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A B S T R A C T   

The objective was to evaluate the predictive performance of the Colorectal Cancer Risk Assessment Tool (CCRAT) 
and three polygenic risk scores (Hsu et al., 2015; Law et al., 2019, Archambault et al., 2020) to predict the 
occurrence of colorectal cancer at five years in a Quebec population-based cohort. By using the CARTaGENE 
cohort, we computed the absolute risk of colorectal cancer with the CCRAT model, the polygenic risk scores 
(PRS) and combined clinico-genetic models (CCRAT + PRS). We also tailored the CCRAT model by using the 
marginal age-specific colorectal incidence rates in Canada and the risk score distribution. We reported the 
calibration and the discrimination. Performances of the PRSs, combined and tailored CCRAT models were 
compared to the original CCRAT model. The expected-to-observed ratio of the original CCRAT model was 0.54 
[0.43–0.68]. The c-index was 74.79 [68.3–80.5]. The tailored CCRAT model improved the expected-to-observed 
ratio (0.74 [0.59–0.94]) and c-index (76.39 [69.7–82.1]). All PRS improved the expected-to-observed ratios 
(around 0.83, confidence intervals including one). PRSs’ c-indexes were not significantly different from CCRAT 
models. Results from the combined models were close to those from the PRS models, Archambault combined 
model’s c-index being significantly higher than the original and tailored CCRAT models (78.67 [70.8–86.5]; p <
0.001 and p = 0.028, respectively). In this Quebec cohort, CCRAT model has a good discrimination with a poor 
calibration. While the tailored CCRAT provides some gain in calibration, clinico-genetic models improved both 
calibration and discrimination. However, better calibrations must be obtained before a practical use among the 
inhabitants of Quebec province.   

1 Introduction 

Colorectal cancer is the third diagnosed cancer in Canada (Canadian 
Cancer Statistics Advisory Committee, 2019). Despite decreasing inci-
dence and death rates — partly due to screening, resection of pre- 
malignant lesions — about 50% of colorectal cancers are still detected 
at a late stage (Canadian Cancer Statistics Advisory Committee, 2019; 
Edwards et al., 2010). The latest Canadian Task Force guidelines (2016) 
(Canadian Task Force on Preventive Health Care, 2016) recommend 
screening adults aged 50 to 74 years for colorectal cancer with fecal 

occult blood testing every two years. These guidelines do not apply to 
those at high risk for colorectal cancer (i.e., previous colorectal cancer or 
polyps, inflammatory bowel disease, signs or symptoms of colorectal 
cancer, family history of colorectal cancer, or hereditary syndromes 
predisposing to colorectal cancer). However, due to the increasing 
incidence of colorectal cancer with age, the biennial fecal occult blood 
screening among people aged 50–59 years leads to a lower absolute risk 
reduction compared to the 60–74 years group (Canadian Task Force on 
Preventive Health Care, 2016). 

In this context, cancer risk assessment tools might be used to identify 
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the at-risk population, to refine the screening regimens or to select in-
dividuals for a preventive therapy. As an example, the Breast Cancer 
Risk Assessment Tool is used in the United-States to identify women who 
may be candidates for breast cancer chemo-prevention (Moyer, 2013). 
For colorectal cancer, various predictive models have been developed, 
but they are less used in practice (Smith et al., 2019). Among these 
predictive models, the Colorectal Cancer Risk Assessment Tool (CCRAT) 
(Freedman et al., 2009) is an interactive tool proposed by the National 
Cancer Institute to estimate an individual’s risk of developing colorectal 
cancer over a specific period (National Institutes of Health (NIH) — 
ccrisktool.cancer.gov). CCRAT includes the clinical variables age, race, 
sigmoidoscopy/colonoscopy and polyps history, vigorous activity, 
servings of vegetables, relatives with a colorectal cancer, non-steroidal 
anti-inflammatory drugs and estrogen use, cigarettes smoked, and 
body mass index. The relative risks and attributable risks used to 
compute the absolute risk were derived from an American population- 
based case-control data (Utah, Minnesota and Northern California), 
while the estimation of the marginal age-specific cancer hazard rates 
were obtained from the National Cancer Institute’s Surveillance Epide-
miology and End Results (SEER) Program. This predictive model was 
validated in a large prospective cohort study from the NIH (Park et al., 
2009) and was recently revalidated (Smith et al., 2019), with an Area 
Under the receiver operating characteristic (ROC) Curve (AUC) of 0.61 
for both studies. According to a systematic review of risk prediction 
models for colorectal cancer, the CCRAT model did not provide the best 
AUC among the models also based on self-completed questionnaire 
(Smith et al., 2019; Usher-Smith et al., 2016). However, the CCRAT 
model was updated in March 2019 with the incidence rates of the 
SEER18 (2000–2015) and the mortality rates of the 2010–2015 data. 
This updated version makes it possible to compute the absolute risk for 
people between 40 and 85 years old, whereas it was previously limited 
to 50–85 years old. Moreover, as the CCRAT model is based on self- 
completed questionnaires, it can be easily implemented into clinical 
practice. 

Besides predictive models that rely on routine data or self-completed 
questionnaires, other models were developed and provide good 
discriminatory power, with AUCs higher than 0.80 (Han et al., 2008; 
Marshall et al., 2009). Some of these predictive models are based on 
polygenic risk scores (PRS), derived from published genome-wide as-
sociation studies. The Hsu et al. (Hsu et al., 2015), Law et al. (Law et al., 
2019) and Archambault et al. (2020) studies (Hsu et al., 2015; Law et al., 
2019; Archambault et al., 2020) are among the few to provide enough 
publicly available information to compute the PRS (e.g., alleles’ risk), 
with single-nucleotide polymorphism’s (SNP) odds ratio specific to the 
European population. These three PRSs include 27 (Hsu et al., 2015); 40 
(Law et al., 2019) and 95 SNPs (Archambault et al., 2020), respectively, 
with few overlaps: four SNPs are in common between Archambault and 
Hsu PRSs, three between Archambault and Law PRSs and none between 
Law and Hsu PRSs. The Archambault PRS contained the 40 SNPs re-
ported in the Huyghe et al. study (Huyghe et al., 2019). The PRS pro-
posed by Hsu et al. was trained on a large sample with more than 12,000 
participants, but provided moderate discriminatory power, the best AUC 
being of 0.60. Moreover, these genetic-based predictive models were not 
combined with clinical-based models such as the CCRAT model. 

These clinical and genetic-based colorectal cancer risk assessment 
tools could be helpful for primary care physicians to enhance screening 
uptake among those less likely to participate in organized screening. 
Moreover, it would be of great interest for physicians to know the per-
formance of predictive models relying on lifestyle risk factors, as it may 
represent a way to promote behavioral intentions (e.g., diet, physical 
activity, screening). The performance of these predictive models usually 
trained on US populations may vary across populations. Thus, it is useful 
to evaluate CCRAT model in Quebec since the French-Canadians 

constitute the majority of the Quebec’s population that has specific 
genetic patterns, as compared to the general European population, 
together with lifestyle/exposure risk factors that are at the intersection 
between those from Europe and North America. 

In this study, we report the predictive abilities of the CCRAT model 
and the PRS proposed by Hsu et al., Law et al. and Archambault et al. for 
the occurrence of colorectal cancer at five years in the population-based 
cohort CARTaGENE from Quebec. 

2 Materials & methods 

2.1. Participant selection and outcome 

This study used participants (men and women) from the CARTa-
GENE cohort, which is composed of 43,037 Quebec residents aged be-
tween 40 and 69 years (Awadalla et al., 2013). Briefly, participants were 
randomly selected to be broadly representative of the population 
recorded on the Quebec administrative health insurance (RAMQ) reg-
istries (about 98% of Quebec residents (RAMQ, 2017). Participants have 
been recruited during two phases (Phase A: 2009–2010; Phase B: 
2013–2014) in metropolitan areas, where nearly 70% of Quebecers live. 
At the recruitment date, each participant filled a health questionnaire. 

As the CCRAT model cannot accurately estimate the risk of colorectal 
cancer for people with certain health conditions, the exclusion criteria 
were an age under 40 years, a colorectal cancer before the inclusion date 
and a history of ulcerative colitis or Crohn disease. Some variables’ 
missing values were not supported by the CCRAT model (vigorous ac-
tivity, vegetables servings and body mass index). Therefore, individuals 
with missing values for any of these variables were excluded. Other 
missing values were coded according to the CCRAT model (i.e., coding 
missing family history as zero relative and unknown colonoscopy/ 
sigmoidoscopy history as a separate category, see Supplementary File 1). 
Based on genetic data, we did not include participants with non- 
European ancestries (Supplementary File 1). Information about famil-
ial adenomatous polyposis and Lynch syndrome were not available in 
our cohort. 

A fraction of the CARTaGENE cohort (n = 12,062) was genotyped. 
These participants were selected to be genotyped through various sci-
entific subprojects unrelated to colorectal cancer (Akçimen et al., 2019; 
Hodgkinson et al., 2014; Hussin et al., 2015). Imputation and quality 
control are described in the Supplementary File 1. The availability of 
genotyping information and clinical variables led us to consider two sub- 
cohorts for evaluating the predictive models (cf. “Predictive scores” 
section). The validation of the CCRAT model was done using individuals 
with a computable CCRAT absolute risk (hereinafter referred as “CCRAT 
cohort”). The validation of the PRS models was done using individuals 
from the CCRAT cohort with genotyping information (hereinafter 
referred as “PRS cohort”) (Fig. 1. 

For identifying cases with a colorectal cancer (invasive or in situ), we 
used the MED-ECHO administrative health database with the Tonelli 
et al. algorithm (Tonelli et al., 2016): individuals with at least two claims 
in two years or one hospitalization related to a colorectal cancer. The 
incidence date was the date of first hospital discharge or first claim with 
the appropriate International Classification of Diseases (ICD) (ICD-9: 
153, 154, 2303, 2304; ICD-10: C18, C19, C20, C21, D010, D011). Data 
were available from January 1st, 1998 to March 31st, 2016. Dates of 
death were also retrieved from the RAMQ. 

The outcome was the time before occurrence of a colorectal cancer 
from the enrollment in the cohort. Patients without colorectal cancer 
were censored at five years, at death or on March 31st, 2016 (admin-
istrative censoring). 
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2.2. Predictive scores 

2.2.1 Absolute risk of colorectal cancer at five years 

The absolute risk of developing colorectal cancer over the next 5 
years, for a participant free of colorectal cancer at age t0 (date of 
enrollment) and with a risk score S, is the probability that he/she will be 
diagnosed over the period [t0,t1], where t1 = t0 + 5 years. Under the 
assumption of a multiplicative proportional hazard model (or Cox 
model), the absolute risk (denoted AR(t0,t1;S)) can be written such as: 

AR(t0, t1; S) =
∫ t1

t0
λ0(t)eSexp

[

−

∫ t0

t
λ0(u)eS + γ(u)du

]

dt  

where λ0(t) and γ(t) are the baseline age-specific hazard rate for the 
colorectal cancer and the age-specific mortality hazard rate from other 
causes (competing risks), respectively. In practice, the absolute risk is 
computed using piece-wise constant hazard rates. 

These baseline age-specific hazard rates are calculated using mar-
ginal (or composite) hazard rates obtained from registries, together with 
either the attributable hazard function or the risk factor distribution. In 
this study, we used Statistics Canada (Statistics Canada, 2019; Statistics 
Canada, 2019) to retrieve the 2017 marginal age-specific hazard rates, i. 
e., the Canadian colorectal incidence for each five years from 40 to 89 
years (see Supplementary File 2). The colorectal incidence rates was not 
available for the Quebec province after 2010. 

2.2.2 Original and tailored colorectal cancer risk Assessment Tool 
models 

We considered two different approaches to estimate the absolute 
risk: (i) the original CCRAT model as implemented by the National 
Cancer Institute and (ii) a tailored CCRAT model that uses the Canadian 
marginal age-specific hazard rates and the distribution of the risk score. 

To compute the original CCRAT model’s absolute risks at five years, 
at the inclusion date, we extracted the CCRAT’s variables from the 
CARTaGENE questionnaire (Table A.1 of the Supplementary File 1) and 
used the NIH SAS macro, version 3.0 updated in January 30th, 2019 
(dceg.cancer.gov/tools/risk-assessment/ccratsasmacro) with the R 
language. 

For the tailored CCRAT model, we used the Individualized Coherent 
Absolute Risk Estimator (iCARE) package (Choudhury et al., 2020). The 
distribution of the risk scores was obtained by the sampling at random of 

10% of the individuals from the CCRAT cohort, for each gender, with a 
small probability for the cancer cases to be selected. We reported the 
results using the 90% remaining individuals (hereinafter referred as 
“CCRAT validation cohort”, Fig. 1. 

2.2.3 Genetic models and combined models (clinico-genetic models) 

In this study, genotyping information was used for computing the 
PRSs, a weighted linear combination of the risk-conferring variant al-
leles. Weights are the log odd ratio of each at-risk allele. We obtained the 
loci and corresponding SNPs’ weight associated with colorectal cancer 
from the Hsu et al. (27 SNPs), Law et al. (40 SNPs) and Archambault et al. 
(95 SNPs) studies (Hsu et al., 2015; Law et al., 2019; Archambault et al., 
2020). With our data, we retrieved all the SNPs of the Hsu PRS, 39 SNPs 
of the Law PRS and 93 SNPs of the Archambault PRS. We considered a 
weight of zero for the three missing SNPs (rs6928864, rs755229494 and 
rs377429877). In a sensitivity analysis, we replaced the missing SNPs 
with surrogate SNPs using high-linkage disequilibrium: rs6904092, 
rs1801155 and rs9537756, respectively. More information about SNPs 
included can be found in Supplementary File 3. 

To compute the absolute risk, we also used the iCARE package. The 
distribution of the risk scores were obtained by the sampling at random 
of 10% of the individuals from the PRS cohort, for each gender, with 
small probability weights for the cancer cases. We reported the results 
using the 90% remaining individuals (hereinafter referred as “PRS 
validation cohort”, Fig. 1. 

For estimating the absolute risk of colorectal cancer with a combi-
nation of both clinical (CCRAT) and genetic data (PRS), we used the 
same procedure as described in the sub-section “PRS models”. In prac-
tice, the combination was simply the sum of the PRS and the CCRAT 
relative risks (hereinafter referred as “combined models”). 

The same methodology was used to compute the tailored CCRAT 
model in the PRS validation cohort. Then, we compared the original and 
tailored CCRAT models with the PRS and combined models in the PRS 
validation cohort. 

2.3. Statistical analysis 

To show the distribution of the absolute risks, we plotted pre-
dictiveness curves and rug plots, with the cumulative concentration of 
predictions as a function of cumulative percentage of individuals. 

Fig. 1. Flow-chart. PRS: polygenic risk score. Tailored CCRAT model: original CCRAT model updated considering the risk factors distribution and the Canadian 
baseline age-specific hazard rate and age-specific mortality hazard rate. 
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2.3.1 Calibration 

The calibration was assessed by computing the expected-to-observed 
ratio (E/O) obtained as the sum of the estimated risk, divided by the 
number of observed cases. The 95% confidence interval (95%CI) was 
calculated assuming a Poisson distribution by the formula (Rockhill 
et al., 2001): 

expected
observed

× e±1.96×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1/observed

√

We also compared graphically the predicted and observed propor-
tion of colorectal cancers in three absolute risk groups, defined as the 
tertile of each model. The observed proportion at five-year in each risk 
group was calculated using a Kaplan-Meier estimator. Using these three 
groups, we computed a Pearson’s chi-squared goodness of fit test under 
the null hypothesis of no difference for assessing the discrepancy be-
tween observed and expected proportion. 

We also assessed the overall calibration by reporting estimates of the 
intercept and slope, fitted from a logistic regression model to observed 
outcomes with the logit of the predicted probabilities as the independent 
variable. A good calibration should have an intercept and slope close to 
zero and one, respectively. The calibration slope evaluates the spread of 
the estimated risks. A slope greater than one indicates that risk estimates 
are too moderate. A slope less than one indicates the opposite. Negative 
intercept values indicate overestimation whereas positive values indi-
cate the opposite. 

2.3.2 Discrimination 

The discrimination was assessed by the c-index (equivalent to the 
AUC for survival analysis) with an Inverse Probability of Censoring 
Weighting estimation of cumulative time-dependent ROC curve, with 
their 95%CI computed by bootstrap (Uno et al., 2007; Blanche et al., 
2013; Blanche et al., 2012). ROC curves were generated. 

All statistical analyses were performed using R software, version 3.6 
(R Core Team, 2021). 

2.4. Ethics approval and consent to participate 

This project met the institution’s guidelines for protection of human 
subjects concerning their safety and privacy as it has been approved by 
the Research Ethics Board of the Sainte-Justine University Hospital 
Center under the reference 2020–2427. In addition, CARTaGENE has 
obtained ethics approval by the Sainte-Justine University Hospital 
Center under the reference: MP-21-2011-345, 3297. Written informed 
consent was obtained from all the participants. 

3 Results 

Overall, 24,682 individuals were included in the CCRAT cohort for 
the validation of the original and tailored CCRAT models. Genotyped 
data was available for 6,747 individuals (Fig. 1. The median age at 
enrollment was 53.2 years [Q1-Q3 47.3–60.1] for participants of the 
CCRAT cohort and 53.8 years [48.3–61.0] for the PRS cohort, with 80 
(0.32%) and 24 (0.36%) individuals having a colorectal cancer during 
the five years of follow-up in the CCRAT cohort and the PRS cohort, 
respectively. The median time of follow-up in each cohort was of 3.1 
[2.5–5] and 5 years [3.1–5], respectively. The Table A.2 in Supple-
mentary File 1 compare the baseline characteristics between the CCRAT 
and PRS cohorts. The most notable differences are reported here. 
Compared to the CCRAT cohort, the PRS cohort had more individuals 
from the first enrollment phase (69.4% from phase A versus 41.2%). 
Therefore, as the variables “history of sigmoidoscopy/colonoscopy” and 
“family history of colorectal cancer” were not available for individuals 
included during the phases A and B, respectively, the proportion of 
missing data differed between the CCRAT and the PRS cohorts for these 

two variables. Men of the PRS cohort smoked more (35.0% vs 19.8% 
smoked more than 11 cigarettes per day). The CCRAT absolute risk 
median did not differ between the cohorts (0.20%). 

3.1. Original and tailored colorectal cancer risk Assessment Tool 
models 

In the CCRAT validation cohort, the highest absolute risk computed 
with the original CCRAT model was 2.4% (Fig. 2A). The overall cali-
bration showed a global underestimation, with an E/O of 0.54 [95%CI 
0.43–0.68]. The goodness of fit test was non-significant (p = 0.17) 
(Table 1). The intercept and slope were not significantly different from 
zero and one, respectively. The calibration curve shows this overall 
underestimation, with the E/O significantly lower than one for the 
second and third tertiles (0.49 [0.33–0.75] and 0.54 [0.40–0.72], 
respectively) (Fig. 2B). The original CCRAT model provided a c-index of 
74.79 [68.3–80.5] (Fig. 2C and Table 1). 

Compared to the original CCRAT model, results from the tailored 
CCRAT model showed a significant improvement of the calibration (p =
0.03). Nevertheless, the E/O remained significantly lower than one 
(0.74 [0.59–0.94]). The goodness of fit test was non-significant (p =
0.63). The intercept and slope were not significantly different from zero 
and one, respectively. Only the E/O of the third tertile was significantly 
lower than one (0.74 [0.56–0.99]) (Fig. 2B). The discriminatory power 
was slightly improved, but the confidence intervals overlapped (c-index 
of 76.39 [69.7–82.1]) (Fig. 2C and Table 1). 

3.2. Genetic and combined models 

In the PRS validation cohort, the three PRS models showed E/O non- 
significantly different from one (around 0.83), with non-significant 
goodness of fit tests (Fig. 3 and Table 2). The intercepts and slopes 
were not significantly different from zero and one, respectively. None of 
the E/O in each risk group were significantly different from one. None of 
the PRS models’ c-index was significantly different from the original and 
tailored CCRAT models (Fig. 4 and Table 2). 

Combined models had similar E/O than genetic-based models, with 
non-significant goodness of fit tests. The intercepts were also not 
significantly different from zero. Slopes slightly decreased but remained 
not significantly different from one. None of the E/O in each risk group 
were significantly different from one (Fig. 3 and Table 2). All the com-
bined models produced a higher c-index than the original and tailored 
CCRAT models, the Archambault combined model being significantly 
higher (78.67 [70.8–86.5]; compared with the original CCRAT: p <
0.001, tailored CCRAT: p = 0.028) (Fig. 4 and Table 2). 

4 Discussion 

In this work, we assessed the predictive performance of the CCRAT 
model and three PRSs for predicting the occurrence of colorectal cancer 
at five years in a Quebec population. Our results showed that in our 
population the original CCRAT model had a good discriminatory but 
poor calibration with a global underestimation of risks. However, the 
use of the Canadian marginal age-specific hazard rate and age-specific 
mortality hazard rate improved these results. While the discriminatory 
abilities of the PRS models did not significantly differ from those ob-
tained with the original and tailored CCRAT models, the Archambault’s 
combined model significantly improved the discrimination. Calibration 
was improved for both PRS and combined models compared to the 
original CCRAT model. 

Interestingly, the original CCRAT model had a better c-index than 
those obtained in the validation study of Smith et al. (Smith et al., 2019; 
Park et al., 2009). However, it is worth noting that we used the latest 
version of the CCRAT model with updated American colorectal cancer 
incidences and a five years follow-up, while the predictions in the 
original study were over ten-years. In our cohort, compared to colorectal 
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cancer risk prediction models using “self-completed questionnaire” 
variables (Usher-Smith et al., 2016), the original CCRAT model in our 
cohort had the best c-index (74.8% versus 71%, the highest c-index of 
the systematic review). However, the original CCRAT model is not well 
calibrated with a global underestimation of the absolute risk that might 
be explained by a higher colorectal incidence among Canadian (Statis-
tics Canada, 2019). In contrast, Smith et al. used the previous version of 
the CCRAT model with higher incidence rates and found an over-
estimation of the CCRAT model for individuals in the highest 20% of 
predicted risk group (Smith et al., 2019). 

The use of the Canadian incidences improved the calibration and 

slightly improved the discriminative capacity. It should be noted that 
the improvement in overall calibration was not shown with the intercept 
and slope analysis. Even though the original CCRAT model seemed to 
have a better intercept and slope, the large 95%CIs make the comparison 
difficult. These results underline the interest of adapting a predictive 
model to a new population using publicly available information. The 
iCARE R package (Choudhury et al., 2020) facilitates this process. 

The calibrations of all the PRS models provided E/O quite similar to 
those obtained from the tailored CCRAT. Using only clinical (original 
and tailored CCRAT models) or genetic data (PRS models) produced 
similar discriminating capacity. In contrast, Hsu et al. (Hsu et al., 2015) 
reported a c-index significantly higher when using only genetic data as 
compared to the one using only clinical data. However, their clinical 
model had fewer variables than the CCRAT model (sex, age, family 
history and history of endoscopic examinations) without taking into 
account the smoking status, which might explain their lower c-index as 
compared to the CCRAT model (52 versus 74.8). In addition, Hsu et al. 
found a significantly higher c-index when adding PRS with family his-
tory (51% versus 59% for men). In our study, while the Hsu combined 
model and the Law combined model moderately improved the 
discriminatory power and remained non-significantly different from the 
original and tailored CCRAT models, the Archambault combined model 
significantly improved the c-index up to 78.7%, event compared to the 
tailored CCRAT model. It is worth noting that the Archambault PRS was 
the most recent PRS with the highest number of SNPs. 

In our study, the better calibration of the PRS and combined models 
compared to the original CCRAT model might be explained by the use of 
Canadian cancer incidence rates, since the tailored CCRAT model also 

Fig. 2. Risk distribution and performance of the 
original and tailored CCRAT models (CCRAT vali-
dation cohort). Tailored CCRAT model: original 
CCRAT model updated considering the risk factors 
distribution and the Canadian baseline age-specific 
hazard rate and age-specific mortality hazard rate. 
CCRAT validation cohort: 90% of the CCRAT cohort 
for validating the models (n = 22,214). (A) Distribu-
tion of the original CCRAT and tailored CCRAT 
models’ predictions as a function of cumulative per-
centage of individuals. Rug plot on the y-axis. (B) 
Calibration according to the original CCRAT and 
tailored CCRAT models’ predictions groups (tertile). P 
values were computed using a goodness of fit test 
statistic compared to the critical value from the chi- 
squared distribution. E/O: expected-to-observed 
cases. (C) Discrimination power of the original 
CCRAT and tailored CCRAT models according to 
sensitivity and specificity. C-indexes were calculated 
using the Inverse Probability of Censoring Weighting 
estimation of cumulative time-dependent ROC curve.   

Table 1 
Comparison of the original CCRAT model and tailored CCRAT model in the 
CCRAT validation cohort.   

Original 
CCRAT model 

Tailored 
CCRAT model 

C-index 74.79 [68.3, 80.5] 76.39 [69.7, 82.1] 
Global E/O 0.54 [0.43, 0.68] 0.74 [0.59, 0.94] 
Goodness of fit p = 0.17 p = 0.63 
Intercept 0.4 [-1.6, 2.3] − 0.9 [− 2.5, 0.6] 
Slope 1 [0.7, 1.4] 0.8 [0.6, 1.1] 

CCRAT: Colorectal Cancer Risk Assessment Tool; E/O: expected-to-observed 
ratio. Tailored CCRAT model: CCRAT model updated considering the risk fac-
tors distribution in our population and the Canadian baseline age-specific hazard 
rate and age-specific mortality hazard rate. CCRAT validation cohort: 90% of the 
CCRAT cohort for validating the models. 95% confidence intervals in square 
brackets. 
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produced a better calibration. It is worth noting that predictive models 
using biomarkers led to higher c-indexes (Han et al., 2008; Marshall 
et al., 2009), the highest being of 88%, but none of the SNPs used in the 
three PRS models is located in these biomarkers’ genes. 

Strengths and limitations of this work should be discussed. This study 
represents a contribution to the efforts made to evaluate risk cancer 
assessment tools across various populations (e.g., (Shin et al., 2014; Ma 
et al., 2010). A main strength is that it relies on a large population-based 
cohort representative of the Quebec urban population of middle-aged 
and older adults. Moreover, the linkage with administrative health da-
tabases improves the outcome quality and accuracy. Nevertheless, there 
are some limitations linked to the data collection. As we only included 
participants with European ancestries, results may be obviously less 
accurate for other populations. The information regarding family history 
of colorectal cancer was only available for participants enrolled during 
the first phase, while the colonoscopy/sigmoidoscopy history was only 
available for participants enrolled during the second phase. However, it 
is worth noting that the CCRAT model can handle missing data for these 
two variables. The date of the last colonoscopy/sigmoidoscopy was not 
available. When an individual had no medication, we could not know if 
he/she had no treatment or if the question was not answered. In this 
latter case, we considered the variable as missing. For the number of 
vegetables served per week, if the precise quantity per day was 

unavailable (exact quantity for each vegetable), we used the number of 
serving per day (one, two, etc.), which was less precise. For the genetic- 
based models, three SNPs were not available in our cohort, one of the 
Law PRS (odds ratio of 1.13) and two of the Archambault PRS (odds 
ratio of 1.87 and 1.05). However, replacing the missing SNPs with sur-
rogate SNPs using high-linkage disequilibrium did not change the re-
sults. Moreover, the predictive accuracy seemed to be unaffected, as the 
Archambault PRS and combined models were the best predictive 
models. Finally, the good discrimination but poor calibration of CCRAT 
is clearly an issue that jeopardizes its practical implementation in 
Quebec. Even though, the use of Canadian cancer incidence rates 
improve CCRAT’s calibration, more works should be done to better 
understand the sources of this miscalibration and correct it. In partic-
ular, it might be useful to update the parameter of the CCRAT model to 
the population of Quebec. 

5 Conclusions 

To the best of our knowledge, this study is the first to evaluate the 
CCRAT model in a Quebec population for predicting colorectal cancer at 
five years. We found that CCRAT model has a good discrimination with a 
poor calibration. While the tailored CCRAT provides some gain in cali-
bration using the Canadian cancer incidences, clinico-genetic models 

Fig. 3. Calibration of the original CCRAT model, PRS models and combined models (polygenic risk score validation cohort). E/O: expected-to-observed 
ratio. PRS: polygenic risk score. Combined models: models combining CCRAT and PRS models’ absolute risks. PRS validation cohort: 90% of the PRS cohort for 
validating the models (n = 6,075). P values were computed using a goodness of fit test statistic compared to the critical value from the chi-squared distribution. 
Expected points are the absolute risks median in each group. Groups are the absolute risk tertiles of each model. 
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improved both calibration and discrimination. However, better cali-
brations must be obtained before a practical use of these predictive tools 
among the inhabitants of Quebec province. 

CRediT authorship contribution statement 

Rodolphe Jantzen: Conceptualization, Data curation, Formal 
analysis, Investigation, Methodology, Visualization, Writing – original 
draft, Writing – review & editing. Yves Payette: Data curation, 

Table 2 
Comparison of the original CCRAT model with the polygenic risk score models and the combined models in the polygenic risk score validation cohort.   

Original 
CCRAT model/tailored 
CCRAT model 

Hsu 
PRS model 

Law 
PRS model 

Archambault 
PRS model 

C-index 
72.89 [64.9, 80.8] 

72.53 [64.9, 80.2] 70.52 [62.3, 78.8] 76.24 [69.1, 83.4] 74.48 [66.0, 83.0] 

C-index comparison 
Original CCRAT model p = 0.93 p = 0.50 p = 0.35 
Tailored CCRAT model p = 0.63 p = 0.20 p = 0.61 

Global E/O 0.53 [0.35, 0.79] 0.82 [0.55, 1.23] 0.84 [0.57, 1.26] 0.84 [0.56, 1.25] 
0.82 [0.55, 1.23] 

Goodness of fit p = 0.17 p = 0.50 p = 0.99 p = 0.73 
p = 0.99 

Intercept 
− 0.5 [-3.9, 2.8] 

− 0.7 [-3.8, 2.4] − 0.7 [-4, 2.4] 0.4 [-2.5, 3.3] 
− 1.5 [-4.1–1] 

Slope 
0.8 [0.3, 1.4] 

0.9 [0.3, 1.5] 0.9 [0.3, 1.5] 1.1 [0.5, 1.6] 0.7 [0.2–1.2]   

Original 
CCRAT model/tailoredCCRAT model 

Hsu 
combined model 

Law 
combined model 

Archambault 
combined model 

C-index 72.89 [64.9, 80.8] 75.80 [67.7, 83.9] 74.84 [66.4, 83.3] 78.67 [70.8, 86.5] 
74.48 [66.0, 83.0] 

C-index comparison Original CCRAT model p = 0.15 p = 0.20 p < 0.001 
Tailored CCRAT model p = 0.61 p = 0.78 p = 0.028 

Global E/O 
0.53 [0.35, 0.79] 

0.83 [0.56, 1.24] 0.84 [0.57, 1.26] 0.85 [0.57, 1.27] 0.82 [0.55, 1.23] 

Goodness of fit 
p = 0.17 

p = 0.98 p = 0.98 p = 0.75 p = 0.99 

Intercept − 0.5 [-3.9, 2.8] 
− 1.8 [-4.1, 0.5] − 1.8 [-4.3, 0.5] − 1.1 [-3.4, 1] 

− 1.5 [-4.1–1] 

Slope 0.8 [0.3, 1.4] 0.7 [0.2, 1.1] 0.7 [0.2, 1.1] 0.8 [0.4, 1.2] 
0.7 [0.2–1.2] 

CCRAT: Colorectal Cancer Risk Assessment Tool; E/O: expected-to-observed ratio; PRS: polygenic risk score. Combined models: models combining CCRAT and PRS 
models’ absolute risks. Tailored CCRAT model: CCRAT model updated considering the risk factors distribution in our population and the Canadian baseline age- 
specific hazard rate and age-specific mortality hazard rate. PRS validation cohort: 90% of the PRS cohort for validating the models. 95% confidence intervals in 
square brackets. 

Fig. 4. Discrimination power of the original CCRAT model, PRS models and combined models (polygenic risk score validation cohort). PRS: polygenic risk 
score. PRS validation cohort: 90% of the PRS cohort for validating the models (n = 6,075). Combined models: models combining CCRAT and PRS models’ absolute 
risks. C-indexes were calculated using the Inverse Probability of Censoring Weighting estimation of cumulative time-dependent ROC curve. 
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support in obtaining the data. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.pmedr.2021.101678. 

References 

Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics 2019. 
Toronto, ON: Canadian Cancer Society [Internet]. 2019 Sep [cited 2019 Nov 13]; 
Available from: cancer.ca/Canadian-Cancer-Statistics-2019-EN. 

Edwards, B.K., Ward, E., Kohler, B.A., Eheman, C., Zauber, A.G., Anderson, R.N., et al. 
2010. Annual Report to the Nation on the Status of Cancer, 1975–2006, Featuring 
Colorectal Trends and Impact of Interventions (Risk Factors, Screening, and 
Treatment) to Reduce Future Rates. Cancer 116(3), 544–573. 

Canadian Task Force on Preventive Health Care. 2016. Recommendations on screening 
for colorectal cancer in primary care. CMAJ 188(5), 340–348. 

Moyer, V.A. 2013. Medications for risk reduction of primary breast cancer in Women: U. 
S. Preventive services task force recommendation statement. Ann. Intern. Med. 
[Internet]. 2013 Sep 24 [cited 2019 Nov 28]; Available from: http://annals.org/ 
article.aspx?doi=10.7326/0003-4819-159-10-201311190-00718. 

Smith, T., Muller, D.C., Moons, K.G.M., Cross, A.J., Johansson, M., Ferrari, P., 
Fagherazzi, G., Peeters, P.H.M., Severi, G., Hüsing, A., Kaaks, R., Tjonneland, A., 
Olsen, A., Overvad, K., Bonet, C., Rodriguez-Barranco, M., Huerta, J.M., Barricarte 
Gurrea, A., Bradbury, K.E., Trichopoulou, A., Bamia, C., Orfanos, P., Palli, D., 
Pala, V., Vineis, P., Bueno-de-Mesquita, B., Ohlsson, B., Harlid, S., Van Guelpen, B., 
Skeie, G., Weiderpass, E., Jenab, M., Murphy, N., Riboli, E., Gunter, M.J., 
Aleksandrova, K.J., Tzoulaki, I., 2019. Comparison of prognostic models to predict 
the occurrence of colorectal cancer in asymptomatic individuals: a systematic 
literature review and external validation in the EPIC and UK Biobank prospective 
cohort studies. Gut 68 (4), 672–683. 

Freedman, A.N., Slattery, M.L., Ballard-Barbash, R., Willis, G., Cann, B.J., Pee, D., 
Gail, M.H., Pfeiffer, R.M., 2009. Colorectal cancer risk prediction tool for white men 
and women without known susceptibility. J. Clin. Oncol. 27 (5), 686–693. 

Park, Y., Freedman, A.N., Gail, M.H., Pee, D., Hollenbeck, A., Schatzkin, A., Pfeiffer, R. 
M., 2009. Validation of a colorectal cancer risk prediction model among white 
patients age 50 years and older. J. Clin. Oncol. 27 (5), 694–698. 

Usher-Smith, J.A., Walter, F.M., Emery, J.D., Win, A.K., Griffin, S.J., 2016. Risk 
prediction models for colorectal cancer: a systematic review. Cancer Prev. Res. 9 (1), 
13–26. 

Han, M., Liew, C.T., Zhang, H.W., Chao, S., Zheng, R., Yip, K.T., Song, Z.-Y., Li, H.M., 
Geng, X.P., Zhu, L.X., Lin, J.-J., Marshall, K.W., Liew, C.C., 2008. Novel blood-based, 
five-gene biomarker set for the detection of colorectal cancer. Clin. Cancer Res. 14 
(2), 455–460. 

Marshall, K.W., Mohr, S., Khettabi, F.E., Nossova, N., Chao, S., Bao, W., Ma, J., Li, X.-J., 
Liew, C.-C., 2009. A blood-based biomarker panel for stratifying current risk for 
colorectal cancer. Int. J. Cancer. https://doi.org/10.1002/ijc.24910. 

Hsu, L.i., Jeon, J., Brenner, H., Gruber, S.B., Schoen, R.E., Berndt, S.I., Chan, A.T., Chang- 
Claude, J., Du, M., Gong, J., Harrison, T.A., Hayes, R.B., Hoffmeister, M., Hutter, C. 
M., Lin, Y.i., Nishihara, R., Ogino, S., Prentice, R.L., Schumacher, F.R., Seminara, D., 
Slattery, M.L., Thomas, D.C., Thornquist, M., Newcomb, P.A., Potter, J.D., Zheng, Y., 
White, E., Peters, U., 2015. A model to determine colorectal cancer risk using 
common genetic susceptibility loci. Gastroenterology 148 (7), 1330–1339.e14. 

Law, P.J., Timofeeva, M., Fernandez-Rozadilla, C., Broderick, P., Studd, J., Fernandez- 
Tajes, J., Farrington, S., Svinti, V., Palles, C., Orlando, G., Sud, A., Holroyd, A., 
Penegar, S., Theodoratou, E., Vaughan-Shaw, P., Campbell, H., Zgaga, L., 
Hayward, C., Campbell, A., Harris, S., Deary, I.J., Starr, J., Gatcombe, L., Pinna, M., 
Briggs, S., Martin, L., Jaeger, E., Sharma-Oates, A., East, J., Leedham, S., Arnold, R., 
Johnstone, E., Wang, H., Kerr, D., Kerr, R., Maughan, T., Kaplan, R., Al-Tassan, N., 
Palin, K., Hänninen, U.A., Cajuso, T., Tanskanen, T., Kondelin, J., Kaasinen, E., 
Sarin, A.-P., Eriksson, J.G., Rissanen, H., Knekt, P., Pukkala, E., Jousilahti, P., 
Salomaa, V., Ripatti, S., Palotie, A., Renkonen-Sinisalo, L., Lepistö, A., Böhm, J., 
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