For example, the mechanisms of signal trans-

duction and cell cycle regulation in eukaryotic cells

(research on the latter resulted in 2001 in a ‘Nobel Prize in

Physiology or Medicine’ for Sir Paul Nurse) were eluci-

dated using Sc. pombe (Giga-Hama & Kumagai, 1999). The

genome of Sc. pombe, published in 2002, was the second

unicellular eukaryotic genome to be fully sequenced and

the sixth eukaryotic organism overall (Wood et al., 2002).

The potential of this well-characterized yeast species as

an expression tool for heterologous proteins has already

been known for a long time (reviewed, e.g., by Takegawa

et al., 2009). Because of the intensive use of Sc. pombe in

both fundamental and applied research, numerous papers

describe the use of (integration-type) plasmids for molecu-

lar manipulation (reviewed by Siam et al., 2004; more

recent studies by Erler et al., 2006; Chino et al., 2010; Ter-

azawa et al., 2011; Verma & Singh, 2012). Interestingly,

notwithstanding the vast phylogenetic distance separating

the two species, transformation protocols from S. cerevisi-

ae can usually be used in Sc. pombe (Okazaki et al., 1990).

Schizosaccharomyces pombe has been used as a host for

the production of many different heterologous proteins.

For example, the introduction of the E. coli B phytase-

encoding gene (appA) in Sc. pombe led to the expression

of a secreted, glycosylated phytase, intended for use in

animal feed (Ciofalo et al., 2003). Another industrially

relevant example is the efficient production of vanillin

(65 mg L�1), the main constituent of vanilla flavor and

worldwide one of the most important flavor compounds

(Hansen et al., 2009). By introducing three heterologous

genes (a 3-dehydroshikimate dehydratase from Podospora

pauciseta, an aromatic carboxylic acid reductase from

Nocardia sp., and a human O-methyltransferase), Holic

et al. (2012) established a new biosynthetic pathway with

glucose as the primary metabolite. By knocking out the

Sc. pombe alcohol dehydrogenase ADH6, the reduction

of vanillin to vanillyl alcohol was blocked. In 2012,

the introduction of a Claviceps purpurea oleate Δ12-
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hydroxylase gene (FAH12) led to the production at high

concentrations (137 mg mL�1) of ricinoleic acid (Holic

et al., 2012). Furthermore, the physiology of Sc. pombe

(such as its cell cycle, chromosome structure, and RNA

splicing) often shows a high similarity to more complex

eukaryotic cells and can therefore be used to express het-

erologous genes from higher eukaryotes (Giga-Hama

et al., 1994; Ikeda et al., 2004). However, for heterolo-

gous expression of most high eukaryotic genes, Ko. pas-

toris is still considered the best expression system (cf.

supra).

Novel techniques and future perspectives

Genetic modifications as well as non-GMO approaches

such as hybridization, mutagenesis, and directed evolu-

tion approaches have contributed to the expansion of

strains (potentially) useful for industrial purposes. How-

ever, as discussed above, each of these techniques has its

shortcomings and limitations. In short, non-GMO tech-

niques are often limited to phenotypes that allow efficient

selection, and they often involve a risk of improving one

property at the expense of others. GMO techniques, on

the other hand, require in-depth knowledge of the under-

lying genetics and are in many cases not well received by

consumers. The ever-growing knowledge of yeast physiol-

ogy and the continuously expanding biotechnological

toolbox now allow more adventurous techniques using

recombinant DNA technologies to emerge, which target

(and sometimes overcome) some of the drawbacks

mentioned above. Interestingly, several of these novel

techniques combine aspects of both classic non-GMO

techniques and genetic modification. Here, we highlight

some of these techniques that could either be an

alternative or complementary to these well-established

approaches (Fig. 5). It should be noted though that most

of these techniques still need to prove their usefulness to

generate commercially applicable yeast strains.

gTME

Because complex phenotypes are determined by a large

number of genes, Alper et al. (2006) hypothesized that

huge phenotypic variation could be realized and

exploited by (randomly) reprogramming transcription

followed by selection of those variants that show

improved properties. To this end, they developed a

method termed ‘global transcription machinery engineer-

ing’ (gTME), which is based on creating a library of

randomly mutated versions of a global transcription fac-

tor or associated factor. This library is then introduced

in the strain of interest, creating a pool of mutants with

different mutations in the gene encoding the transcrip-

tion factor, followed by a screening (as discussed in the

section on ‘Selection of phenotypically improved cells’)

to identify mutants showing substantial phenotypic

improvement. As a proof-of-principle, they created a

mutant library of the TATA-binding protein which was

transformed into a laboratory yeast strain. Interestingly,

strains could be recovered showing increased glucose

and ethanol tolerance and improved fermentation capac-

ity (Alper et al., 2006). A later study pointed out that

this phenotypic improvement could be explained by fix-

ing a defect in leucine uptake and/or utilization present

in the laboratory strain and could only be reproduced

in medium with low amounts of leucine (Baerends

et al., 2009). Therefore, other studies are needed to con-

firm the usefulness of this approach to obtain industrial

yeasts with increased stress tolerance.

Coupling of zinc fingers with transcription factors

Another approach exploiting global transcriptional varia-

tion uses combinatorial libraries of zinc finger-containing

proteins (Park et al., 2003). Many zinc fingers are highly

specific DNA-binding structural motifs, stabilized by a

zinc atom, present in many transcriptional regulators.

Each zinc finger binds a specific DNA sequence of three

base pairs, and the exact number and configuration of

zinc fingers of a transcription factor determines its speci-

ficity. In practice, a large library of artificial transcription

factors consisting of random combinations of three or

four zinc fingers coupled to either an activation or repres-

sion domain is generated. Next, plasmids harboring the

genes coding for these proteins are transformed in the

target strain, after which a screening for the phenotype of

interest takes place to select superior variants. When these

artificially generated transcription factors were trans-

formed into yeast, the authors were able to obtain cells

with increased thermotolerance, osmotolerance, or

ketoconazole resistance (Park et al., 2003).

Transposon mutagenesis

Transposon mutagenesis is a technique to introduce

gene knockouts in a random fashion to generate vari-

ability in a yeast population. In brief, drug resistance

cassettes are randomly inserted into the genome by

transposition, after which the obtained collection of

mutants is screened for superior variants (Hamer et al.,

2001). When a mutant of interest is found after screen-

ing, a PCR-based sequencing reaction can pinpoint the

targeted genomic region. This is an important advan-

tage compared to classical mutagenesis, where it is dif-

ficult to map the genetic changes underlying an

improved phenotype. Using this technique, researchers
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were able to identify genes involved in thermo- and

ethanol tolerance (Kim et al., 2011).

In vitro generation of genetic variability: random
mutagenesis

Although in vivo random mutagenesis (see ‘Generation of

artificial diversity’) is a well-established and often powerful

technique, the simplicity and more ‘targeted’ characteris-

tics of in vitro mutagenesis of genetic material makes it

often the preferred approach to generate variability. To

this end, several different techniques have been developed,

such as several InDel mutagenesis techniques and sequence

saturation mutagenesis (SeSaM). This is particularly useful

when the active site of an enzyme is known, but the most

optimal combinations of amino acids not. For instance,

Young et al. (2014) identified a conserved motif present in

transporters that prefer xylose over glucose, and by apply-

ing SeSaM on the variable residues in this motif, they

could modify primary hexose transporters into xylose

transporters. However, the most widespread is the use of

error-prone PCR (epPCR; Nair & Zhao, 2010). Typically,

(a) Global transcription machinery engineering (gTME)

(b) Coupling of zinc fingers with transcription factors

(c) Transposon mutagenesis

(f) Targeting glycosylases to embedded arrays for mutagenesis (TaGTEAM)

(g) Synthetic oligonucleotides

R

Transposon

Mutator proteinMutator binding sites

R

R

General transcription factor Mutated general transcription factor

Mutation

Zinc fingers coupled to repression domain

(e) In vitro generation of genetic variability: DNA shuffling 

(d) In vitro generation of genetic variability: random mutagenesis

e.g. mutagenesis, 
error-prone PCR

Mutation

DNA shuffling

Mutation

Fig. 5. Novel techniques for genetic

modification of industrial strains. Schematic

overview of selected techniques to generate

phenotypic diversity in (industrial) S. cerevisiae

strains. The wild-type situation is always

shown on the left, and the altered situation

on the right. The thickness of the arrows

indicates the transcription level of the genes.

Global techniques (a–c) include global

transcription machinery engineering (a), which

exploits genome-wide transcriptional re-wiring

generated by a mutated general transcription

factor; artificial zinc finger transcription factors

(b), creating altered transcription profiles

resulting from transcription factors with a

wide variety of specificity, for instance by

coupling randomized zinc fingers to a

repression domain; and transposon

mutagenesis (c), which knocks out genes in a

random fashion. Targeted techniques comprise

in vitro generation of genetic variability using

random mutagenesis (d) or DNA shuffling (e),

TaGTEAM (f), which can drastically elevate the

local mutation rate by targeting a mutator

protein (=DNA glycosylase + DNA-binding

protein) to a specific genomic region, and the

use of oligonucleotide-based approaches like

synthetic oligonucleotides (g) to introduce

specific gene deletions or mutations. See text

for more details.
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the gene of interest, or alternatively promoter regions or

even whole genomes, is subjected to PCR amplification

with an elevated error rate (by the lack of exonuclease

activity and/or nonideal reaction conditions), followed by

transformation of the fragments into the microorganism

of interest and a screening to recover mutants that display

phenotypic improvement. For instance, Runquist et al.

(2010) applied epPCR to the cofactor-binding region of

the Sc. stipitis gene XYL1, one of the enzymes needed for

S. cerevisiae to consume xylose, and transformed this

library into S. cerevisiae. After repeated rounds of selection

in xylose medium, a strain with increased ethanol produc-

tivity could be isolated and two causative mutations in the

mutagenized region were identified. Similarly, the epPCR-

mediated mutation of the xylose isomerase gene (xylA)

from Piromyces sp. and subsequent transformation of the

library into S. cerevisiae yielded the identification of signif-

icantly improved enzyme variants (Lee et al., 2012).

Recently, two reports on the directed evolution by epPCR

of multiple genes in the cellobiose utilization pathway (b-
glucosidase and the cellodextrin transporter) for efficient

biofuel production were published (Eriksen et al., 2013;

Yuan & Zhao, 2013). EpPCR can also be applied on pro-

moters (e.g. the promoter of TEF1 (S. cerevisiae) or GAP

(Ko. pastoris), cf. supra) or the whole genome. This latter

approach was, for example, used to improve ethanol toler-

ance of S. cerevisiae (Luhe et al., 2011).

Apart from being directly used as a gene improvement

method, epPCR of a general transcription factor is the

first step in global transcription machinery engineering

(cf. supra).

In vitro generation of genetic variability: DNA
shuffling

Another way of generating artificial genetic diversity in a

protein or pathway in vitro is by DNA shuffling (Stemmer,

1994). In contrast to diversification with random mutagen-

esis, such as methods using epPCR, DNA shuffling exploits

the recombination between genes. The technique was ini-

tially proposed in 1994 and often referred to as ‘sexual

PCR’. Its original setup involves three steps. First, a hetero-

geneous pool of closely related genes (or mutagenized cop-

ies or different alleles of the same gene) is enzymatically

digested by DNase I to generate smaller fragments of DNA.

Next, a primer-free PCR allows the small fragments to

cross-prime each other for replication, in order to create

longer fragments, resulting in hybrid DNA strands with

genetic material from multiple parents. Ultimately, the

recombined genes are amplified by PCR using specifically

designed primers that only target full-length genes, which

can subsequently be screened (Bacher et al., 2002).

Today, numerous variants of classical DNA shuffling

have been described. However interesting, the numerous

techniques developed to improve protein function by gene

recombination are only briefly discussed below, but are dis-

cussed extensively elsewhere (Nair & Zhao, 2010). For

example, ‘restriction enzyme-based shuffling’ (Kikuchi

et al., 1999), ‘staggered extension progress’ (StEP; Zhao

et al., 1998), ‘random priming recombination’ (Shao et al.,

1998), and ‘random chimeragenesis on transient templates’

(RACHITT; Coco et al., 2001) all rely on the same general

principle as ‘sexual PCR’, yet with some adaptations to

overcome specific drawbacks. Alternatively, oligonucleo-

tide-based approaches, such as ‘synthetic shuffling’, can be

applied when the sequence of the parental genes is known

and when they have adequate sequence identity (Ness

et al., 2002). In this setup, degenerate oligonucleotides are

used to construct functional libraries. All these techniques

described above rely (much like ‘sexual PCR’ itself) on

homologous recombination. Other methods, such as

‘incremental truncation for the creation of hybrid enzymes’

(ITCHY; Ostermeier et al., 1999), ‘sequence homology-

independent protein recombination’ (SHIPREC; Sieber

et al., 2001), and ‘Golden gate shuffling’ (Engler et al.,

2009), use nonhomologous recombination for shuffling.

Saccharomyces cerevisiae is often used as the in vivo

model to screen the created library, or sometimes even to

further improve diversity by additional DNA shuffling

(an approach called ‘combinatorial libraries enhanced by

recombination in yeast’, CLERY; Abecassis et al., 2000),

but direct use of DNA shuffling for the improvement of

industrial yeast strains has not been described so far.

TaGTEAM

In many cases, it is clear which genes are responsible for a

certain property, but it is less clear which exact mutations

would result in improvements. In this case, it can be valu-

able to specifically increase the mutation rate in a targeted

region of the genome. To this end, Finney-Manchester &

Maheshri (2013) developed a method termed ‘targeting

glycosylases to embedded arrays for mutagenesis (TaG-

TEAM)’. In short, a DNA glycosylase is fused to a DNA-

binding protein, and the corresponding binding sites are

inserted close to the region of interest. As a result, the

mutation rate will locally be elevated more than 800-fold. A

possible application of this technology is to move a set of

genes (for instance, encoding a biochemical pathway or

genes involved in a type of stress resistance) into the geno-

mic region showing elevated mutation rates, followed by

evolutionary engineering. As such, chances of developing

improved mutants are expected to increase, while minimiz-

ing the risk of changing other strain properties.
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Synthetic oligonucleotides

Various oligonucleotide-based approaches have been devel-

oped to introduce genetic alterations without leaving any

traces. Moerschell et al. (1988) developed a technique in

which transformation of yeasts with synthetic oligonucleo-

tides as short as 20 nucleotides can be employed for site-

specific mutagenesis. However, because no selectable mark-

ers are involved, this kind of genetic alteration is only

applicable to selectable phenotypes. Alternatively, several

methods make use of a selectable and/or counter-selectable

marker in order to introduce desired genetic changes. Erde-

niz et al. (1997) described cloning-free PCR-based allele

replacement methods in which either alternative alleles or

de novo mutations can be introduced. Through a series of

PCRs of both the allele to be inserted and a marker gene

(for instance, URA3) and co-transformation of these frag-

ments, the original allele will (after integration) be replaced

by a duplication of the novel gene with a URA3 gene in

between these two copies. After selection for direct repeat

recombinants (pop-out of the marker), only a single copy

of the new allele remains. Similarly, the delitto perfetto

approach is a two-step cloning-free technique to introduce

site-specific genetic alterations or specific deletions up to

200 base pairs. The first step comprises the insertion of a

‘CORE’ (counter-selectable reporter) cassette in the region

of interest. In the second step, integrative recombinant oli-

gonucleotides, harboring homologous sequences flanking

the CORE cassette are introduced, which mediate removal

of the CORE cassette while simultaneously inserting the

mutation or deletion (Storici et al., 2001).

Discussion – The new GM techniques bridge the

gap between classic breeding and genetic

modification

Since its first successful application in 1973, recombinant

DNA technology has proven to harbor an enormous poten-

tial for strain improvement. While initial approaches only

focused on single genes, methodologies such as metabolic

engineering and inverse metabolic engineering target com-

plete pathways, resulting in more efficient phenotypic

improvements. Moreover, recent technological advances

allow other methods, such as TaGTEAM and gTME, to gen-

erate ‘semi-random’ diversity, where an enormous number

of different mutations can be introduced in a specific geno-

mic region, thereby limiting the risk of off-target deleteri-

ous mutations that result in crippled strains. Therefore,

these approaches can provide a valuable alternative for (or

can be complementary to) the ‘non-GMO’ strain improve-

ment approaches, such as mutagenesis, hybridization, or

evolutionary engineering, discussed in ‘Discussion – pros

and cons of exploiting natural and artificial diversity’.

However, the major disadvantage of these techniques

remains the classification of the resulting strains as

GMOs, impeding some industrial applications. Interest-

ingly, strains engineered via ‘self-cloning’ do not have a

GMO status in some countries, for example Japan (Ak-

ada, 2002). Self-cloning is defined as genetic modification

where no DNA from another species is introduced into

the genome. Therefore, the use of self-cloning principles

may help to obtain formal approval to use the strain for

production purposes.

Conclusion

Both traditional and novel yeast-based industries can ben-

efit from using superior yeasts that yield increased pro-

duction efficiency and/or product quality. Significant

progress has already been made by exploring the existing

natural diversity, by creating artificial diversity and com-

bining beneficial traits of different strains using hybridiza-

tion, as well as by targeting specific traits through genetic

modification. However, the new knowledge and technolo-

gies summarized above show that there are still enormous

opportunities to obtain superior industrial yeasts. How-

ever, important challenges also still remain.

Firstly, the currently used industrial strains represent

only the tip of the proverbial iceberg of the actual genetic

diversity present in nature. More extensive genotyping

and phenotyping of both natural isolates and nonconven-

tional yeasts will help to identify strains and species with

novel and/or improved industrially important properties.

Secondly, although the genetics and physiology of labo-

ratory yeast strains are well characterized, our knowledge

about industrial strains is lagging behind. The complex

genetic make-up of these strains (which are often poly-

ploid, alloploid, and/or aneuploid) has hampered genetic

studies and strain improvement strategies. Importantly,

recent studies report the sequencing of industrial strains

in their natural ploidy, increasing insight into their

genetic architecture.

Thirdly, many industrially relevant phenotypes have a

complex genetic base and depend on a large number of

genes, scattered throughout the genome. Dissecting these

complex traits at the genetic level is currently one of the

biggest challenges in molecular biology. The advent of

next-generation sequencing technologies allows for fast

generation of full-genome sequences at a relatively low cost.

Together with large-scale phenotyping approaches, this

enables researchers to start mapping the causative muta-

tions for complex industrially relevant traits, such as etha-

nol tolerance. These approaches not only generate insight

into complex phenotypes, but the obtained knowledge can

also be used to directly modify strains by inserting only the

causative mutation(s). Additionally, novel techniques such
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as genome shuffling use the existing diversity to a much

greater extent and can enhance complex phenotypes much

more rapidly compared to more classical approaches of

strain improvement. An in-depth study of hybrids gener-

ated through this approach could potentially yield insight

into the genetics underlying improved phenotypes as well.

Fourthly, it is clear that genetic modification can be a

valuable approach to enhance phenotypes for which the

causative mutations are known. In spite of this, legislation

issues and negative consumer’s perception of the use of

GMOs in the food chain often hamper industrial applica-

tion and success of such GM strains. It remains to be

seen whether (and how) regulations and public percep-

tion will change in the future.

The prospects to obtain superior industrial yeasts are

extremely bright. Yeasts offer unique advantages for strain

improvement: they combine sexual and asexual life cycles,

they can be cultivated in high numbers, and genetic

transformation is often easy. Moreover, the examples dis-

cussed in this review illustrate that most strain improve-

ment strategies are not mutually exclusive, but can be

combined to create even more variation. Additionally, by

combining different techniques, the drawbacks of a spe-

cific technique can be circumvented. For example, com-

bining random mutagenesis with multiple rounds of

genome shuffling is a promising approach to both recom-

bine useful mutations and lose deleterious mutations.

Moreover, further development and optimization of cur-

rent approaches and newly emerging technologies such as

next-generation sequencing, combined with a better

understanding of complex phenotypes and nonconven-

tional yeasts, pave the way to obtain yeasts that are even

better adapted to their industrial tasks.
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