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Abstract

Background: Alzheimer’s disease (AD) is a complex neurological disorder with

contributions from genetic and environmental factors. High-resolution metabo-

lomics (HRM) has the potential to identify novel endogenous and environmen-

tal factors involved in AD. Previous metabolomics studies have identified

circulating metabolites linked to AD, but lack of replication and inconsistent

diagnostic algorithms have hindered the generalizability of these findings. Here

we applied HRM to identify plasma metabolic and environmental factors asso-

ciated with AD in two study samples, with cerebrospinal fluid (CSF) biomark-

ers of AD incorporated to achieve high diagnostic accuracy. Methods: Liquid

chromatography-mass spectrometry (LC–MS)-based HRM was used to identify

plasma and CSF metabolites associated with AD diagnosis and CSF AD

biomarkers in two studies of prevalent AD (Study 1: 43 AD cases, 45 mild cog-

nitive impairment [MCI] cases, 41 controls; Study 2: 50 AD cases, 18 controls).

AD-associated metabolites were identified using a metabolome-wide association

study (MWAS) framework. Results: An MWAS meta-analysis identified three

non-medication AD-associated metabolites in plasma, including elevated levels

of glutamine and an unknown halogenated compound and lower levels of

piperine, a dietary alkaloid. The non-medication metabolites were correlated

with CSF AD biomarkers, and glutamine and the unknown halogenated com-

pound were also detected in CSF. Furthermore, in Study 1, the unknown com-

pound and piperine were altered in MCI patients in the same direction as AD

dementia. Conclusions: In plasma, AD was reproducibly associated with ele-

vated levels of glutamine and a halogen-containing compound and reduced

levels of piperine. These findings provide further evidence that exposures and

behavior may modify AD risks.

Introduction

Alzheimer’s disease (AD) is a progressive neurological dis-

order whose onset and progression are influenced by

genetic, biological, environmental, and social factors.1

There has been considerable progress in characterizing

proteomic changes associated with the core pathology of

AD (including Ab42-rich neuritic plaques and tau-rich
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neurofibrillary tangles).2,3 However, proteins alone – in

the brain or body fluids such as plasma or cerebrospinal

fluid (CSF) – are inadequate to characterize metabolic

alterations and environmental exposures associated with

AD. Targeted metabolomics studies in AD have identified

novel risk factors and candidate diagnostic biomarkers,4,5

but these approaches are limited in the number of

metabolites measured. When coupled with only a modest

accuracy in clinical diagnosis6 and the presence of pre-

clinical AD in older subjects, these studies are often pla-

gued by false positive or negative findings.

Untargeted metabolomics involves the simultaneous

detection of all small molecules in a biofluid – that is, the

metabolome – without a priori knowledge of the metabo-

lites involved.7 One untargeted approach, high-resolution

metabolomics (HRM), enables the measurement of thou-

sands of endogenous and exogenous metabolites over

eight orders of magnitude.8 We hypothesize that HRM

will enable the identification of novel biological and/or

man-made metabolites associated with AD. At the same

time, “-omics” studies in AD research suffer from non-s-

tandardized sample handling, over-training in a single

small cohort, and limited accuracy of the clinical AD

diagnosis, with at least 17% of clinically-probable AD

found to have no AD neuropathology on autopsy.6,9

Along with inter-individual variability and technical limi-

tations, these factors contribute to the low replication

rates of AD metabolomic profiles.5,10

To identify metabolites whose alterations are consis-

tently associated with AD, we designed an HRM study

using plasma samples from subjects with normal cogni-

tion (NC), mild cognitive impairment (MCI) and AD

dementia. We incorporated CSF AD biomarker informa-

tion associated with the presence or absence of brain AD

pathology11,12 to achieve high diagnostic accuracy. We

then recruited an independent sample of participants to

validate our plasma findings, and we used a metabolome-

wide association study (MWAS) approach to identify

metabolites consistently altered across the two studies.

Methods

Participants

Subjects for both studies were recruited from the Emory

Cognitive Neurology Clinic and the Emory Alzheimer’s

Disease Research Center. This study was approved by the

Emory University Institutional Review Board. All partici-

pants or their legal representatives provided written

informed consent. Each subject underwent a detailed eval-

uation including neurological examination and neuropsy-

chological analysis. Subjects with cognitive impairment or

dementia also underwent routine blood tests to rule out

common reversible causes of cognitive dysfunction, and

brain imaging to rule out structural causes of dementia.

Subjects were classified as having NC if there was no sub-

jective cognitive complaint and neuropsychological analy-

sis showed normal cognitive functioning according to age,

gender, education, and race and as having MCI13 or AD

dementia14 according to NIA-AA criteria.

Sample collection

Plasma samples were collected and processed as described

previously.15 Briefly, 20 mL of whole blood was collected

via phlebotomy between 8 AM and noon without over-

night fasting and centrifuged at 4°C at 1000 x g. Platelet-

rich plasma was immediately removed without disturbing

the cellular layers, aliquoted, labeled, frozen, and stored at

�80°C until analysis within 2 h of collection. All subjects

in the two studies also underwent CSF collection via lum-

bar puncture with a 24-gauge atraumatic spinal needle

into polypropylene tubes (BD Falcon), immediately ali-

quoted (0.5 mL), labeled, frozen, and stored at �80°C
until analysis within 30 min of collection. CSF AD bio-

marker analysis was performed as previously described in

a Luminex 200 platform, including levels of beta-amyloid

1-42 (Ab42), total tau (t-Tau), and tau phosphorylated at

threonine 181 (p-Tau181).
15 For inclusion into the study,

all NC subjects must have t-Tau/Ab42 < 0.39 (not consis-

tent with Alzheimer’s disease), and all AD dementia sub-

jects must have t-Tau/Ab42 ≥ 0.39 (consistent with

Alzheimer’s disease) based on a previously published CSF

autopsy study.11 Because only 30–70% of MCI subjects

had underlying AD pathology as the cause of their cogni-

tive impairment,16 MCI subjects were classified as likely

due to AD (MCI-AD, t-Tau/Ab42 ≥ 0.39) or likely due to

a suspected non-AD pathology (MCI-SNAP, t-Tau/

Ab42 < 0.39).

Plasma and CSF HRM analysis

Plasma and CSF samples were prepared for HRM using

methods detailed elsewhere.17–19 Briefly, aliquots were

removed from storage at �80°C and thawed on ice, upon

which 65 lL of biofluid was added to 130 lL of acetoni-

trile containing a mixture of stable isotopic standards,

vortexed, and allowed to equilibrate for 30 min. Proteins

were precipitated by centrifuge (16.1g at 4°C for 10 min),

and extracts were stored in a refrigerated autosampler.

Triplicate 10 lL aliquots were analyzed by reverse-phase

C18 liquid chromatography (Dionex Ultimate 3000) and

Fourier transform mass spectrometry (Study 1: Thermo

Q-Exactive; Study 2: Thermo Q-Exactive HF) in positive

electrospray ionization mode, resolution (FWHM) of

70,000 (Study 1) or 120,000 (Study 2) and mass-to-charge
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(m/z) range of 85–1250.20,21 Samples were grouped by

matrix, randomized, and analyzed in batches of 20, with a

quality control (QC) pooled reference sample included at

the beginning and end of each batch. Raw data files were

extracted using apLCMS22 with modifications by xMSana-

lyzer,23 with each unique mass-to-charge (m/z) feature

defined by m/z, retention time, and ion abundance. Meta-

bolomics data will be deposited in Metabolomics Work-

bench (www.metabolomicsworkbench.org).

Statistical analysis

Statistical analyses were performed in RStudio

v0.99.486.24 Variation in m/z feature intensities related to

analytical daily batch was removed using ComBat.25 Prior

to analyses, datasets were filtered to remove features with

retention times <30 sec.

Associations of m/z features with AD dementia (vs.

NC) were assessed using a MWAS approach26,27 for fea-

tures present in >80% of study samples. Since the exclu-

sion and/or imputation of non-detected intensities can

result in biased estimates,28 accelerated failure time (AFT)

survival models29,30 were used to model m/z feature

intensities as outcomes, which enables the inclusion of all

data observations by treating missing values as left-cen-

sored. AFT models were fit using the R package “sur-

vival.”31,32 For each m/z feature, the limit of detection

(LOD) was considered to be the lowest detected intensity

value. Separately in each study, AFT models, assuming

lognormal intensity distributions,33 were constructed for

each feature wherein diagnostic status (AD vs. NC) was

the primary predictor of intensity, adjusted for sex and

age; for the ith individual,

log Tið Þ ¼ lþ b1x1i þ b2x2i þ b3x3i þ rei

where log(Ti) is the log-transformed feature intensity,

X1, X2, and X3 represent the predictor variables diagnosis

(NC vs. AD dementia), sex, and age (continuous 1-y

change), with coefficients b1, b2, and b3, l is the intercept

term, e is the error term, and r is the scale coefficient.

The beta coefficient for diagnosis (b1) can be interpreted

as the change in log mean intensity for AD dementia ver-

sus NC.

To identify m/z features consistently associated with

AD dementia, a fixed effects meta-analysis was conducted

using the “meta” R package.34 A feature was selected for

further characterization if it was associated with AD

dementia at false discovery rate (FDR) <0.20 in the meta-

analysis and was associated with AD at P < 0.10 in both

studies with the same direction of association. An FDR

threshold of <0.20 was selected based on previously pub-

lished metabolomics studies.35–37 To explore whether

these features were iatrogenic metabolites linked to AD

medications, regression models were constructed with

diagnosis predicting each m/z feature, adjusting for sex,

age, and detection (yes/no) for three AD medications

([M + H]+ for memantine (m/z 180.1748) and rivastig-

mine (m/z 251.1753), [M + H]+ (13C isotope) for done-

pezil (m/z 381.2254)). A feature would be excluded from

further analyses if beta coefficients were attenuated fol-

lowing adjustment for AD medications in one or both

studies.

Boxplots were created with “NADA,”38 an R package

for censored data. Correlations of AD-associated features,

CSF markers (e.g., tau, Ab42) and ApoE genotypes were

conducted using Spearman rank-order correlations.

Results were combined in a fixed effects meta-analysis

using the “meta” R package.34 Correlations of m/z fea-

tures between plasma and CSF were conducted using

Spearman rank-order correlations in participants with

CSF in Study 1.

Metabolite identification

Detected m/z features were matched between studies

based upon m/z (within 5 ppm) and retention times

(within 30 sec) using the “xMSanalyzer” R package.23 If

one m/z feature matched to multiple m/z features in the

other study, the m/z feature with the closest retention

time was selected for its match. To cluster m/z signals

derived from the same metabolites, we used a custom-de-

signed application that generates a pseudospectrum for a

metabolite feature based on intensity correlations and

retention time similarities, then predicts adduct, isotope,

and/or fragment identities based on the observed mass

differences within each cluster.

Database matching by accurate mass was conducted

using the Human Metabolome Database (HMDB)39 with

a tolerance of 5 ppm. Searches were conducted using the

predicted adduct/isotope/fragment identity from our algo-

rithm; if the algorithm was unable to predict an identity,

the database was searched using common adducts

([M + H]+, [M + Na]+, [M + K]+, [M + H-H2O]
+,

[M + H-2H2O]
+, [M + ACN+H]+, [M + ACN+Na]+,

[M + 2Na-H]+). Ion dissociation (MS2) studies were

completed and spectra characterized using CFM-ID40 and

Sirius 3.0.41 Piperine was confirmed by comparing m/z

values, retention times, isotopic distribution, and detected

adducts to a piperine reference standard (Sigma Aldrich).

Results

Participant characteristics are presented in Table 1. Study

1 consisted of 41 healthy NC, 45 MCI (20 with MCI-AD

[44% of MCI group]), and 43 AD dementia participants,

and Study 2 had 18 NC and 50 AD participants. Plasma
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metabolomics was run for all participants, while CSF

metabolomics was run on a subset of participants in

Study 1 (Control, n = 25; MCI, n = 27; AD dementia,

n = 26). AD and NC subjects did not differ by sex or age

(P > 0.20). As expected, AD dementia participants had

lower Ab42 levels and higher t-Tau and p-Tau181 levels

(P < 0.0001) and were more likely to have at least one

APOE e4 allele (P = 0.003 in Study 1).

MWAS of plasma metabolites

HRM profiling of plasma yielded 2320 and 3855 unique

m/z features in Study 1 and Study 2, respectively. To

identify metabolites reproducibly associated with AD

dementia, we focused on the subset of 968 m/z features

that were common to both studies. Within each study,

we conducted an MWAS of AD, and we summarized the

associations by conducting a meta-analysis. After adjust-

ment for sex and age, we identified four m/z features

consistently associated with AD dementia (meta-analysis

FDR < 0.20 and P < 0.10 in each study; see extended

results with relaxed significance thresholds in Table S1).

The feature with the strongest association with AD, m/z

251.1753, matched the mass of the [M + H]+ adduct of

rivastigmine, an AD medication. To verify that the three

remaining m/z features were associated with AD indepen-

dently of medications, we constructed models for these

features adjusting for diagnosis, sex, age, and detection

(yes/no) of three common AD medications identified in

the unfiltered datasets (rivastigmine, memantine, and

donepezil). Associations between AD and the three m/z

features were not attenuated after adjustment for medica-

tion status, suggesting that their associations were not

explained by medication use.

We characterized the identities of the three m/z fea-

tures (Table 2; Table S2). The m/z feature 129.0661 was

identified by MS2 as glutamine. While MS2 fragmenta-

tion for m/z 246.9550 was successful, the MS2 spectrum

Table 1. Demographic and clinical data for study samples.

Study 1

Control AD MCI Ctrl vs. AD

n = 41 n = 43 n = 45 P3

Demographics

Male 11 (27%)1 16 (37%) 22 (49%) 0.43

Age (y) 67.5 � 7.32 65.9 � 8.8 69.4 � 6.6 0.36

CSF protein biomarkers

Ab42 (pg/mL) 340 � 137 203 � 76 218 � 90 <0.0001

t-Tau (pg/mL) 44 � 24 117 � 70 76 � 67 <0.0001

p-Tau181 (pg/mL) 32 � 15 75 � 32 51 � 25 <0.0001

t-Tau/Ab42 0.14 � 0.09 0.64 � 0.39 0.39 � 0.33 <0.0001

APOE genotypes

Subjects with data (n) n = 18 n = 13 n = 21 0.003

No e4 alleles 11 (61%) 1 (8%) 10 (48%)

One e4 allele 7 (39%) 8 (62%) 7 (33%)

Two e4 alleles 0 (0%) 4 (31%) 4 (19%)

Study 2 n = 18 n = 50 P

Demographics

Male 8 (44%) 22 (44%) 1.00

Age (y) 61.2 � 12.6 65.1 � 9.3 0.24

CSF protein biomarkers

Ab42 (pg/mL) 218 � 112 143 � 73 0.01

t-Tau (pg/mL) 43 � 30 114 � 54 <0.0001

p-Tau181 (pg/mL) 27 � 16 56 � 27 <0.0001

t-Tau/Ab42 0.23 � 0.13 0.93 � 0.53 <0.0001

APOE genotypes

Subjects with data (n) n = 16 n = 40 0.19

No e4 alleles 10 (63%) 15 (38%)

One e4 allele 5 (31%) 17 (43%)

Two e4 alleles 1 (6%) 8 (20%)

1N (%) (all such values).
2Mean � SD (all such values).
3P-values for control versus AD comparisons from t-tests (continuous variables) or chi-square tests (categorical variables).
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did not have a spectral library match, and m/z 349.1515

could not be identified with MS2 due to low abundance.

The most likely accurate mass database match in HMDB

for m/z 349.1515 was piperine, which is found in black

pepper, Piper nigrum.42 The identification of m/z

349.1515 as piperine was confirmed by accurate mass

and retention time matching to a reference standard.

The MS1 and MS2 spectra for m/z 246.9550 contained

peak patterns consistent with the presence of a halogen

isotope (chlorine [Cl] or bromine [Br]). The feature had

no matches in HMDB, but a METLIN43 search returned

nine compound matches, all classified as toxicants.

Among these features, glutamine was positively correlated

with CSF t-Tau and p-Tau181 levels and the number of

ApoE e4 risk alleles, and piperine and m/z 246.9550 cor-

related negatively and positively with p-Tau181 levels,

respectively (Table 3).

Metabolite alterations in MCI

We explored whether the three metabolites were altered

in MCI subjects in Study 1. Two metabolites, m/z

246.9550 and piperine, were associated with MCI (vs.

NC) in AFT models adjusted for sex and age, both in the

same direction as their associations with AD dementia.

Stratification by MCI-SNAP and MCI-AD did not reveal

differences in the feature intensities between the two sub-

groups (Fig. 1).

Correlation of metabolites between plasma
and CSF

To determine the plausibility of plasma metabolites influ-

encing the brain, we checked whether the features were

detectable in CSF. We identified matches for glutamine

Table 2. Non-medication plasma metabolite features reproducibly associated with AD from MWAS.

Feature Study 1 Study 2 Meta-analysis

m/z1 RT1 Metabolite Est (SE) P Est (SE) P Est (SE) P FDR

129.0661 89 Glutamine 0.22 (0.11) 0.04 0.31 (0.13) 0.02 0.25 (0.08) 0.002 0.07

246.9550 127 Unknown 0.41 (0.17) 0.02 0.38 (0.21) 0.07 0.40 (0.14) 0.003 0.08

349.1515 80 Piperine �0.59 (0.31) 0.06 �0.89 (0.49) 0.07 �0.68 (0.27) 0.01 0.18

1m/z and retention time (RT, in seconds) reflect the mean values in Studies 1 and 2.

Table 3. Spearman correlations1 of AD-associated non-medication plasma features with CSF protein biomarkers of AD and APOE-e4 genotype.

Ab42 (pg/mL) t-Tau (pg/mL) p-Tau181 (pg/mL) APOE (number of e4 alleles)

Glutamine �0.15* 0.21† 0.18† 0.33†

m/z 246.9550 �0.16† 0.13 0.19† 0.09

Piperine �0.01 �0.16* �0.17† 0.04

1Correlations reflect results from a fixed effects meta-analysis of the partial Spearman correlations, adjusted for sex and age, between the listed

variables in Studies 1 and 2; *P < 0.10; †P < 0.05.

Control MCI-
SNAP

ADMCI-
AD

21

25

23

m/z 246.9550

Lo
g 2

io
n 

in
te

ns
it

y

Control MCI-
SNAP

ADMCI-
AD

20

26

23

Piperine

Lo
g 2

io
n 

in
te

ns
it

y

Figure 1. Boxplots of plasma features altered in MCI and AD in Study 1. Figure displays boxplots of log2-transformed feature intensities by

diagnosis for metabolites altered in both MCI and AD in Study 1. Horizontal lines show the lowest detectable ion intensity for the corresponding

feature.
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and m/z 246.9550; plasma and CSF levels were modestly

correlated for glutamine (rho = 0.26, P = 0.03) but not

for m/z 246.9550 (rho = �0.04, P = 0.72). CSF levels of

these two features were not associated with AD (P > 0.05;

data not shown).

Discussion

Untargeted metabolomics has the promise to identify novel

compounds involved in AD pathogenesis, but inconsisten-

cies in clinical diagnoses, sample handling protocols, and

analytical methods affect the generalizability of metabolo-

mics studies. Here, we identified plasma and CSF metabo-

lites associated with biomarker-supported AD in two

studies that we recruited and analyzed independently. In

plasma, we replicated associations with glutamine, a previ-

ously-identified metabolite, and we found novel metabo-

lites increased (unknown halogen-containing compound)

and decreased (piperine) in AD dementia. Glutamine and

the halogen-containing compound were also detectable in

CSF, supporting their entry into or synthesis in the central

nervous system. In sum, our findings suggest that AD

dementia is associated with reproducible alterations of

plasma metabolites of endogenous and exogenous origin.

Previous studies have examined untargeted metabolo-

mic profiles of AD dementia with varying approaches and

results (summarized in Table 4). Several untargeted meta-

bolomics and lipidomics studies have identified AD-asso-

ciated phospholipid alterations.44–47 In most of these

studies, the primary outcome was classification accuracy,

which relies on machine learning algorithms that run the

risk of overfitting. Only one study48 included Discovery

and Validation studies similar to our design, which iden-

tified three metabolites across the two samples. To the

best of our knowledge, our study is the first to employ

HRM in two independent studies to identify metabolites

reproducibly associated with biomarker-supported AD

dementia. However, replication in another geographical

region is needed for generalization of our findings beyond

the southeastern United States.

Consistent with previous targeted metabolomics stud-

ies,4,49–55 we identified elevated plasma glutamine in AD

dementia. In our studies, glutamine was positively associ-

ated with APOE-e4 status and CSF t-Tau and p-Tau181
levels. Glutamine is a precursor to several excitatory (glu-

tamate and aspartate) and inhibitory (neurotransmitter c-
amino butyric acid, or GABA) neurotransmitters.56 Previ-

ous studies found that mice with knocked-in apoE e4
have elevated brain glutamine57 and greater susceptibility

to excitotoxicity58 than APOE e3 knock-in mice. How-

ever, human studies examining glutamine levels in AD

dementia compared to NC have generated mixed find-

ings.48,55,59 Importantly, glutamine can readily pass

through the blood-brain barrier, and we found a modest

correlation between plasma and CSF glutamine levels.

While it is possible that memantine (a non-competitive

NMDA receptor antagonist) might influence glutamine

levels, effect estimates for plasma glutamine and meman-

tine predicting AD dementia were unchanged in models

containing both metabolites simultaneously, suggesting

these metabolites were independently related to AD. Thus,

our current findings add to the body of evidence impli-

cating glutamine dysregulation and excitotoxicity in AD.

Future studies should investigate whether plasma glu-

tamine can serve as a biomarker to identify AD patients

susceptible to excitotoxicity.

Piperine, which was found at reduced levels in AD, is a

bioactive dietary compound found at high levels in black

pepper (Piper nigrum).60 The compound was negatively

associated with CSF p-Tau181 and was also reduced in

MCI. Piperine has a range of physiological effects, includ-

ing antioxidant,61 antinflammatory,62 and anti-secretase63

activities directly relevant to AD. Piperine has been shown

to be neuroprotective in AD mouse models,64–68 but to

our knowledge, this is the first report of an association

between piperine and AD in a human study. Although we

are unable to draw conclusions about the direction of the

association, these findings warrant further investigation

given the alkaloid’s low risks and costs, as well as its abil-

ity to enhance absorption of other neuroprotective com-

pounds.69,70

Identification of m/z features remains a bottleneck in

HRM. Identification is particularly difficult for low-abun-

dance metabolites since MS2 spectral matching is chal-

lenging71 and spectral information may not be present in

public databases for less-common compounds. For exam-

ple, m/z 246.9550 matched nine toxicants in METLIN,

but none had actual or in silico MS2 spectra, and only a

small proportion had standards that were available for

purchase. However, the metabolite’s association with AD

dementia in two independent study samples and its

detectable CSF levels support the need for future work to

identify the chemical and examine its role in AD suscepti-

bility or pathogenesis.

Our study had several strengths, including the inclusion

of multiple biofluids, two independent samples, and appli-

cation of the HRM platform. Among the three non-medi-

cation metabolites, two were associated with MCI in Study

1 regardless of cause, suggesting a role in brain vulnerabil-

ity or degeneration not specific to AD. We also acknowl-

edge limitations beyond those inherent to observational

studies, sample size concerns, and generalizability beyond

the study’s geographic region. First, it is possible that AD

treatment alters non-neurological metabolic pathways. We

could not confirm the identities of two features through

MS2. We did not have lifestyle history to corroborate past

42 ª 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

Untargeted Metabolomics and Alzheimer’s Disease M. M. Niedzwiecki et al.



exposures, and we did not have sufficient information

(e.g., half-life) on their associated metabolites to build a

temporal relationship between exposure and disease onset.

Additionally, the analysis of non-fasting plasma samples

may have introduced noise into the metabolite measure-

ments. Nevertheless, our HRM workflow identified

endogenous and environmental metabolites reproducibly

altered in AD dementia, providing confirmatory and novel

findings for hypothesis generation for future in vitro

mechanistic studies and in vivo observational studies.
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Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Table S1. Metabolites associated with AD dementia in

Studies 1 and 2 with P < 0.20 and consistent direction of

association.

Table S2. Summary of MS1 and MS2 results for m/z

129.0667, 246.9550, and 349.1515.
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