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Abstract

Somatic structural variants are an important contributor to cancer development and evolu-

tion. Accurate detection of these complex variants from whole genome sequencing data is

influenced by a multitude of parameters. However, there are currently no tools for guiding

study design nor are there applications that could predict the performance of somatic struc-

tural variant detection. To address this gap, we developed Shiny-SoSV, a user-friendly web-

based calculator for determining the impact of common variables on the sensitivity, preci-

sion and F1 score of somatic structural variant detection, including choice of variant detec-

tion tool, sequencing depth of coverage, variant allele fraction, and variant breakpoint

resolution. Using simulation studies, we determined singular and combinatoric effects of

these variables, modelled the results using a generalised additive model, allowing structural

variant detection performance to be predicted for any combination of predictors. Shiny-

SoSV provides an interactive and visual platform for users to easily compare individual and

combined impact of different parameters. It predicts the performance of a proposed study

design, on somatic structural variant detection, prior to the commencement of benchwork.

Shiny-SoSV is freely available at https://hcpcg.shinyapps.io/Shiny-SoSV with accompa-

nying user’s guide and example use-cases.

Introduction

Somatic structural variants (SVs) are large (> 50 bp) genomic rearrangements that arise in

tumours and could directly contribute to cancer development and progression [1–3]. The

advent of next generation sequencing (NGS) has facilitated an increase in the efficiency and

accuracy of detecting somatic variants in cancer genomes. However, due to limitations of

short-read NGS, large SVs can only be inferred through alignment signatures. For example,

read pairs that map farther or closer apart than expected are suggestive of a deletion or inser-

tion event respectively, while read pairs aligned with inconsistent orientation are indicative of

an inversion or duplication event. Attempts to improve SV detection have thus spurred many
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computational developments, resulting in the publication and availability of numerous SV

detection tools (e.g. [4–8]). These tools are based on different, sometimes overlapping algo-

rithms and multiple evaluation studies have shown that these tools differ substantially in their

sensitivity and breakpoint precision [9–12].

SV detection is further complicated in cancer samples due to variable tumour purity (pro-

portion of cancer to non-cancerous cells in a sample) and variant allele frequency (VAF, pro-

portion of the sequencing reads captured as harbouring the variant at a given genomic locus).

Although histopathology can provide an overall estimate of tumour purity, it typically only

reflects an approximate estimate of VAF, due to further complexity created through tumour

sub-clonality and variability between histopathology and sequencing samples. Although

deeper sequencing may increase sensitivity [11], numerous studies have shown that the benefit

of increasing coverage does saturate (e.g. [13]). Thus, knowing how much sequencing depth to

increase is not obvious with decisions typically based on experience or “gut instinct”.

Taken together, there are many alterable variables that can affect somatic SV detection in

NGS analyses. Yet, informed decisions on these variables are rarely easily made, especially by

non-bioinformaticians in clinical settings. To address this, we have developed Shiny-SoSV, a

web-based interactive application to help estimate the performance (sensitivity, precision and

F1 score) of somatic SV detection based on four user-modifiable parameters: VAF, sequencing

depth of tumour and matched-normal samples, and SV breakpoint precision.

Materials and methods

Simulation of structural variants

To evaluate the sensitivity and accuracy of SV detection, a simulation study was devised. Two

sets of SVs including 200 (somatic) and 2,000 (germline) of each of six SV types (deletion

(DEL), duplication (DUP), inversion (INV), domestic insertion (DINS), foreign insertion

(FINS) and translocation (TRA)) were simulated with SVEngine [14], as previously described

[10], totalling 1,200 somatic and 12,000 germline SVs (S1 Table). The numbers of SVs simu-

lated were based on previous studies that have suggested the presence of 5,000 to 10,000 poly-

morphic SVs in the human genome [15] and between a handful to up to 1000 somatic SVs

across a range of tumour types [16]. These findings support what we have also observed in our

own work [17, 18]. It is worth noting that, very similar results were observed when the number

of germline SVs were reduced to match the number of somatic SVs except for two callers (S1

File). For each SV type, variable lengths were included ranging from 50 bp to 1,000,000 bp.

Here, SV length is the length of the rearranged sequence; for example, the SV length of a TRA

is the length of the translocated piece of DNA fragment.

SVs were randomly distributed along the genome (GRCh38), masking N-gap, centromeric

and telomeric regions. N-gap and centromeric regions were based on gap [last updated 24/12/

2013] and centromeres [last update 17/08/2014] tables from the University of California at

Santa Cruz (UCSC) Genome Browser, while telomeric regions are defined as the 10 Mbp of

both ends of each chromosome of GRCh38.

Simulation of short paired-end reads

NGS data was simulated to reflect the typical matched tumour-normal whole genome

sequencing (WGS) approach for cancer genomics, namely using paired-end short-read

sequencing, where genomic DNA is fragmented to a typical size range of 500 bp (insert size)

and the two ends of each fragment sequenced inwards to up to 150 bp (read length).

The 12,000 simulated germline SVs were spiked into both the normal and tumour genomes

(FASTA format), while the 1,200 simulated somatic SVs were additionally spiked into the
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tumour genome. Paired short-reads were sampled using SVEngine [14] from the altered

FASTA to 120x depth of coverage. Insert size of read-pairs was simulated with a normal distri-

bution with mean of 500 bp and standard deviation of 100 bp, while read length was set to 150

bp. Other parameters were kept as SVEngine default, including random embedding of

sequencing error and small variants (base error rate = 0.02, rate of mutation = 0.001, fraction

of indels = 0.15, probability an indel is extended = 0.3). Sequencing reads (FASTQ format)

were aligned to human genome reference GRCh38 using BWA-MEM v0.7.17-r1194 [19], gen-

erating alignment files (BAM format). Different depths of sequencing coverage were obtained

by subsampling from the two 120x datasets using Picard DownsampleSam (http://picard.

sourceforge.net). Different tumour purity levels (VAF) were emulated by merging varying

ratios of normal to tumour aligned reads, using Picard MergeSamFiles, to create the final

tumour files (BAM). Here, tumour purity and VAF are used interchangeably as SVs are

assumed independent of each other.

The simulation was conducted to include a comprehensive combination of depths of cover-

age of the normal and tumour samples, VAF and SV breakpoint precision threshold

(explained below in section “Defining true positive calls and concordant callsets”). The follow-

ing parameter values were simulated:

• Normal sample coverage: 20x, 30x, 40x, 50x, 60x, 70x, 80x, 90x, 100x;

• Tumour sample coverage: 20x, 30x, 40x, 50x, 60x, 70x, 80x, 90x, 100x;

• VAF: 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00;

• Breakpoint precision threshold (bp): 2, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200.

In all, this resulted in a total of 891 tumour/normal pairs of BAM files, encompassing all

exhaustive combinations of parameter values.

Somatic SV detection

Somatic SVs were detected using five SV callers, namely Manta [4], Lumpy [5], GRIDSS [6],

Delly [7] and SvABA [8] for each tumour/normal pair and high-confidence calls were post-fil-

tered as described previously [10]. Each SV caller was executed using default parameters.

These five callers were chosen to provide a wide representation of different SV detection

methods and because they have been shown to be best performers within their class in recent

benchmarking studies [9–12]. While, both Delly and Lumpy use discordant read-pair and split-

read methods, Lumpy integrates the two methods into a single SV detection step, called “evi-

dence clustering”, whereas Delly uses them in separate calling and refining steps [10]. Manta,

GRIDSS and SvABA further use local-assembly with different methods of targeted assembly,

windowed local assembly and genome-wide break-end assembly respectively [10]. Additionally,

Manta, Lumpy, GRIDSS and Delly were identified as popular tools among 46 callers published

from 2009 to 2017, based on the criteria of Web of Science counts in a recent benchmarking

study [12]. While SvABA was published in 2018 and not included in that study, it has shown

good performance for both germline and somatic SV detection in other studies [9, 10].

Defining true positive calls and concordant callsets

Candidate SV callsets were compared against “true” simulated SV sets as previously described

[10]. In brief, a true positive (TP) SV call must meet two criteria: i) reported SV type must

match the simulated type and ii) detected breakpoints must be within T bp from the simulated

breakpoints. To pass the second criterion, all breakpoint positions corresponding to a SV
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event must be within a prescribed breakpoint precision threshold (T). We have applied varying

values of T, as mentioned above.

The total number of true positives is calculated as the number of calls in a callset satisfying

both TP criteria. The number of false positives (FP) is the number of SV calls in a callset not

satisfying either TP criteria. Thus, following the confusion matrix, we define: sensitivity = TP /

(TP + FN) and precision = TP / (TP + FP). F1 score is calculated as 2 � (sensitivity � precision)

/ (sensitivity + precision).

SV detection performance were also calculated for each SV type (DEL, DUP, INV, DINS,

FINS and TRA) using the criteria as described above where possible, or with minor modifica-

tions as follows. For DINS and TRA, we require that both breakends (BNDs) of their fusion

junctions to satisfy the TP criteria described to be considered as a true positive [10]. Precision

was not calculated for DINS and FINS, but for a general “INS” as reported by the callers. As

INS is not reported by Lumpy, precision estimate of INS is not available for this SV caller. Sim-

ilarly, neither DUP nor INS are reported by SvABA, however, the presence of these two SV

types can be inferred through post-analysis, albeit indistinguishable [10]. Therefore, the preci-

sion of DUP/INS was combined for SvABA. Furthermore, F1 scores of INS were calculated

using sensitivity estimates for either DINS or FINS. Similarly, for SvABA, DUP/INS F1 scores

were calculated using sensitivity values from DINS, FINS or DUP.

The union and intersection callsets for each pair of SV callers were also derived, resulting in

another 40 callsets for each simulated dataset. Two SV calls were considered the same if they

have matching SV type [10] and their reported breakpoint positions are within 5 bp of each

other. The union callset of two SV callers is SV calls detected by either Caller_1 or Caller_2,

while the intersection callset are calls reported by both Caller_1 and Caller_2. In both union

and intersection cases, Caller_1 is the “dominant caller” such that any overlapping calls in the

final callset is taken from the output from Caller_1 (including coordinates and SV types).

Predictive model selection

A generalised additive model (GAM) was used to assess and predict the relationships between

predictor variables (VAF, tumour coverage, normal coverage and breakpoint precision thresh-

old T) and response variables (sensitivity and precision and F1 score) for each SV caller and all

pairs of callers. The choice of GAM was motivated by non-linear relationships observed

between some response and predictor variables.

In particular, we observed VAF to have a non-linear effect on sensitivity for all SV callers (Fig

1A and S1A Fig) and precision on some SV callers (Fig 2A). However, the non-linear effect of

VAF on precision is less obvious at lower breakpoint precision resolution (higher T) and for some

SV callers, such as GRIDSS (S1B Fig). Tumour coverage has a greater non-linear impact on sensi-

tivity and precision on samples at low VAF (S2 Fig). Different SV callers have different breakpoint

detection resolution, as previously described [10] and SvABA was found to have the lowest break-

point resolution among the five SV callers examined (Fig 4). Consequently, breakpoint precision

threshold (T) has greater effect for SvABA and less so for other callers (S3 Fig). Additionally, most

SV callers have lower breakpoint resolution at low tumour coverage and low VAF (e.g. 20x and 0.2

respectively in Fig 4). The impact of T on sensitivity, therefore, appears to be variably dependent

on tumour coverage and VAF. For example, the sensitivity of Manta increases with increasing T at

low VAF (e.g. 0.2) and is only obvious at tumour coverage< 60x (S3A Fig). Similarly, precision is

predominantly influenced by T at low tumour coverage and VAF (S3B Fig). Normal coverage has

no notable impact, except for Manta, which was observed to have only a minor effect on sensitivity

and only at low normal coverage (< 40x) (S4 Fig). The observed relationships between F1 score

and predictor variables (Fig 3) were similar as for sensitivity.
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In order to select the model with the most appropriate set of parameters and that best

explain the relationships between predictor and response variables, we examined eight models

(Model (1)–(8)) for sensitivity, precision and F1 score, independently for each SV caller. To

account for non-linear joint relationships, smooth functions (f) were applied to the tensor

product of selected predictor variables. Smoothing parameters were estimated using restricted

maximum likelihood (REML), rather than the default generalised cross validation (GCV), to

avoid local minima [20]. Further, as the response variables are proportions with values

between 0 and 1, the beta regression (betar) with logistic link function was used.

Y � f1ðVAF
N

Tumour coverageÞ þ f2ðVAF
N

TÞ þ f3ðVAF
N

Normal coverageÞ
þ f4ðTumour coverage

N
TÞ ð1Þ

Y � f1ðVAF
N

Tumour coverageÞ þ f2ðVAF
N

TÞ þ f3ðVAF
N

Normal coverageÞ ð2Þ

Fig 1. Relationship between sensitivity and predictor variables. Shown are the effects of (a) tumour purity/VAF, (b)

tumour coverage, (c) normal coverage and (d) breakpoint precision threshold on somatic SV detection sensitivity for

five SV callers (Manta, Lumpy, GRIDSS, SvABA, Delly).

https://doi.org/10.1371/journal.pone.0238108.g001
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Y � f1ðVAF
N

Tumour coverageÞ þ f2ðVAF
N

TÞ þ f3ðTumour coverage
N

TÞ
þ Normal coverageð3Þ

Y � f1ðVAF
N

Tumour coverageÞ þ f2ðVAF
N

TÞ þ Normal coverage ð4Þ

Y � f1ðVAF
N

Tumour coverageÞ þ f2ðTumour coverage
N

TÞ þ Normal coverage ð5Þ

Y � f1ðVAF
N

Tumour coverageÞ þ T þ Normal coverage ð6Þ

Y � f1ðVAF
N

TÞ þ Tumour coverageþ Normal coverage ð7Þ

Fig 2. Relationship between precision and predictor variables. Shown are the effects of (a) tumour purity/VAF, (b)

tumour coverage, (c) normal coverage and (d) breakpoint precision threshold on somatic SV detection precision,

represented in log-scale, for five SV callers (Manta, Lumpy, GRIDSS, SvABA, Delly).

https://doi.org/10.1371/journal.pone.0238108.g002
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Y � VAF þ T þ Tumour coverageþ Normal coverage ð8Þ

where Y is response variable, which is sensitivity, precision or F1 score.

To select the models for sensitivity, precision and F1 score, we used cross-validation for

accuracy calculation of each model for each SV caller. Each time, one simulated value of a vari-

able (e.g. all data with 20x tumour coverage) was left out for model fitting and error estimation.

The average root mean squared error (RMSE) and mean absolute error (MAE) for each candi-

date model and five SV callers are reported in Table 1 and S2 Table respectively. If multiple

models achieved similarly low RMSE and MAE, the simplest model was selected to avoid over-

fitting. As a result, for sensitivity, Model 2, 5 and 3 was selected for Manta, Lumpy and SvABA

respectively, and Model 6 for GRIDSS and Delly. In addition, we found that matched normal

coverage has no significant effect on Lumpy, SvABA and Delly sensitivity (S3 Table), therefore,

Fig 3. Relationship between F1 score and predictor variables. Shown are the effects of (a) tumour purity/VAF, (b)

tumour coverage, (c) normal coverage and (d) breakpoint precision threshold on somatic SV detection F1 score for

five SV callers (Manta, Lumpy, GRIDSS, SvABA, Delly).

https://doi.org/10.1371/journal.pone.0238108.g003
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the term was excluded in the models for these SV callers. For precision, Model 3 was selected

for Manta, Model 2 for Lumpy and Delly and Model 5 for GRIDSS and SvABA. For F1 score,

Model 2, 6 and 3 was selected for Manta, GRIDSS and SvABA respectively, and Model 5 for

Lumpy and Delly. In the chosen models for F1 score, matched normal coverage was not

observed to have any significant effect on SvABA and Delly (S3 Table), and thus normal cover-

age was excluded from the final F1 score prediction models for these two callers.

Recognising performance differences for different SV types, we repeated the same evalua-

tion analysis individually for each of the six SV types, where possible (S1 File), with the most

appropriate prediction model identified using the same approach (S4 Table). Despite detection

performance variability observed among SV types, it is noteworthy that the impact of predictor

variables on the detection of individual SV type (S5–S16 Figs) is similar to the impact on over-

all performance (Figs 1–3).

The R package mgcv default of thin plate regression spline (tp) was used as the smoothing

basis. As tp tend to result in lower mean squared error [20], it was implemented for our pur-

pose. Basis dimension was set as the default for all smoothing terms.

The models for pairwise union and intersection of SV callers were chosen to be the same as

the dominant caller. GAM models were then fitted for each SV caller and each pair of SV

callers.

Fig 4. Breakpoint resolution of structural variant calling. Results are based on simulation SV Set 1 with tumour

coverage of 20x, 60x and 90x, matched normal coverage of 60x and variant allele frequency of 0.2, 0.5 and 1. This figure

shows the cumulated frequency of the number true positive structural variants detected by each caller for breakpoint

precision thresholds less than 2,000 bp.

https://doi.org/10.1371/journal.pone.0238108.g004
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Web-based application design

Shiny-SoSV is a web application developed using R package shiny v1.3.2, and is hosted on shi-

nyapps.io, built to provide a visual platform for exploring the behaviour of sensitivity and pre-

cision with various predictor variables through two main interactive plots. R objects of class

“gam” from the GAM models make up the data underlying Shiny-SoSV. Manipulation of

response variables by users via the web app are registered by R/shiny, which then signals a call

to the function predict(), returning predicted sensitivity, precision and F1 score values along

with estimated standard errors. Plots of predicted sensitivity and precision with confidence

intervals are generated with R package ggplot2 version 3.1.1 [21]. Comparison and interaction

effects of two or more predictors are possible by selecting additional variables, including selec-

tion of multiple SV callers via checkboxes and one or more numeric parameters via slider bars

or checkboxes (Fig 5).

Results and discussion

Prediction model validation

To test the robustness and predictive ability of the models, we used somatic SV calling evalua-

tion results from (1) an independent simulation set, (2) the ICGC-TCGA DREAM Somatic

Mutation Calling Challenge (ICGC-TCGA DREAM Challenge) [11] and in silico mixing of

cancer cell lines [22].

Table 1. Predictive model comparison and selection.

Error Estimate (RMSE) Models Manta Lumpy GRIDSS SvABA Delly

Sensitivity (1) 0.041 0.034 0.051 0.052 0.021

(2) 0.041 0.034 0.051 0.053 0.021

(3) 0.042 0.034 0.051 0.052 0.021

(4) 0.042 0.034 0.051 0.053 0.021

(5) 0.042 0.034 0.051 0.053 0.021

(6) 0.042 0.036 0.051 0.058 0.021

(7) 0.068 0.061 0.092 0.091 0.026

(8) 0.136 0.094 0.144 0.148 0.167

Precision (1) 0.012 0.012 0.007 0.029 0.061

(2) 0.012 0.012 0.007 0.029 0.061

(3) 0.012 0.013 0.007 0.029 0.156

(4) 0.013 0.013 0.007 0.029 0.156

(5) 0.017 0.013 0.007 0.029 0.156

(6) 0.019 0.017 0.007 0.032 0.156

(7) 0.018 0.015 0.012 0.046 0.151

(8) 0.024 0.020 0.013 0.055 0.148

F1 score (1) 0.039 0.032 0.048 0.057 0.019

(2) 0.039 0.032 0.048 0.058 0.019

(3) 0.040 0.032 0.048 0.057 0.019

(4) 0.040 0.032 0.048 0.058 0.019

(5) 0.040 0.032 0.048 0.060 0.019

(6) 0.040 0.034 0.048 0.065 0.020

(7) 0.066 0.060 0.091 0.101 0.021

(8) 0.132 0.088 0.143 0.163 0.146

https://doi.org/10.1371/journal.pone.0238108.t001
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Validation on an independent simulation set. An independent simulation set was gener-

ated for validation using a separate simulated SV set (S1 Table) with exhaustive combinations

of the following parameter values:

• Normal sample coverage: 25x, 45x, 60x, 75x, 90x;

• Tumour sample coverage: 25x, 45x, 60x, 75x, 90x;

• VAF: 0.10, 0.35, 0.50, 0.75, 0.90;

• Breakpoint precision threshold (bp): 5, 40, 100, 150, 180.

The results in Table 2 suggest that we can predict sensitivity, precision and F1 score to

within 6% error rate. Compared with the cross-validation error estimation for the chosen

Fig 5. Shiny-SoSV user interface. Shown is a snapshot of Shiny-SoSV, displaying sensitivity and precision estimates evaluated across variant allele frequency (Tumour

purity/VAF) (Black box labelled “Visualisation”). In this example, the overall performances of two SV callers (Manta and Lumpy) and their union callsets (distinguished

by line colours) are displayed (controlled by red box labelled “Choice of SV caller(s)”) for three different tumour depths of coverage settings (line types; 30x, 60x, 100x)

(controlled by indigo coloured box labelled “Choice of other parameters”). The desired sensitivity and precision are set as 80% (Blue box labelled “Acceptable detection

performance levels”). Confidence intervals of all estimates are shown as grey ribbons, which may be difficult to see due to tight intervals.

https://doi.org/10.1371/journal.pone.0238108.g005

Table 2. Predictive model validation.

Error Estimate (RMSE) Manta Lumpy GRIDSS SvABA Delly

Sensitivity 0.044 0.045 0.053 0.048 0.021

Precision 0.015 0.020 0.013 0.016 0.041

F1 score 0.044 0.042 0.051 0.055 0.015

https://doi.org/10.1371/journal.pone.0238108.t002
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prediction models in Table 1, all predictions with this independent data set achieved similar

error rate (difference within 1%), with the exception of precision estimates for SvABA (1.3%

lower RMSE) and Delly (2% lower RMSE). Relative to other callers, SvABA and Delly report

fewer (< 10) total number of detected SVs at the combinations of low tumour coverage (20x),

VAF (0.05) and breakpoint precision threshold (2bp), resulting in imprecise precision estima-

tion, which has the effect of inflating error rate. As the lowest tumour coverage, VAF and

breakpoint precision threshold simulated for this independent validation data set are higher

than the range where SvABA and Delly struggle to make positive calls, it resulted in a lower

error rate estimates for precision prediction for these two callers.

Validation using evaluation results from synthetic data using cell lines. The

ICGC-TCGA DREAM Challenge conducted a crowdsourced benchmarking of SV callers and

reported results on three different simulated tumours from 15 teams [11]. Each tumour sample

was simulated with SVs spiked into a sub-sampling of Illumina paired-end short-read

sequencing reads from a cell line using BAMSurgeon [11] and each matched-normal sample

was derived from a separate (non-overlapping) sub-sampling of the same original BAM file.

Both of tumour and matched normal samples were sampled to around 30-40x coverage. Three

synthetic datasets (denoted as in_silico 1–3) were generated, based on two different cell lines

and three different SV sets containing different types and numbers of SVs (371, 655 and 2,886)

spiked in at different frequencies (100%, 80% and mixture of subsets of SV at 20%, 33%, and

50% VAF). Detailed description of the challenge and datasets can be found at https://www.

synapse.org/#!Synapse:syn312572/wiki/62018. SVs reported by each team were evaluated

based on a single criterion that the called SV breakpoint is within 100 bp of a simulated SV,

while correct SV type was not required. So, this TP criterion is more lenient than the TP crite-

ria used in our study. Among the teams that participated, Teams 1 and 2 used Delly and

Manta respectively, which allowed their sensitivity and precision to be predicted using our

GAM models and compared to their reported evaluation results (Fig 6). Teams were allowed

to use different versions and parameters on different datasets and make multiple submissions

for each dataset, which resulted in multiple sensitivity and precision results for each team and

dataset combination (e.g. sensitivity ranging from 53% to 74% of Team 1 for in_sillico 3).

Overall, our models achieved low error rate (MAE = 3.4%) for precision but higher error rate

(MAE = 9.3%) for sensitivity prediction, especially for in_silico 2 and 3. This is likely due to a

combinations of differences in simulation and evaluation methods, and different versions and

parameters of SV callers used by the DREAM Challenge participants [11].

Validation using evaluation results from in silico mixing of cancer cell lines. We also

validated our prediction models using somatic SV evaluation results based on two cancer cell

lines (COLO-829 and HCC-1143), recently reported by Arora et al. [22]. In that study, the

authors performed whole-genome sequencing of the cancer cell lines along with their matched

normal cell lines, to up to 278x coverage. By down-sampling and mixing different fractions of

data from the tumour and normal samples, the authors evaluated somatic SV calling perfor-

mance for different tumour purity/VAF (at 80x tumour and 40x normal coverage) and differ-

ent tumour and normal coverages (at VAF of 1). This allowed us to compare our prediction

curve to their reported SV performance on cancer cell lines with predictor variables VAF (Fig

7), tumour coverage (Fig 8) and matched normal coverage (Fig 9).

In the study of Arora et al., evaluation results were reported for two callsets: AllSomatic and

HighConf. The AllSomatic set was defined as the union set of three SV callers (SvABA, Manta

and Lumpy) and filtering on a panel of normal, while the HighConf set is a subset of AllSo-

matic set, including SVs called by two of the three callers or called by Manta or Lumpy with

either additional CNV or split-read support [22]. For validation, we compared Arora et al.’s
results with our prediction curves derived from our union and intersection callsets for all
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pairwise combination of the three SV callers. Overall, our prediction model of these three vari-

ables (VAF, tumour and normal coverages) on SV detection is similar to the evaluation results

reported by Arora et al. Specifically, we verified that VAF has a non-linear effect on sensitivity,

and VAF and tumour coverage have stronger impacts on sensitivity than precision. Interest-

ingly, we note that the evaluation results reported by Arora et al. is more similar to our predic-

tions for the intersection callset for Manta and Lumpy and union callset for Lumpy and

SvABA. This suggests these latter two callsets perform similarly to the additional filtering steps

employed by Arora et al. Furthermore, we note that, in general, our prediction of sensitivity

for pairwise intersection callsets are lower than reported by Arora et al. We believe this is likely

due to our more stringent definition for concordance of two callsets, requiring breakpoint pre-

cision threshold of 5bp, compared to Arora et al.’s requirement of 300bp and at least 50%

reciprocal overlap.

Application features

The aim of Shiny-SoSV is to support decision-making on variables impacting one’s ability to

detect somatic SVs from WGS data. In particular, this app was designed to empower users in

planning their WGS experiment for efficient somatic SV detection. To this end, seven key fea-

tures were implemented.

• Inclusion of important predictor variables. We have included five variables in Shiny-SoSV.

With the exception of VAF, all can be modified by the study investigator prior to the com-

mencement of sequencing. This is important as it allows users to adjust experimental plans

accordingly. Even though VAF is intrinsic to the biology of the sample, it is by far the most

important predictor for somatic variant detection [11, 23]. Therefore, VAF is included

mainly to determine minimum required tumour purity and support tuning of other modifi-

able variables.

• Predictor variables are easy to modify. To make it user friendly, we have implemented tick

boxes and slider bars for value selection across a range of variable choices. For example,

users can choose any single or pairs of SV caller(s).

Fig 6. Comparison of GAM prediction and observed performance from the ICGC-TCGA DREAM Challenge. Shown are predicted sensitivity (a) and precision

(b) by GAM model versus reported sensitivity and precision from Lee et al. [11]. Team 1 and Team 2 have used SV callers of Delly and Manta respectively.

Sensitivity and precision are predicted based on predictor variables of tumour and normal coverage as 30x, breakpoint precision threshold as 100 bp and VAF as

100%, 80% and 50% for three datasets respectively.

https://doi.org/10.1371/journal.pone.0238108.g006
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• Intuitive visualisation of the impact of predictor variables on responses. To compare somatic

SV detection performance with different choices of parameter values, GAM prediction mod-

els were implemented allowing prediction curves to be dynamically generated for easy visu-

alisation. The prediction can be visualised via line plots with confidence intervals based on

choices of different combinations of variables, in one figure.

• Ability to evaluate multiple variables simultaneously. For example, users can examine the

change of sensitivity (y-axis) across VAF (x-axis) with different choices of SV callers (line

colour) and tumour coverages (line types) (Fig 4).

• Simple reporting of minimum requirements to achieve user’s objective. To further simplify

decision-making, a summary table of minimum required value for each predictor variable,

Fig 7. Prediction curve across tumour purity/VAF. Shown are the evaluation results of AllSomatic set (in red) and

HighConf set (in blue) from cancer cell lines and prediction curve of (a) sensitivity, (b) precision and (c) F1 score

across tumour purity/VAF. Prediction are based on tumour purity/VAF from 0.05 to 1, tumour coverage of 80x,

normal coverage of 40x and breakpoint precision threshold of 200bp.

https://doi.org/10.1371/journal.pone.0238108.g007
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including SV callers, depth of coverage and tumour purity and breakpoint resolution, is

reported for a user-defined detection performance level.

• Inclusion of commonly used SV callers, representing different SV calling methods. The five SV

callers included in Shiny-SoSV are commonly used and have shown good performance in

multiple recent benchmarking studies. They were also chosen to represent different combi-

nations of SV calling methods. The simulated samples and SV set can be used for evaluation

of future callers and be added to Shiny-SoSV.

• Ability to estimate performance by SV type. In addition to the main user interface for predic-

tion of overall SV detection performance, users can further predict and compare the perfor-

mance across different SV types.

Fig 8. Prediction curve across tumour coverage. Shown are the evaluation results of AllSomatic set (in red) and

HighConf set (in blue) from cancer cell lines and prediction curve of (a) sensitivity, (b) precision and (c) F1 score

across tumour coverage. Prediction are based on tumour coverage from 20x to 90x, tumour purity/VAF of 100%,

normal coverage of 40x and breakpoint precision threshold of 200bp.

https://doi.org/10.1371/journal.pone.0238108.g008
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Application limitations

While we have endeavoured to create a performance calculator for real-world use, we recog-

nise certain limitations and challenges. Firstly, the performance prediction was based on a

series of simulated data, which we appreciate cannot fully encompass the complexity of real

tumour sample and errors in real sequencing processes. However, by concurrently including

both germline and somatic SVs, and including a range of SV types and SV sizes, we believe the

simulation results provide a baseline estimate. Secondly, in general, real unknown VAF can be

lower than histopathological estimates of tumour purity, due to potential tumour sub-clonality

and heterogeneity. We therefore present the prediction here to represent the upper limits of

sensitivity and precision that can be achieved. Thirdly, we have included four predictor vari-

ables totalling 10,692 unique permutations of predictor values for prediction model fitting of

each callset. However, other variables, such as average mapping quality, read length, insert

Fig 9. Prediction curve across normal coverage. Shown are the evaluation results of AllSomatic set (in red) and

HighConf set (in blue) from cancer cell lines and prediction curve of (a) sensitivity, (b) precision and (c) F1 score

across normal coverage. Prediction are based on normal coverage from 20x to 40x, tumour purity/VAF of 100%,

tumour coverage of 80x and breakpoint precision threshold of 200bp.

https://doi.org/10.1371/journal.pone.0238108.g009
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sizes and nucleotide complexity, have been shown to impact variant detection, albeit with

lower effect size [9, 11]. Adding more variables and more data points could provide a better

prediction model and more sophisticated calculator for SV detection performance prediction.

Application utility

The web-based app is hosted indefinitely at https://hcpcg.shinyapps.io/shiny-sosv by Shiny

from RStudio. Both the input data to the GAM and R script for GAM fitting, as well as the

resulting GAM R objects are provided with the Git release, available at https://github.com/

tgong1/Shiny-SoSV. Additionally, the source code for launching the shiny app is available at

this GitHub repository, allowing both data and app versions to be tracked. An extensive User

Guide is provided with Shiny-SoSV release, detailing the user-interface and available options.

To help further enhance usability, multiple end-user cases also accompany Shiny-SoSV.

To illustrate the utility of Shiny-SoSV here, we present a common example use-case.

Suppose, based on histopathology, a user is aware their cohort of cancer samples have tumour
purities between 20% and 60%, and they want to know to what depth of coverage they should
sequence their tumour samples, assuming all matched normal samples will be sequenced to the
default of 30x.

As demonstrated in Fig 5, the Shiny-SoSV user can select to evaluate the effect of “Tumour

purity/VAF” (“Evaluation across”) on either or both “Sensitivity” and “Precision” (“evaluation

measurements”). On the side bar, the user can select individual or combination(s) of SV callers

(e.g. Manta, Lumpy, and their union set) for comparison and up to three tumour coverage set-

tings (e.g. 30x, 60x and 100x) simultaneously, while keeping all other parameters unchanged.

From this, it is immediately obvious that VAF has a great impact on sensitivity, while little

impact on precision. Sensitivity of all SV callers increases rapidly from VAF of 5% to 30%. At

VAF > 30%, improvements in sensitivity notably slows for all SV callers, with Manta showing

relatively larger improvements until it reaches the limit (saturation) with this combination of

parameters for this caller. The table below the plots provides the user with the information

required to make decisions on sequencing depth, which is further dependent on his/her bud-

get and objective (i.e. acceptable sensitivity and precision level). For example, for a desired sen-

sitivity and precision of 80%, the user may elect to sequence at 60x using the SV caller(s)

chosen (e.g. union set of Manta and Lumpy) for all samples. However, if the resulting cost is

prohibitive, the user may choose to sequence only the subset of samples with tumour

purity> 32% to up to 30x depth of coverage whilst still achieving the desired 80% sensitivity

and precision levels.

Conclusions

Shiny-SoSV provides an easy to use and interactive graphical user interface for evaluating the

effects of multiple variables impacting somatic SV detection. The current release allows evalua-

tion of common effectors of SV detection using five popular SV callers. Inclusion of addition

SV callers can easily be incorporated with existing simulation datasets, while assessment of

additional variables (such as mapping quality, insert sizes and nucleotide complexity) can be

achieved with further simulation efforts. In sum, we believe Shiny-SoSV will enable bioinfor-

maticians, and importantly also non-bioinformaticians, to optimally design WGS experiments

for detecting SVs in cancer genomes.

Supporting information

S1 Fig. The joint impact of tumour purity/VAF and breakpoint precision threshold on sen-

sitivity and precision. Shown are the effect of the interaction of VAF and breakpoint precision
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threshold (by colour) on sensitivity (a) and precision in log scale (b) for five SV callers (Manta,

Lumpy, GRIDSS, SvABA, Delly). Results are based on simulation data set with tumour cover-

age of 20x, 60x and 90x, breakpoint precision threshold of 2bp, 60bp, 100bp and 200bp and

normal coverage of 60x.

(TIF)

S2 Fig. The joint impact of tumour coverage and tumour purity/VAF on sensitivity and

precision. Shown are the effect of the interaction of tumour coverage and VAF (by colour) on

sensitivity (a) and precision in log scale (b) for five SV callers (Manta, Lumpy, GRIDSS,

SvABA, Delly). Results are based on simulation data set with breakpoint precision threshold of

10bp, 100bp and 200bp, VAF of 0.05, 0.3 0.5 and 1 and normal coverage of 60x.

(TIF)

S3 Fig. The joint impact of breakpoint precision threshold and tumour coverage on sensi-

tivity and precision. Shown are the effect of the interaction of breakpoint precision threshold

and tumour coverage (by colour) on sensitivity (a) and precision in log scale (b) for five SV

callers (Manta, Lumpy, GRIDSS, SvABA, Delly). Results are based on simulation data set with

VAF of 0.2, 0.5 and 1, tumour coverage of 20x, 40x, 60x and 90x and normal coverage of 60x.

(TIF)

S4 Fig. The joint impact of normal coverage and VAF on sensitivity and precision. Shown

are the effect of the interaction of normal coverage and VAF (by colour) on sensitivity (a) and

precision in log scale (b) for five SV callers (Manta, Lumpy, GRIDSS, SvABA, Delly). Results

are based on simulation data set with breakpoint precision threshold of 10bp, 100bp and

200bp, VAF of 0.05, 0.3 0.5 and 1 and tumour coverage of 60x.

(TIF)

S5 Fig. Relationship between SV type sensitivity and tumour purity/VAF. Shown are the

effects of tumour purity/VAF on somatic SV type detection sensitivity for five SV callers

(Manta, Lumpy, GRIDSS, SvABA, Delly).

(TIF)

S6 Fig. Relationship between SV type sensitivity and tumour coverage. Shown are the effects

of tumour coverage on somatic SV type detection sensitivity for five SV callers (Manta,

Lumpy, GRIDSS, SvABA, Delly).

(TIF)

S7 Fig. Relationship between SV type sensitivity and normal coverage. Shown are the effects

of normal coverage on somatic SV type detection sensitivity for five SV callers (Manta, Lumpy,

GRIDSS, SvABA, Delly).

(TIF)

S8 Fig. Relationship between SV type sensitivity and breakpoint precision threshold.

Shown are the effects of breakpoint precision threshold on somatic SV type detection sensitiv-

ity for five SV callers (Manta, Lumpy, GRIDSS, SvABA, Delly).

(TIF)

S9 Fig. Relationship between SV type precision and tumour purity/VAF. Shown are the

effects of tumour purity/VAF on somatic SV type detection precision for five SV callers

(Manta, Lumpy, GRIDSS, SvABA, Delly). INS is not detectable by Lumpy. Precision of DUP

for SvABA shown can also be INS.

(TIF)
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S10 Fig. Relationship between SV type precision and tumour coverage. Shown are the

effects of tumour coverage on somatic SV type detection precision for five SV callers (Manta,

Lumpy, GRIDSS, SvABA, Delly). INS is not detectable by Lumpy. Precision of DUP for

SvABA shown can also be INS.

(TIF)

S11 Fig. Relationship between SV type precision and normal coverage. Shown are the effects

of normal coverage on somatic SV type detection precision for five SV callers (Manta, Lumpy,

GRIDSS, SvABA, Delly). INS is not detectable by Lumpy. Precision of DUP for SvABA shown

can also be INS.

(TIF)

S12 Fig. Relationship between SV type precision and breakpoint precision threshold.

Shown are the effects of breakpoint precision threshold on somatic SV type detection precision

for five SV callers (Manta, Lumpy, GRIDSS, SvABA, Delly). INS is not detectable by Lumpy.

Precision of DUP for SvABA shown can also be INS.

(TIF)

S13 Fig. Relationship between SV type F1 score and tumour purity/VAF. Shown are the

effects of tumour purity/VAF on somatic SV type detection F1 score for five SV callers

(Manta, Lumpy, GRIDSS, SvABA, Delly). INS is not detectable by Lumpy. F1 score of DUP for

SvABA shown can also be INS.

(TIF)

S14 Fig. Relationship between SV type F1 score and tumour coverage. Shown are the effects

of tumour coverage on somatic SV type detection F1 score for five SV callers (Manta, Lumpy,

GRIDSS, SvABA, Delly). INS is not detectable by Lumpy. F1 score of DUP for SvABA shown

can also be INS.

(TIF)

S15 Fig. Relationship between SV type F1 score and normal coverage. Shown are the effects

of normal coverage on somatic SV type detection F1 score for five SV callers (Manta, Lumpy,

GRIDSS, SvABA, Delly). INS is not detectable by Lumpy. F1 score of DUP for SvABA shown

can also be INS.

(TIF)

S16 Fig. Relationship between SV type F1 score and breakpoint precision threshold.

Shown are the effects of breakpoint precision threshold on somatic SV type detection F1 score

for five SV callers (Manta, Lumpy, GRIDSS, SvABA, Delly). INS is not detectable by Lumpy.

F1 score of DUP for SvABA shown can also be INS.

(TIF)

S1 Table. Simulation SV sets.

(XLSX)

S2 Table. Predictive model comparison and selection based on MAE.

(DOCX)

S3 Table. The parametric coefficients and approximate significance of smooth terms of the

selected GAM models.

(DOCX)

S4 Table. Predictive model comparison and selection for each SV type.

(DOCX)
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7. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by

integrated paired-end and split-read analysis. Bioinformatics (Oxford, England). 2012; 28(18):i333–i9.

Epub 09/03. https://doi.org/10.1093/bioinformatics/bts378 PMID: 22962449.

8. Wala JA, Bandopadhayay P, Greenwald NF, O’Rourke R, Sharpe T, Stewart C, et al. SvABA: genome-

wide detection of structural variants and indels by local assembly. Genome Research. 2018; 28(4):581–

91. https://doi.org/10.1101/gr.221028.117 PMID: 29535149

9. Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive evaluation of structural

variation detection algorithms for whole genome sequencing. Genome Biology. 2019; 20(1):117.

https://doi.org/10.1186/s13059-019-1720-5 PMID: 31159850

10. Gong T, Hayes VM, Chan EKF. Detection of somatic structural variants from short-read next-generation

sequencing data. Briefings in Bioinformatics. 2020. https://doi.org/10.1093/bib/bbaa056 PMID:

32379294

11. Lee AY, Ewing AD, Ellrott K, Hu Y, Houlahan KE, Bare JC, et al. Combining accurate tumor genome

simulation with crowdsourcing to benchmark somatic structural variant detection. Genome Biology.

2018; 19(1):188. https://doi.org/10.1186/s13059-018-1539-5 PMID: 30400818

12. Cameron DL, Di Stefano L, Papenfuss AT. Comprehensive evaluation and characterisation of short

read general-purpose structural variant calling software. Nature communications. 2019; 10(1):3240–.

https://doi.org/10.1038/s41467-019-11146-4 PMID: 31324872.

13. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al. Multi-platform discovery

of haplotype-resolved structural variation in human genomes. Nature Communications. 2019; 10

(1):1784. https://doi.org/10.1038/s41467-018-08148-z PMID: 30992455

14. Xia LC, Ai D, Lee H, Andor N, Li C, Zhang NR, et al. SVEngine: an efficient and versatile simulator of

genome structural variations with features of cancer clonal evolution. Gigascience. 2018; 7(7). https://

doi.org/10.1093/gigascience/giy081 PMID: 29982625; PubMed Central PMCID: PMC6057526.

15. Quinlan AR, Hall IM. Characterizing complex structural variation in germline and somatic genomes.

Trends in genetics: TIG. 2012; 28(1):43–53. Epub 2011/11/15. https://doi.org/10.1016/j.tig.2011.10.002

PMID: 22094265.

16. Campbell PJ, Getz G, Korbel JO, Stuart JM, Jennings JL, Stein LD, et al. Pan-cancer analysis of whole

genomes. Nature. 2020; 578(7793):82–93. https://doi.org/10.1038/s41586-020-1969-6 PMID:

32025007

17. Jaratlerdsiri W, Chan EKF, Gong T, Petersen DC, Kalsbeek AMF, Venter PA, et al. Whole Genome

Sequencing Reveals Elevated Tumor Mutational Burden and Initiating Driver Mutations in African Men

with Treatment-Naive, High-Risk Prostate Cancer. Cancer Research. 2018:canres.0254.2018. https://

doi.org/10.1158/0008-5472.CAN-18-0254 PMID: 30217929

18. Crumbaker M, Chan EKF, Gong T, Corcoran N, Jaratlerdsiri W, Lyons RJ, et al. The Impact of Whole

Genome Data on Therapeutic Decision-Making in Metastatic Prostate Cancer: A Retrospective Analy-

sis. Cancers (Basel). 2020; 12(5). Epub 2020/05/13. https://doi.org/10.3390/cancers12051178 PMID:

32392735; PubMed Central PMCID: PMC7280976.

19. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics.

2009; 25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168; PubMed Cen-

tral PMCID: PMC2705234.

20. Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semipara-

metric generalized linear models. Journal of the Royal Statistical Society (B). 2011; 73(1):3–36.

21. Wickham H. ggplot2: Elegent Graphics for Data Analysis: Springer-Verlag New York; 2016.

22. Arora K, Shah M, Johnson M, Sanghvi R, Shelton J, Nagulapalli K, et al. Deep whole-genome sequenc-

ing of 3 cancer cell lines on 2 sequencing platforms. Scientific Reports. 2019; 9(1):19123. https://doi.

org/10.1038/s41598-019-55636-3 PMID: 31836783

23. Liu B, Conroy JM, Morrison CD, Odunsi AO, Qin M, Wei L, et al. Structural variation discovery in the

cancer genome using next generation sequencing: computational solutions and perspectives. Oncotar-

get. 2015; 6(8):5477–89. https://doi.org/10.18632/oncotarget.3491 PMID: 25849937; PubMed Central

PMCID: PMC4467381.

PLOS ONE Shiny-SoSV

PLOS ONE | https://doi.org/10.1371/journal.pone.0238108 August 27, 2020 20 / 20

https://doi.org/10.1101/gr.222109.117
http://www.ncbi.nlm.nih.gov/pubmed/29097403
https://doi.org/10.1093/bioinformatics/bts378
http://www.ncbi.nlm.nih.gov/pubmed/22962449
https://doi.org/10.1101/gr.221028.117
http://www.ncbi.nlm.nih.gov/pubmed/29535149
https://doi.org/10.1186/s13059-019-1720-5
http://www.ncbi.nlm.nih.gov/pubmed/31159850
https://doi.org/10.1093/bib/bbaa056
http://www.ncbi.nlm.nih.gov/pubmed/32379294
https://doi.org/10.1186/s13059-018-1539-5
http://www.ncbi.nlm.nih.gov/pubmed/30400818
https://doi.org/10.1038/s41467-019-11146-4
http://www.ncbi.nlm.nih.gov/pubmed/31324872
https://doi.org/10.1038/s41467-018-08148-z
http://www.ncbi.nlm.nih.gov/pubmed/30992455
https://doi.org/10.1093/gigascience/giy081
https://doi.org/10.1093/gigascience/giy081
http://www.ncbi.nlm.nih.gov/pubmed/29982625
https://doi.org/10.1016/j.tig.2011.10.002
http://www.ncbi.nlm.nih.gov/pubmed/22094265
https://doi.org/10.1038/s41586-020-1969-6
http://www.ncbi.nlm.nih.gov/pubmed/32025007
https://doi.org/10.1158/0008-5472.CAN-18-0254
https://doi.org/10.1158/0008-5472.CAN-18-0254
http://www.ncbi.nlm.nih.gov/pubmed/30217929
https://doi.org/10.3390/cancers12051178
http://www.ncbi.nlm.nih.gov/pubmed/32392735
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1038/s41598-019-55636-3
https://doi.org/10.1038/s41598-019-55636-3
http://www.ncbi.nlm.nih.gov/pubmed/31836783
https://doi.org/10.18632/oncotarget.3491
http://www.ncbi.nlm.nih.gov/pubmed/25849937
https://doi.org/10.1371/journal.pone.0238108

