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Abstract. Derivatives of 1,4-naphthoquinone have excellent 
anti-cancer effects, but their use has been greatly limited due to 
their serious side effects. To develop compounds with decreased 
side effects and improved anti-cancer activity, two novel types of 
1,4-naphthoquinone derivatives, 2,3-dihydro-2,3-epoxy-2-pro-
pylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (EPDMNQ) 
and 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dime-
thoxy-1,4-naphthoquinone (ENDMNQ) were synthesized 
and their anti-tumor activities were investigated. The effects 
of EPDMNQ and ENDMNQ on cell viability, apoptosis 
and accumulation of reactive oxygen species (ROS) in liver 
cancer cells were determined by MTT cell viability assay 
and flow cytometry. The expression levels of mitochondrial, 
mitogen activated protein kinase (MAPK) and signal trans-
ducer and activator of transcription 3 (STAT3) signaling 
pathway-associated proteins in Hep3B liver cancer cells were 

analyzed by western blot analysis. The results demonstrated 
that EPDMNQ and ENDMNQ inhibited the proliferation 
of liver cancer Hep3B, HepG2, and Huh7 cell lines but not 
that of normal liver L-02, normal lung IMR-90 and stomach 
GES-1 cell lines. The number of apoptotic cells and ROS 
levels were significantly increased following treatment with 
EPDMNQ and ENDMNQ, and these effects were blocked by 
the ROS inhibitor N-acetyl-L-cysteine (NAC) in Hep3B cells. 
EPDMNQ and ENDMNQ induced apoptosis by upregulating 
the protein expression of p38 MAPK and c-Jun N-terminal 
kinase and downregulating extracellular signal-regulated 
kinase and STAT3; these effects were inhibited by NAC. The 
results of the present study demonstrated that EPDMNQ and 
ENDMNQ induced apoptosis through ROS-modulated MAPK 
and STAT3 signaling pathways in Hep3B cells. Therefore, 
these novel 1,4-naphthoquinone derivatives may be useful as 
anticancer agents for the treatment of liver cancer.

Introduction

Liver cancer is one of the leading causes of cancer-associated 
mortality in worldwide (1). Patients suffering from this disease 
are often diagnosed with late-stage cancer and severely 
impaired liver function. Due to the poor response to hepatic 
resection, patients may only be able to be treated with chemo-
therapy (2). At present, the primary chemotherapeutic drugs for 
liver cancer are shikonin, 5‑fluorouracil (5‑FU) and cisplatin, 
but these drugs have severe side effects and are expensive (3,4). 
Therefore, novel therapeutic agents with improved efficiency 
and lower toxicity are urgently required for liver cancer.

Apoptosis is an active form of chemotherapy-induced cell 
death characterized by orderly cell death, and is mediated by 
mitochondrial dysfunction. The caspase cascade serves an 
important role in this process (5). The B-cell lymphoma 2 
(Bcl-2) family consists of proteins that either promote or 
inhibit apoptosis. Inhibiting anti-apoptotic protein Bcl-2 and 
promoting pro-apoptotic protein Bcl-2-associated X protein 
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(Bax) expression can be targeted for cancer chemopreven-
tion (6). Caspase-3 is one of the most important molecules 
in the regulation of apoptosis and cell survival, and exists 
as an inactive enzyme that undergoes proteolytic cleavage 
at conserved aspartic residues, to produce large and small 
subunits that dimerize to form the active enzyme (7).

The mitogen-activated protein kinase (MAPK) pathway 
is activated by upstream genomic events and/or activation of 
multiple signaling events where information coalesces at this 
important nodal pathway point (8). The p38 MAPK pathway 
is an important regulator of a number of cellular responses. 
It is well established that enhanced p38 activity correlates 
with a poor clinical prognosis in certain tumor types (9-11). 
The c-Jun N-terminal kinase (JNK) is a master protein kinase 
that regulates a number of physiological processes including 
inflammatory responses, morphogenesis, and cell prolifera-
tion, differentiation, survival and death (12,13). Extracellular 
signal-regulated kinase (ERK) phosphorylation results in the 
activation of multiple substrates that are responsible for stimu-
lating cell proliferation (14). In addition, signal transducer and 
activator of transcription 3 (STAT3) is persistently activated in 
several types of cancer, and also regulates numerous cardinal 
features of cancer, including cancer cell growth, apoptosis, 
metastasis and tumor angiogenesis (15,16). In addition, the 
protein expression level of STAT3 in HCC tissues was identi-
fied to be increased compared with that in normal liver and 
adjacent tissues (17).

Reactive oxygen species (ROS) within cells including 
hydrogen peroxide, superoxide anions and hydroxyl radicals 
serve as second messengers in the regulation of a number of 
important cellular events including transcription factor activa-
tion, gene expression and cellular proliferation, differentiation 
and senescence (18,19). In addition to endogenous sources of 
ROS, ROS levels may also increase due to chemical stimu-
lation, ultraviolet radiation and thermal exposure (20). ROS 
have also been implicated in the metabolic reprogramming 
of cancer cells, serving important roles in tumor initiation, 
progression and metastasis (21). Excessive production of ROS 
leads to disruption of the homeostasis of the intracellular 
redox status, which may directly induce oxidative damage in 
lipids, proteins and nucleic acids, thereby killing cancer cells 
by disturbing their metabolism and signal transduction (22). 
In addition, based on the different redox status of normal and 
cancer cells, a promising therapeutic strategy based on drugs 
that increase ROS generation and induce apoptosis in cancer 
cells has arisen cancer therapy (23).

As naphthalene organic derivatives, 1,4-naphthoquinone 
compounds have been extensively investigated for their 
potential biological benefits, including their anti‑inflammatory 
and anti-bacterial activities (24). In addition, the 1,4-naph-
thoquinone pharmacophore exhibits anti-cancer activity 
and has been the focus of previous studies (25,26). Among 
the 1,4-naphthoquinone compounds, plumbagin, mitomycin 
and shikonin have been used in the development of potent 
anti-cancer drugs (27). However, these compounds exhibit 
high levels of cytotoxicity and significant side effects, making 
their application as anti-cancer drugs in the clinical setting 
problematic (28). Therefore, our previous study used 1,4-naph-
thoquinone as a common compound to synthesize novel 
naphthoquinone derivatives, which indicated significantly 

improved cytotoxicity and increased anti-tumor activity in 
several types of cancer cells (29,30).

In an attempt to develop compounds with decreased 
side effects and optimized antitumor effects, two 
novel types of 1,4-naphthoquinone derivatives were 
synthesized, namely 2,3-dihydro-2,3-epoxy-2-propylsul-
fonyl-5,8-dimethoxy-1,4-naphthoquinone (EPDMNQ) 
and 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dime-
thoxy-1,4-naphthoquinone (ENDMNQ). Then, their effects on 
anti-proliferation, apoptosis induction and ROS generation in 
liver cancer cells were detected. The molecular mechanisms 
of apoptosis induced by EPDMNQ and ENDMNQ were also 
explored in Hep3B cells.

Materials and methods

Synthesis of the 1,4‑naphthoquinone derivatives EPDMNQ 
and ENDMNQ. AlCl3 (142 g, 1.06 mol) and NaCl (28.3 g, 
0.48 mol) were melted at 150‑155˚C, and a mixture of 
1,4-dimethoxybenzene (0.12 mol) and maleic anhydride 
(0.24 mol) was added to the melted mixture. The temperature 
was sustained at 170‑175˚C for 1‑2 min and the dark red melt 
was allowed to cool. Next, the distilled water (1,400 ml) and 
98% HCl (100 ml) were added to the melt mixture and continu-
ously mixed for 12 h to generate naphthazarin. The mixture 
of naphthazarin (19.0 g), tetrahydrofuran (C4H8O; 200 ml), 
Na2S2O4 (10.6 g), distilled water (200 ml) and tetrabutylam-
monium bromide (C16H36BrN, 2.0 g) were mixed for 1 h. Then, 
a solution of C2H6O4S (25 ml), NaOH (40 ml) and Na2S2O4 
(10.6 g) were added to the mixture stirred for 22 h at room 
temperature. The 1,4,5,8-tetramethoxynaphthalene was then 
recovered by filtration and recrystallized from petroleum ether 
(boiling point 90‑120˚C). The residue was recrystallized from 
MeOH to give the title compound 5,8-dimethoxy-1,4-naphtho-
quinone (DMNQ) The 1-Mercaptopropane (1.65 mmol) and 
1-Nonanethiol (1.65 mmol) was added to a solution of DMNQ 
(1.38 mmol) and MeOH (30 ml) respectively. The mixture was 
then stirred at room temperature for 4 h. A solution of sodium 
dichromate (Na2Cr2O7·2H2O, 0.76 mmol) and 98% H2SO4 
(0.23 mmol) was then added and stirred for 2 min. The reaction 
was conducted at room temperature with m-chloroperoxyben-
zoic acid to produce the final products, 1,4‑naphthoquinone 
derivatives EPDMNQ and ENDMNQ. The acidic solution was 
extracted with dichloromethane (CHCl2; 60 ml). The organic 
layer was washed with brine (Fig. 1A and B).

Nuclear magnetic resonance (NMR) spectra were recorded 
on JNM-AL 600 (600 MHz) and JNM-AL 150 (150 MHz) 
spectrometers. Chemical shifts (d) were measured as ppm 
downfield from tetramethylsilane as the internal standard. 
Mass spectra were collected with the AB SCIEX API 2000 
LC/MS/MS System (Applied Biosystems; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) and LCMS‑IT‑TOF 
(Shimadzu (China) Co., Ltd., Beijing, China).

Cell lines and cell culture. Human hepatocellular carci-
noma cells Hep3B and Huh7, and human hepatoblastoma 
HepG2 cells were obtained from the American Type Culture 
Collection (Manassas, VA, USA), and normal liver L-02, 
normal lung IMR-90 and normal stomach GES-1 cell lines 
were obtained from (Saiqi Biological Engineering Co., Ltd., 



MOLECULAR MEDICINE REPORTS  19:  1654-1664,  20191656

Shanghai, China). Cells were cultured in Dulbecco's modified 
Eagle's medium (DMEM; Gibco; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) supplemented with 10% fetal 
bovine serum (Gibco; Thermo Fisher Scientific, Inc.). The 
cultures were maintained at 37˚C in a humidified atmosphere 
of 5% CO2.

MTT assay. Human hepatocellular carcinoma cells Hep3B 
and Huh7, human hepatoblastoma HepG2, normal liver L-02, 
normal lung IMR-90 and normal stomach GES-1 cells were 
seeded in 96-well plates at a density of 1x104 cells/well. 
Following overnight incubation at 37˚C, cells were treated 
with different concentrations (1, 3, 10, 30 or 100 µmol/l) of 
5‑FU, EPDMNQ and ENDMNQ for 24 h at 37˚C. Following 
treatment, 15 µl MTT (5 mg/ml) was added to each well and 
incubated for 2 h. The absorbance values of the solution were 
measured at 490 nm with a microplate illuminometer (BioTek 
Instruments Inc., Winooski, VT, USA).

Annexin V‑fluorescein isothiocyanate (FITC)/propidium 
iodide (PI) double staining. Hep3B cells were seeded in 6-well 
plates at a density of 1x106 cells/well. After 24 h incubation 
at 37˚C, cells were treated with 4 µmol/l 5‑FU, EPDMNQ and 
ENDMNQ for different time points (0, 3, 6, 12 or 24 h). Cells 
were washed with PBS, and stained with Annexin V‑FITC 
(10 µl) and PI (5 µl) in the dark for 15 min. Then, cells were 
observed using the Leica fluorescence microscope DM 
2500 (Leica Microsystems GmbH, Wetzlar, Germany) at 
magnification, x400.

Flow cytometry analysis. Hep3B cells were seeded in 6-well 
plates at a density of 1x106 cells/well. After 24 h incubation 

at 37˚C, cells were treated with 4 µmol/l 5‑FU, EPDMNQ 
and ENDMNQ for different time points (0, 3, 6, 12 or 24 h), 
and pretreated with N-acetyl cysteine (NAC, 5 mmol/l, 
Sigma-Aldrich; Merck KGaA) for 30 min and incubated with 
4 µmol/l EPDMNQ and ENDMNQ for 24 h, respectively. 
Cells were stained with Annexin V‑FITC (10 µl) and PI (5 µl) 
(Beyotime Institute of Biotechnology, Shanghai, China) in the 
dark for 15 min. The frequency of apoptotic cells in the treat-
ment groups was determined by flow cytometry (Beckman 
Coulter, Inc., Brea, CA, USA). Harvested cells were treated 
with 2',7-dichlorodihydrofluorescein diacetate (10 mmol/l) 
(DCFH‑DA; Merck, Shanghai, China) at 37˚C for 30 min 
to allow ROS measurement. ROS contents were determined 
by flow cytometry. Harvested cells were treated with JC‑1 
(10 µg/ml) (Beyotime Institute of Biotechnology) at room 
temperature for 5 min to detect mitochondrial membrane 
potential (ΔΨm) depolarization. States of ΔΨm depolarization 
were determined by flow cytometry and CytExpert software 
(version 1.2; Beckman Coulter, Inc., Brea, CA, USA) was used 
to analyze the data.

Western blot analysis. Harvested Hep3B cells were lysed 
in lysis buffer (50 mmol/l Tris (pH 7.4), 150 mmol/l NaCl, 
1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 
20 mg/ml AEBSF, 0.5 mg/ml pepstatin, 0.5 mg/ml leupeptin 
and 2 mg/ml aprotinin; Beyotime Institute of Biotechnology), 
The protein concentrations were determined using Bradford 
reagent (Bio-Rad Laboratories, Inc., Hercules, CA, USA), 
following which protein lysates (30 µg) were resolved on 
8-12% SDS-PAGE and electrotransferred onto nitrocellulose 
membranes (EMD Millipore, Billerica, MA, USA). The 
membranes were blocked for 2 h at room temperature in fresh 

Figure 1. Synthesis of 1,4‑naphthoquinone derivatives EPDMNQ and ENDMNQ. (A) Process of synthetic EPDMNQ and ENDMNQ generation. 
(B) Structural formulas of EPDMNQ and ENDMNQ. EPDMNQ, 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone; ENDMNQ, 
2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone.
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5% non-fat milk in 10 mM Tris-HCl containing 150 mM NaCl 
(TBS; pH 7.5) and TBS+0.2% Tween-20 (TBST), followed by 
incubation with specific primary antibodies (all obtained from 
Santa Cruz Biotechnology, Inc., Dallas, TX, USA) against 
mouse monoclonal α-tubulin (1:2,500; cat. no. sc-8035), 
Bcl-2 (1:1,500; cat. no. sc-7382), Bax (1:1,500; cat. no. sc-493), 
cleaved (cle)-poly (adenosine 5-diphosphate-ribose) poly-
merase (cle-PARP; 1:1,500; cat. no. sc-8007), cle-caspase-3 
(1:1,500; cat. no. sc-373730), phosphorylated (p)-p38 (Tyr182, 
1:1,500; cat. no. sc-7973), p-JNK (Tyr183 and Tyr185, 1:1,500; 
cat. no. sc-6254), JNK (1:1,500; cat. no. sc-7345), p-ERK 
(Tyr204, 1:1,500; cat. no. sc-8059), p-STAT3 (Tyr705, 1:1,500; 
cat. no. sc-8059) and STAT3 (1:1,500; cat. no. sc-8019). 
Rabbit polyclonal antibodies included p38α/β (1:1,500; 
cat. no. sc-7972) and ERK2 (1:1,500; cat. no. sc-154), overnight 
at 4˚C. Following five washes with TBST, the membranes 
were incubated with peroxidase-conjugated AffiniPure 
goat anti-mouse IgG (1:5,000; cat. no. ZB-2305; OriGene 
Technologies, Inc., Beijing, China) and goat anti-rabbit IgG 
(1:5,000; cat. no. ZB-2305; OriGene Technologies, Inc.) 
secondary antibodies for 1 h at room temperature, and immu-
noreactive protein bands were detected with an Amersham 
imager (AI600; GE Healthcare, Chicago, IL, USA). The blots 
were analyzed using Image J version 1.46r (National Institutes 
of Health, Bethesda, MD, USA) and protein levels were 
normalized to the matching densitometry value of α-tubulin 
as the internal control. The change of the expression levels of 
p-p38, p-JNK, p-ERK and p-STAT3 was based on the expres-
sion levels of p38, JNK, ERK and STAT3.

Statistical analysis. Data are presented as the mean ± standard 
deviation of three independent experiments. The samples 
of each group were compared by analysis of variance, and 
multiple comparisons between groups were performed using 
one-way analysis of variance followed by Tukey's post hoc 
tests using SPSS version 18.0 statistical software (SPSS, Inc., 
Chicago, IL, USA). P<0.05 was considered to indicate a statis-
tically significant difference.

Results

Synthesis of the 1,4‑naphthoquinone derivatives EPDMNQ 
and ENDMNQ. To improve activity and decrease side effects, 
the chemical synthesis of the 1,4-naphthoquinone derivatives 
EPDMNQ and ENDMNQ was modified (Fig. 1A and B). By 
performing NMR at a wavelength of 400 MHz, the H and C 
spectra were analyzed in deuterated chloroform solvent and 
the following structures were identified.

EPDMNQ: 1H-NMR (CDCl3, 600 MHz): δ 7.14 [singlet (s), 
2H], 4.5 (s, 1H), 3.99 (s, 6H), 3.60 [multiplet (m), J=6.5 Hz, 
2H], 1.9 (m, 2H), 1.1 (m, 3H). 13C NMR (CDCl3, 150 MHz) 
δ187.2 (C-1), 184.6 (C-4), 153.4 (C-5), 152.8 (C-8), 152.7 (C-2), 
130.3 (C-3), 128.3 (C-7), 120.7 (C-6), 120.3 (C-10), 120.1 (C-9), 
56.8 (OCH3), 56.4 (OCH3), 56.9 (C-1'), 49.8 (C-2'), 14.9 (C-3'); 
ion trap‑time of flight mass spectrometer (IT‑TOF/MS): m/z 
364.41 (M+Na)+.

ENDMNQ: 1H-NMR (CDCl3, 600 MHz): δ 7.14 (s, 2H), 
4.5 (s, 1H), 3.99 (s, 6H), 3.60 (m, J=6.4 Hz, 2H), 1.9 (m, 14H), 
1.1 (m, 3H); 13C NMR (CDCl3, 150 MHz). δ 191.1 (C-1), 189.3 
(C-4), 154.8 (C-5), 153.4 (C-8), 152.8 (C-2), 129.9 (C-3), 128.3 

(C-7), 120.7 (C-6), 120.6 (C-10), 119.1 (C-9), 56.8 (OCH3), 
56.5 (OCH3), 56.9 (C-1'), 45.3 (C-2'), 29.7 (C-3'), 25.9 (C-4'), 
20.5 (C-5'), 15.2 (C-6'), 14.7 (C-6'), 14.7 (C-7'), 14.1 (C-8'), 13.1 
(C‑9'); IT‑TOF/MS: m/z 447.56 (M+Na)+.

EPDMNQ and ENDMNQ treatment selectively kills liver 
cancer cells but not normal cells. To determine whether 
EPDMNQ and ENDMNQ had cytotoxic effects in liver cancer 
cells, cell viabilities were determined by the MTT assay. As 
demonstrated in Fig. 2A, EPDMNQ and ENDMNQ inhibited 
Hep3B, HepG2 and Huh7 cell proliferation in a dose-dependent 
manner. The cytotoxic effect of EPDMNQ and ENDMNQ 
on liver cancer cells was significantly greater compared with 
5‑FU. The effects of EPDMNQ half maximal inhibitory 
concentration (IC50) values of Hep3B, HepG2 and Huh7 cells 
were 3.89±1.22, 5.26±1.64 and 7.68±1.54 µmol/l, respectively. 
The effects of ENDMNQ IC50 values of Hep3B, HepG2 and 
Huh7 cells were 4.89±2.09, 6.90±2.21 and 16.54±1.24 µmol/l, 
respectively. As indicated in Fig. 2B, EPDMNQ and ENDMNQ 
exhibited lower cytotoxicity compared with 5‑FU treatment in 
normal liver L-02, normal lung IMR-90 and normal stomach 
GES-1 cell lines. As Hep3B cells exhibited the lowest IC50 
values, and were most sensitive to EPDMNQ and ENDMNQ 
of the 3 cancer cell lines, Hep3B cells were used for the subse-
quent studies

EPDMNQ and ENDMNQ induce apoptosis in Hep3B cells. To 
determine whether the anti-proliferative effects of EPDMNQ 
and ENDMNQ were due to effects on cell apoptosis, cell 
populations were detected by fluorescence microscopy. As 
demonstrated in Fig. 3A and B, the fluorescence intensities of 
Annexin V‑FITC and PI were increased in a time‑dependent 
manner. Early and late apoptotic cells were detected by flow 
cytometry, and identified that the percentage of apoptotic 
cells after 24 h of EPDMNQ and ENDMNQ treatment were 
59.03 and 47.39%, respectively (Fig. 3C and D). EPDMNQ 
and ENDMNQ treatment groups exhibited a significant 
increase (P<0.001) cell apoptosis compared with the 5‑FU 
groups. These results suggested that the anti-cancer effects 
of EPDMNQ and ENDMNQ were also associated with the 
induction of cell apoptosis.

EPDMNQ and ENDMNQ induce apoptosis by modulating 
the mitochondrial, MAPK and STAT3 signaling pathways 
in Hep3B cells. To determine the molecular mechanisms 
of apoptosis induced by EPDMNQ and ENDMNQ, the 
expression levels of proteins were assessed by western blot 
analysis. As indicated in Fig. 4A and B, the expression levels 
of Bax, cle-PARP and cle-caspase-3 were increased and 
that of Bcl-2 was decreased in a time-dependent manner, 
with maximum changes occurring at 24 h. As demonstrated 
in Fig. 4C and D, EPDMNQ and ENDMNQ significantly 
increased the phosphorylation levels of p38 and JNK, whereas 
the phosphorylation levels of ERK and STAT3 were decreased 
in a time-dependent manner. These data demonstrated that 
EPDMNQ and ENDMNQ induced cell apoptosis through the 
mitochondrial, MAPK, and STAT3 signaling pathways.

Accumulation of ROS induced by EPDMNQ and ENDMNQ 
participates in the apoptosis of Hep3B cells. To determine 
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whether EPDMNQ and ENDMNQ-induced apoptosis was 
associated with intracellular ROS generation in Hep3B cells, 
the association between intracellular ROS levels and apoptosis 
was evaluated by flow cytometry. As presented in Fig. 5A and B, 
Hep3B cells treated with EPDMNQ and ENDMNQ exhibited 
increased levels of ROS in a time‑dependent manner. ΔΨm 
depolarization was measured by JC-1, as the processing time 
was extended from 0 to 24 h. The green fluorescence intensity 
was continuously enhanced, indicating that apoptosis gradu-
ally increased in Hep3B cells in a time-dependent manner. 
Treatment with the ROS inhibitor N-acetyl-L-cysteine (NAC) 
reversed the degree of apoptosis induced by EPDMNQ and 
ENDMNQ (Fig. 5E and F). It was also identified that the treat-
ment of Hep3B cells with NAC reversed the expression levels 
of proteins regulated by EPDMNQ and ENDMNQ in the mito-
chondrial, MAPK, and STAT3 signaling pathways, namely 
JNK, ERK, STAT3, Bcl-2, Bax, cle-PARP and cle-caspase-3 
(Fig. 6A and B). These data demonstrated that ROS generation 
was the key regulator of EPDMNQ and ENDMNQ-induced 
apoptosis.

Discussion

The compound 1,4-naphthoquinone is a type of organic mole-
cule derived from naphthalene; naphthoquinone derivatives 
have a number of pharmacological effects including anti-viral, 
anti‑bacterial and anti‑inflammatory activities (31). At present, 

studies on naphthoquinone derivatives have primarily focused 
on 5,8-dihydroxy-1,4-naphthoquinone and substitutions at the 
C2 and C6 positions of 5-dimethoxy-1,4-naphthoquinone, but 
rarely on 1,4-naphthoquinone (32,33). Although 1,4-naphtho-
quinone may inhibit the growth of a variety of cancer cells, 
the majority of 1,4-naphthoquinone derivatives exhibit high 
cytotoxicity and side effects, so they are not suitable for 
clinical treatment (34). Therefore, a number of attempts have 
been made to identify novel therapeutic compounds that are 
efficacious but have fewer side effects.

In the present study, 2 types of novel 1,4-naphthoquinone 
derivatives (ENDMNQ and EPDMNQ) were synthesized 
and their anti-proliferation effects were screened in liver 
cancer Hep3B, HepG2 and Huh7 cell lines. The liver cancer 
cells commonly used in drug screening experiments include 
HepG2, Hep3B, Huh7, SMMC7721, Bel-7402, MHCC97 and 
PLC/PRF/5 (35‑38). HepG2 cells are human hepatoblastoma that 
were isolated and established from a primary hepatic blastoma 
of a 15-year-old Caucasian boy in Argentina in 1979 (39). Hep3B 
cells are human hepatoma cell line isolated from a liver cancer 
tissue of an 8-year-old African male (40). Huh7 cells are human 
hepatoma cell line obtained from a 57-year-old Japanese male 
liver cancer tissue specimen in 1982 (41). These 3 cell lines have 
a high degree of differentiation; the metabolism remains stable 
and will not change due to the increased number of passages 
and in drug screening studies. Therefore, the present study used 
Hep3B, HepG2 and Huh7 cells. Compared with 5‑FU treatment, 

Figure 2. Effects of EPDMNQ and ENDMNQ on the viabilities of liver cancer and normal cells. (A) Hep3B, HepG2 and Huh7 cells were treated with 
different concentrations (1, 3, 10, 30 or 100 µmol/l) of 5‑FU, EPDMNQ or ENDMNQ for 24 h. Cell viability was determined by MTT assay. (B) Normal 
liver L-02, normal lung IMR-90 and normal stomach GES-1 cell line viabilities. Data are expressed as the percentage of viable cells. ***P<0.001 vs. 5‑FU 
group. EPDMNQ, 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone; ENDMNQ, 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-di-
methoxy‑1,4‑naphthoquinone; 5‑FU, 5‑fluorouracil.
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the cytotoxic effects of EPDMNQ and ENDMNQ were more 
potent in Hep3B cells compared with HepG2 and Huh7 cells. 
Certain doses (1, 3, 10, 30 or 100 µmol/l) of EPDMNQ and 
ENDMNQ effectively induced liver cancer cell apoptosis but 
exhibited less harmful effects in normal liver L-02, normal lung 
IMR-90 and normal stomach GES-1 cell lines. It was also iden-
tified that the IC50 of EPDMNQ was decreased compared with 
IC50 of ENDMNQ. As the substituent chains of EPDMNQ and 
ENDMNQ are different in length, the cytotoxic effects of the 2 
compounds on liver cancer cells are significantly different. The 
cytotoxic effect of EPDMNQ with longer carbon chains on liver 
cancer cells is more marked compared with that of ENDMNQ.

Apoptosis is a common way of removing aged cells from 
the body that serves an essential role in organism development 
and tissue homeostasis. The majority of anti-cancer therapies 
trigger apoptosis induction and regulate signaling pathways 
to eliminate cancer cells (42). As a canonical pathway that 
allows cells to undergo a highly regulated form of cell death 
in response to pro-apoptotic stimuli, apoptosis is triggered by 
multiple signaling pathways (43). The mitochondrion serves an 
important role in the integration and transmission of signals to 
induce apoptotic cell death and is regulated by pro-apoptotic 
Bax and anti-apoptotic Bcl-2 proteins. Caspase-3 is a critical 
executioner of apoptosis and acts by cleaving several essential 

Figure 3. EPDMNQ and ENDMNQ induce apoptosis in hepatocellular carcinoma cells. (A) Hep3B cells were treated with 4 µmol/l 5‑FU, EPDMNQ or 
ENDMNQ for different time intervals (3, 6, 12 or 24 h) and stained with Annexin V‑FITC/PI. Images represent fluorescence microscopic images (original 
magnifications, x400). (B) Quantification of fluorescence intensities from A. (C) Apoptosis distribution was determined by flow cytometry following treatment 
with 4 µmol/l 5‑FU, EPDMNQ or ENDMNQ for different time intervals (3, 6, 12 or 24 h). (D) Quantification of flow cytometry from C. Data are expressed as 
the percentage of viable cells. ***P<0.001 vs. 5‑FU group. EPDMNQ, 2,3‑dihydro‑2,3‑epoxy‑2‑propylsulfonyl‑5,8‑dimethoxy‑1,4‑naphthoquinone; ENDMNQ, 
2,3‑dihydro‑2,3‑epoxy‑2‑nonylsulfonyl‑5,8‑dimethoxy‑1,4‑naphthoquinone; 5‑FU, 5‑fluorouracil; FITC, fluorescein isothiocyanate; PI, propidium iodide.
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cellular proteins, including PARP (44). The results of the 
present study indicated that EPDMNQ and ENDMNQ treat-
ment induced a significant change in cell morphology. Annexin 
V‑FITC/PI double staining and flow cytometry demonstrated 
that Hep3B cells treated with EPDMNQ and ENDMNQ 
induced apoptosis in a dose-dependent manner. Concomitantly, 

it was identified that EPDMNQ treatment exhibited a more 
marked induction of apoptosis compared with ENDMNQ. 
Furthermore, Hep3B cell apoptosis was regulated by increased 
protein levels of Bax, cle-PARP and cle-caspase-3 and 
decreased levels of Bcl-2. We hypothesized that the EPDMNQ 
and ENDMNQ treatment of Hep3B cells induced apoptosis 

Figure 4. EPDMNQ and ENDMNQ regulate mitochondrial, MAPK and STAT3 signaling pathways‑associated proteins in Hep3B cells. (A) Hep3B cells 
were treated with EPDMNQ or ENDMNQ for different time intervals (3, 6, 12 or 24 h). The expression levels of mitochondrial pathway-associated proteins 
were analyzed by western blot analysis. (B) The expression levels of MAPK and STAT3 pathway-associated proteins were analyzed by western blot analysis. 
α‑tubulin was used as the internal control. Band intensity was quantified using the Image J software. **P<0.01 and ***P<0.001 vs. untreated control group. 
EPDMNQ, 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone; ENDMNQ, 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dime-
thoxy-1,4-naphthoquinone; Bcl-2, B-cell lymphoma 2; Bax, Bcl-2-associated X protein; cle, cleaved; PARP, poly (adenosine 5-diphosphate-ribose) polymerase; 
p, phosphorylated; p38, p38 mitogen-activated protein kinase; JNK, c-Jun N-terminal kinase; ERK, extracellular signal regulated kinase; STAT3, signal 
transducer and activator of transcription 3.
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via a mitochondrial-dependent pathway. MAPK is a critical 
signaling pathway that serves a role in cancer cell survival, 
dissemination and resistance to drug therapy (45-47). STAT3 

regulates a number of cardinal features of cancer, including 
cancer cell growth and resistance to apoptosis, and has been 
validated as a drug target for cancer therapy (48). Following 

Figure 5. EPDMNQ and ENDMNQ‑induced apoptosis is restored by ROS inhibition in Hep3B cells. (A and B) Intracellular ROS generation induced by 
EPDMNQ or ENDMNQ was measured in Hep3B cells following staining with 2',7'‑dichlorodihydrofluorescein diacetate and detected by flow cytometry. 
(C and D) Hep3B cells were treated with EPDMNQ or ENDMNQ for 24 h, and mitochondrial membrane potential depolarization value was detected by flow 
cytometry following JC-1 staining. (E) Hep3B cells were treated with NAC for 30 min and then incubated with EPDMNQ for 24 h. Cell apoptosis was deter-
mined by flow cytometry. (F) Apoptotic cell numbers were detected following ENDMNQ treatment by flow cytometry. Data are expressed as the apoptotic 
cell numbers. **P<0.01 and ***P<0.001 vs. untreated control group. EPDMNQ, 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone; 
ENDMNQ, 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone; ROS, reactive oxygen species; NAC, N-acetyl-L-cysteine.
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treatment with EPDMNQ and ENDMNQ, the phosphorylation 
levels of p38 and JNK increased and those of ERK and STAT3 
decreased in a time-dependent manner. These data suggest 
that the anti-apoptotic effects of EPDMNQ and ENDMNQ 
observed in the present study may be associated with MAPK 
and STAT3.

It has been well established that ROS serve important 
biological roles in cell homeostasis, but several studies have 
also suggested that high intracellular ROS levels are usually 

associated with the apoptosis of cancer cells (49-51). However, 
ROS accumulation contributes to abnormal changes in mito-
chondrial membrane permeability. As a positive feedback loop 
between intracellular ROS levels and mitochondria, a large 
amount of ROS is released into the cytoplasm during mitochon-
dria-dependent apoptosis (52). In addition, ROS accumulation 
contributes to MAPK activation and inactivates other poten-
tial inhibitory factors to promote tumor cell apoptosis (53). 
In the present study, EPDMNQ- and ENDMNQ-induced 

Figure 6. Roles of mitochondrial, mitogen‑activated kinase and STAT3 signaling pathways in the apoptosis of EPDMNQ‑ and ENDMNQ‑treated Hep3B 
cells. Detection of p-ERK, p-JNK, p-p38, p-STAT3, Bax, Bcl-2, cle-PARP and cle-caspase-3 protein expression in (A) EPDMNQ- and (B) ENDMNQ-treated 
Hep3B cells by western blot analysis. ***P<0.001 vs. untreated control groupl. EPDMNQ, 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphtho-
quinone; ENDMNQ, 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone; Bcl-2, B-cell lymphoma 2; Bax, Bcl-2-associated X protein; 
cle, cleaved; PARP, poly (adenosine 5-diphosphate-ribose) polymerase; p, phosphorylated; p38, p38 mitogen-activated protein kinase; JNK, c-Jun N-terminal 
kinase; ERK, extracellular signal regulated kinase; STAT3, signal transducer and activator of transcription 3. 
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apoptosis was accompanied by ROS accumulation, which was 
reversed by pretreatment with the ROS inhibitor NAC. In the 
present study, EPDMNQ- and ENDMNQ-induced apoptosis 
was accompanied by ROS accumulation and mitochondrial 
membrane potential depolarization, which was reversed by 
pretreatment with the ROS inhibitor NAC in a time-dependent 
manner. The expression levels of the pro-apoptotic protein Bax, 
cle-PARP and cle-caspase-3 and the anti-apoptotic protein 
Bcl-2 were also examined by western blot analysis. EPDMNQ 
and ENDMNQ treatment significantly increased the levels of 
Bax, cle-PARP and cle-caspase-3 and decreased Bcl-2 protein 
levels; these effects were reversed upon NAC pretreatment. In 
addition, EPDMNQ and ENDMNQ significantly promoted 
the phosphorylation of JNK and p38 but inhibited that of 
ERK; these effects were also reversed with NAC pretreatment. 
These results demonstrated that EPDMNQ and ENDMNQ 
induced ROS-mediated apoptosis via the MAPK and STAT3 
signaling pathways. The effects of EPDMNQ and ENDMNQ 
demonstrated in vivo should be evaluated in future studies. 
EPDMNQ and ENDMNQ-induced apoptosis are in addition 
to the changes in intracellular ROS levels already mentioned 
in the present study, including many other causes, including 
cell autophagy, endoplasmic reticulum stress and DNA 
damage. The experimental results of the present study do not 
fully explain the causes of apoptosis caused by EPDMNQ 
and ENDMNQ. Therefore, the other potential mechanisms of 
apoptosis, with the exception of ROS, induced by EPDMNQ 
and ENDMNQ will be examined in future studies.

Taken together, the results of the present study demon-
strated that 2 novel types of 1,4-naphthoquinone derivatives, 
EPDMNQ and ENDMNQ, induced apoptosis through ROS 
modulation of the MAPK and STAT3 signaling pathways in 
Hep3B cells. Therefore, EPDMNQ and ENDMNQ may be 
potential chemotherapeutic agents for the treatment of HCC.
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