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Abstract

Single-molecule microscopy has become a widely used technique in (bio)physics and (bio)

chemistry. A popular implementation is single-molecule Förster Resonance Energy Trans-

fer (smFRET), for which total internal reflection fluorescence microscopy is frequently com-

bined with camera-based detection of surface-immobilized molecules. Camera-based

smFRET experiments generate large and complex datasets and several methods for video

processing and analysis have been reported. As these algorithms often address similar

aspects in video analysis, there is a growing need for standardized comparison. Here, we

present a Matlab-based software (MASH-FRET) that allows for the simulation of camera-

based smFRET videos, yielding standardized data sets suitable for benchmarking video

processing algorithms. The software permits to vary parameters that are relevant in cam-

eras-based smFRET, such as video quality, and the properties of the system under study.

Experimental noise is modeled taking into account photon statistics and camera noise.

Finally, we survey how video test sets should be designed to evaluate currently available

data analysis strategies in camera-based sm fluorescence experiments. We complement

our study by pre-optimizing and evaluating spot detection algorithms using our simulated

video test sets.

1 Introduction

Since the initial proof of concept, single-molecule fluorescence techniques, in particular sin-

gle-molecule Förster resonance energy transfer (smFRET), have proven powerful tools in

probing biomolecular structures and dynamics [1–3]. Single fluorescent molecule sensitivity is

predominantly achieved using two experimental configurations: (i) confocal microscopy in

conjunction with single-photon detection (avalanche photodiodes or photomultiplier tubes)

[4,5] and (ii) total internal reflection fluorescence [6] or wide-field microscopy with intensity-

based detection using either an electron multiplying charge-coupled device (EM-CCD) [7,8]

or a scientific complementary metal-oxide-semiconductor (sCMOS) camera [9]. Camera
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detection is characterized by a time resolution in the lower millisecond range and a spatial res-

olution reaching the diffraction limit of visible light [7]. Much higher time resolution can be

achieved when photon counting detectors are used in time-correlated single photon counting

(TCSPC) experiments with pulsed excitation sources. Conversely, time-binned methods are

rather straightforward to implement, comparably inexpensive and, importantly, allow for par-

allel recording of hundreds to thousands of single molecules at the same time [10,11].Conse-

quently, camera-based fluorescence detection of single-molecules has become a widespread

approach for high-throughput acquisition of single-molecule data, especially in the context of

smFRET experiments.

Camera-based smFRET generates large and complex data sets that are henceforth referred

to as single molecule videos (SMVs). SMVs are characterized by a low net signal and a low sig-

nal-to-noise ratio (SNR), a high molecule surface density (ρ), short intermolecular distances

(IMD), and inhomogeneous background profiles. Much effort has been geared towards SMV

data analysis in recent years [11–13], but their analysis is at present not standardized. Instead,

individual researchers face a host of different data analysis strategies developed by different

groups [12,14–17]. Therein, SMV simulations in camera-based SM detection have been

reported in the context of kinetic/dwell-time analysis, where method-specific kinetic rates are

determined and evaluated against their simulated ground truth, usually as a function of the

SNR [12,14,18,19]. Although these studies describe the simulation process used, recovering

video simulation parameter (VSP) values from the manuscript or supplementary material to

reproduce the simulated SMV is typically not straightforward. Independent and reliable assess-

ment of such data analysis strategies requires a common standard to be defined. Thus, the sys-

tematic annotation of SMVs with metadata files, would ease and speed up the process of data

reproduction. However, standardized, simulated smFRET data test sets annotated with meta-

data are, to the best of our knowledge, at present not available.

In the field of computer science, well-annotated and independently designed sets of test

data allow the evaluation of individual algorithms [20,21]. Thereby, potential user-bias is mini-

mized, and thus, the evaluation of algorithm via test data sets are accepted as common stan-

dard. We believe that standardized, simulated SMV are very suitable as test data sets as they

inherently fulfill two conditions: First, they allow the reproducible evaluation of processing

algorithms used in smFRET data analysis by providing a set of video simulation parameters

(VSP) screening a large experimentally relevant parameter space [18]. Second, simulated

SMVs do not contain experimental artifacts due to their unambiguous definition of molecular

properties and instrument-specific parameters (Fig 1). A comparable approach has been pre-

sented by Sage et al. for the evaluation of single molecule localization microscopy methods

[22] and by Preus et al. for the evaluation of background estimators in single molecule micros-

copy [23].

Here, we provide the theoretical groundwork to generate realistic SMVs covering a large,

experimentally relevant VSP space. Specifically, the methodology presented herein addresses

(i) the design of thermodynamic and kinetic models, (ii) the distribution of single-molecules

in the cameras field of view (FOV) and point-spread function (PSF) modeling using a

2D-Gaussian approximation, (iii) the simulation of photobleaching, (iv) the introduction of

signal contributions like background, spectral bleed-through and camera noise and (iv) the

SMV export with respect to output file formats and SMV documentation. We present the con-

cepts for performance evaluation of algorithms addressing multiple aspects of SMV data analy-

sis, including SM localization, background correction, intensity time trace generation,

trajectory discretization, as well as kinetic and thermodynamic modeling. We use our

MATLAB-based SMV simulation tool within our Multifunctional Analysis Software for Han-

dling single molecule FRET data (MASH-FRET) [13], which is easy-to-use and permits rapid
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and integrated analysis of camera-based smFRET experiments, to simulate well-annotated

SMV test data sets. We apply them to optimize method parameters (MP) of different SM local-

ization algorithms commonly used in the field of camera-based SM fluorescence and compare

their performance as a function of the total emitted intensity of single molecules. Both

MASH-FRET and the benchmarking data sets are freely available via https://github.com/

RNA-FRETools/MASH-FRET.

2 The principles of FRET and camera-based smFRET experiments

Förster resonance energy transfer (FRET) denotes the dipole-dipole coupling between a donor

fluorophore and an acceptor that is usually, but not necessarily [24,25], also a fluorophore.

According to Förster’s theory developed in the 1940s, the efficiency of the process, i.e., the

FRET efficiency or transfer efficiency E, depends on the inverse sixth power of the interdye

distance r [26,27]

Eðr;R0Þ ¼
1

1þ R0=r6
; ð1Þ

where R0 denotes the Förster radius, i.e., the distance specific to the FRET pair resulting in a

FRET efficiency of 50%. Owing to the pronounced distance dependence of the FRET effi-

ciency, FRET is frequently referred to as a spectroscopic ruler within a range of 3 to 10 nm

[28]. For further information on FRET, please refer to dedicated reviews [3,6,15,29].

Camera-based smFRET typically involves total internal reflection (TIR) excitation of sur-

face-tethered biomolecules that are fluorophore labeled [7]. Total internal reflection (TIR) of

an incident laser beam can be achieved with a prism or directly through a suitable objective,

Fig 1. Method parameter optimization and evaluation. Simulated SMVs can be applied to evaluate data analysis algorithms (left) and for

comparison with experimental data (right). In the former application, MC simulations are performed to generate a set of SMVs characterized by

defined VSPs, followed by analysis using the algorithm to be evaluated. The results (output parameters of the method) are then compared to the

input parameters of the simulation to quantify the performance of the algorithm. Method specific parameters (MPs) are varied to maximize the

agreement between input and output parameters in order to reach maximum accuracy and efficiency (see Section 4 for further details). Using pre-

optimized parameter sets to analyze experimental data (application) yields reliable results of the molecular system under study.

https://doi.org/10.1371/journal.pone.0195277.g001
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yielding an evanescent field with an exponentially decaying intensity profile for fluorophore

excitation and low out-of-focus fluorescence [6]. Emitted photons are sorted according to

their wavelength and detected using a camera. These raw videos are referred to as single-mole-

cule videos (SMVs) throughout this article. In SMVs, fluorophore-labeled biomolecules act as

point emitters of light and appear as PSFs in the FOV. In a perfect optical system without

spherical aberration, their diffraction pattern can be satisfactorily described by a symmetric

2D Gaussian characterized by the full width at half maximum (FWHM) wdet,D/A,0 [30].

Extracting donor (D) and acceptor (A) emission rates from SMVs permits to approximate

the FRET efficiency by the apparent time-dependent transfer efficiency FRET(t) [7,31]

FRETðtÞ ¼
IðtÞA; emD; ex

IðtÞD; emD; ex þ IðtÞA; emD; ex

; ð2Þ

where IðtÞA; emD; ex and IðtÞD; emD; ex correspond to the photon emission of the acceptor and donor

fluorophore at a time point t, respectively. In practice, the detected photon emission rates are

affected by spectral bleed-through btD/A, which results from the detection of donor photons in

the acceptor channel, as well as direct acceptor excitation dEA. Both btD/A and dEA can be

determined from the overlap of the emission and absorption spectra of the fluorophores taking

into account set of optical filters used, although they are generally determined experimentally

[7]. Furthermore, the detected photon emission rates contain background signal with different

physical and technical origin (see below for further details). Differences in donor and acceptor

quantum yields QYD and QYA, as well as detection probabilities of both donor ηD and acceptor

ηA are accounted for by the correction factor γ. A detailed overview on the most relevant cor-

rections and their effects is given in the Supporting Information (Section C in S1 File). Apply-

ing these corrections eventually yields absolute FRET efficiencies E(r,t)� FRETabs(t), which

can be converted into mean inter-dye distances [31–34].

3 Simulation of SMVs

FRET efficiencies are calculated from fluorescence intensities. Consequently, we seek to simu-

late SMVs that contain time-binned fluorescence intensity trajectories, in which the stochastic

nature of photon emission is accounted for by a Poisson probability distribution. Simulating

SMVs requires the following VSPs to be defined (Fig 2): (i) The number of FRET states and the

corresponding mean FRET efficiencies adopted by the molecular system under study, (ii) a

kinetic model, which describes the transition rates between these FRET states as a Markovian

process (Section 3.2), (iii) the photophysical parameters of the FRET pair, (iv) the number and

location of single molecules within the FOV (Section 3.3.2), (v) the PSF model defined by the

imaging system (Section 3.3.3), (vi) the background signal (Section 3.3.4), as well as (vii) a

model to describe the noise of the camera (Section 3.3.6). The graphical user interface (GUI) of

our MATLAB-based SMV simulation tool shown in Schematic A in S1 File allows the defini-

tion of all the above-mentioned VSPs in a straightforward manner. The simulation tool permits

the user to export all video simulation parameters in Matlab-independent exchange file formats.

3.1 Workflow to simulate single molecule FRET data

In order to obtain SMVs and FRET efficiency time traces that closely match experimental

data, kinetic Monte Carlo (MC) simulations were used to generate N fluorescence intensity

trajectories (Fig 2) [35]. For this purpose, we defined the total number of conformational states

(molecular states) J as well as the corresponding J(J-1) monoexponential rate constants kij
characterizing the interconversion between states i and j. Each state j was assigned to a discrete

Simulations of camera-based single-molecule fluorescence experiments
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mean FRET efficiency FRETj. Simulation of each time trace n and frame l in a time series char-

acterized by a total length L, followed by generating SMVs, was achieved in eight steps:

1. Based on the kinetic rates kij, KMC simulations were performed to determine FRET(n,l) of

each molecule n for each time bin l, i.e., the observation time a molecule spends in a certain

molecular state. In the case of dwell times shorter than the time bin l, FRET(n,l) values of

multiple states were averaged within the same bin l. Kinetic heterogeneity, i.e., state transi-

tions characterized by multi-exponential kinetics [36], can be simulated by assigning differ-

ent rate constants kij with the same FRETj value but different states j. The kinetic model is

further described in Section 3.2.

2. Donor and acceptor fluorescence intensities Iðn; lÞD; em
D; ex and Iðn; lÞA; em

D; ex were calculated accord-

ing to Eq (2) based on the discrete FRET(n,l) values and assuming a total emitted donor fluo-

rescence Itot,0 in the absence of FRET. Even though a constant Itot,0 for all SMs was used as

default setting, it is possible to define molecule-to-molecule variations in I(n)tot,0 to model

non-uniform illumination or to create test data sets featuring multiple SNR values (Section

3.3.3). Further, the probability of donor excitation in absence of FRET was assumed to be inde-

pendent of time and the relative dipole orientation of both fluorophores. Additionally, the

exponential decay in the z-direction of the evanescent wave generated in TIR was neglected, as

immobilization typically confines the biomolecules in close proximity to the surface. Differ-

ences between quantum yields QYD and QYA, as well as between the detection efficiencies ηD

and ηA were accounted for by the correction factor γ (Section C in S1 File). It is noteworthy,

that the gamma correction introduces an indirect change of the total emitted fluorescence

(Table C in S1 File) independent of the user-specified distribution I(n)tot,0 introduced above.

A frequently observed phenomenon in smFRET are molecule-to-molecule variations. For exam-

ple, variations can be observed with regard to the mean FRET value of a certain conformational

Fig 2. Simulation of SMV. Schematic of smFRET data simulation with TIR illumination and camera detection as

implemented in the MASH-FRET simulation tool. A large number of experimental or video simulation parameters

can be independently set, ensuring the flexibility of the simulation tool.

https://doi.org/10.1371/journal.pone.0195277.g002

Simulations of camera-based single-molecule fluorescence experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0195277 April 13, 2018 5 / 23

https://doi.org/10.1371/journal.pone.0195277.g002
https://doi.org/10.1371/journal.pone.0195277


state, the total emitted intensity and quantum yields [3,37]. We modeled cross-sample variability

assuming a Gaussian distribution of the underlying VSP values characterized by a defined center

and standard deviation σ, thus, FRETj and σFRET,j, Itot,0 and σItot,0, and γ and σγ. This straightfor-

ward approach allows to simulate cross-sample variability in FRET states and trajectory SNR
originating from instrumental artefacts, but also fluctuations of QY, interdye distances, local

refractive indices, and fluorophore orientations that lead to κ2 variations [18,38,39].

3. Instrumental imperfections resulting in direct acceptor excitation and spectral bleed-

through were also considered. The respective correction factors are listed in Section C in

S1 File [40,41].

4. To simulate spontaneous dye photobleaching (see option in Schematic A in S1 File), trajec-

tories were truncated using an exponentially distributed photobleaching time.

5. N molecules were distributed over a virtual FOV in the respective donor and acceptor chan-

nel (Section 3.3.1) using either pre-defined or random coordinates (Section 3.3.2). The

position of each molecule (xn,yn) is time-invariant, i.e., focal drift was assumed to be absent.

6. Pixel values of the respective single molecule coordinates were set to the calculated donor

and acceptor fluorescence intensities I(xn,yn,l)D/A in each frame and subsequently convo-

luted with the PSF of the virtual imaging system as discussed in Section 3.3.3. A spatially

and/or temporally variable background was added to each frame to account for different

sources of background as discussed in Section 3.3.4 and Section 3.3.5. Instrumental imper-

fections such as focal drift and chromatic aberrations can be simulated too.

7. Photon emission from fluorescent single molecules and background sources was imple-

mented as all-or-none process with a constant probability to emit a photon according to

Poisson statistics. In our MC simulations, the resulting photon shot-noise in donor and

acceptor emission intensities was accounted for with a Poisson distribution of pixel intensi-

ties centered around the expected mean fluorescence intensity (Section 3.3.6).

8. The detected photon signal was finally convoluted with a realistic SNR function taking into

account the sensitivity, linearity, and temporal noise of camera sensors according to "Emva

Table 1. Default values for the simulations carried out with the MASH-FRET simulation tool.

Parameter Donor

(e.g. Cy3)

Acceptor

(e.g. Cy5)

Bleed-through btD = 7% btA = 0%

Direct excitationa [44] dED = 0% dEA = 2%

Total emitted intensity Itot,0 = 100 pc / frame

Detection efficienciesb ηD = 0.95 (567nm) ηA = 0.91 (670nm)

Quantum yieldsc [45] QYD = 0.15 QYA = 0.3

Excitation/ Detection profile wex,x/y,0 = 60/150 pixel,

wdet,0 = 1.5 pixel (2x2 pixel hardware binning)

a Direct excitation correction can only be performed in ALEX type measurements. We do not simulate ALEX and

omit single-labelled species. Thus, the simulation of direct acceptor excitation was performed using the same total

emitted intensity of the acceptor as for the donor, Itot,0.
b The detection efficiencies of cameras are difficult to determine. We take the detection efficiencies of the EMCCD

camera Andor iXon3 DU 897D from the manufactures specifications (Oxford Instruments, UK). The overall

detection efficiency of the camera was set to the detection efficiency of the donor channel.
c Determined experimentally (T = 25˚C).

https://doi.org/10.1371/journal.pone.0195277.t001

Simulations of camera-based single-molecule fluorescence experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0195277 April 13, 2018 6 / 23

https://doi.org/10.1371/journal.pone.0195277.t001
https://doi.org/10.1371/journal.pone.0195277


1288 Standard Release 3.1" [42] and Hirsch et al. [43]. (Section 3.3.6). All simulation

parameters were set to default values inspired by values typically observed in an experimen-

tal setting (Table 1).

3.2 Describing single molecule FRET trajectories as Markov chains

smFRET experiments rely on the assumption that a molecular system capable of adopting J
conformations yields J unambiguously discernable FRET efficiencies. Therefore, we assigned

each conformation j to a discrete FRET efficiency value FRETj in our simulations. Here, the

thermodynamic equilibrium between these states depends on the kinetic rates kij that charac-

terize interconversion between state i and j for all states J. This interconversion was modeled

as a Markov chain (Fig 2) [46]. In a Markov chain, state transitions are treated as homogenous

processes, and the respective J × J matrix of transition probabilities pij to transit from a state i
to j is defined by the transition rates ki6¼j and the frame rate f according to [47]:

M ¼

p11 p12 � � � p1j

p21 p22

..

. . .
. ..

.

pi1 � � � pij

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼

e
�

XJ

j¼2

k1j=f
ð1 � p11Þ

k12

XJ

j¼1

k1j

� � � ð1 � p11Þ
k1j

XJ

j¼1

k1j

ð1 � p22Þ
k21

XJ

j¼1

k2j

e
�

XJ

j¼1\j6¼2

k2j=f

..

. . .
. ..

.

ð1 � pJJÞ
ki1
XJ

j¼1

kij

� � � e
�

XJ

j¼1\j6¼J

kij=f

0
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C
C
C
C
C
C
C
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: ð3Þ

where pi = j determines the probability to stay within the same state and pi6¼j to transit from

state i to state j, respectively. For i 6¼ j, rates were assumed to adopt values� 0, whereas rates

were set to 0 for i = j. In the context of this study and for each simulated time trace n, we

defined the state i of time bin l = 0 as the state with the highest probability pi = j according to

the probability matrix in Eq (3). We assumed a total length L of the observation time and

determined the conformational state at each time bin by means of a KMC simulation. Please

note that Matlab’s built-in function for HMM time series generation (hmmgenerate) parame-

trized using pjj’ in Eq (3) to build a time-resolved kinetic model and to generate the corre-

sponding FRET time trace does not allow for time averaged states of single bins or frames,

respectively. The simulation of the respective states in the following time bins can be carried

out in two different ways: (i) bin wise or (ii) dwell time wise. For (i) we generated a random

value from a uniform probability distribution between 0 and 1 and compared it to the

Simulations of camera-based single-molecule fluorescence experiments
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cumulative probability vector PiðjÞ ¼
Xj

n¼1

pin of the respective state i in time bin l = 0. Thus, we

defined the new state in time bin l = 1. The simulation was repeated for each time trace n until

time bin L was reached. For (ii) we set pi = j = 0, generated a random value and compared it to

the probability vector PiðjÞ ¼
Xj

n¼1

pin. Thus, we obtained the next state j and generated the

dwell time in state I from a monoexponential probability distribution, a hallmark of classical

chemical kinetics, characterized by the respective rate coefficient kij. All time bins within the

generated dwell time were set to state i. In the case of dwell times exceeding the last time bin,

the last dwell time was truncated to the total length L. Note that in particular transitions rates

kij� f lead to the detection of artificial states due to time averaging [29]. Therefore, in the case

of dwell times shorter than the binning time, we built a time-weighted average of consecutive

states in time bin l and l+1 yielding an averaged FRET value (artificial states) typical for kinet-

ics faster than the exposure time of the camera. Both approaches objectively define the confor-

mational state j of the (bio)macromolecule under study n for each single time bin l. The

number of simulation steps in the second approach is drastically reduced, which allows faster

simulations. Therefore, it is recommended for the creation of long time traces, traces with

small transition rates and traces with large differences between transition rates in order to per-

form a statistically meaningful kinetic analysis later on.

In intensity-based smFRET experiments, kinetic rates, and thus the transition probabilities,

are experimentally accessible from dwell-time analysis [3] or by maximizing the likelihood of a

matrix of rate constants in Eq (3) according to Gopich and Szabo [48]. Thus, experimentally

obtained rate constants can be used to simulate the molecular system under study for compari-

son, an approach which was presented recently [24].

3.3 Instrument specific configuration

In smFRET, the detected signal originates from fluorescent molecules that are only a few nano-

meters in size. This results in a diffraction-limited spot, whose intensity profile is determined

by the characteristics of the optical imaging system, including the microscope objective and

beam expander that is typically placed in the detection pathway for magnification (please see

Table C in S1 File for further examples). In the following, we describe how we accounted for

these instrument specific parameters with an appropriate PSF model, by adjusting the number

of single molecules in the FOV, the background signal and the noise model of the camera. All

of these VSPs can be independently defined in our MATLAB GUI shown in Schematic A in

S1 File.

3.3.1 Camera and video parameters. SMVs directly dependent on camera-specific

parameters, such as the spatial resolution, the pixel size, and the video length, all of which are

independent from the actual molecular system. We defined the image size or FOV by the pixel

size dpix and the dimensions (xres,yres) of the camera sensor. Here, the latter depends on the

number of horizontal and vertical divisions on the sensor, xres and yres, i.e., the number of pixel

within a Cartesian coordinate system (x, y). State-of-the-art EMCCD cameras such as an the

Andor iXon3 897D (Oxford Instruments, UK) are characterized by a pixel edge width of

16 μm and an xres×yres camera dimension of 512×512 pixel. Note that within an xres×yres image

matrix, xres defines the number of columns and yres the number of rows following Matlab (and

other programming languages) notation where an image matrix is defined as lines by rows, i.e.
yres×xres. This corresponds to a total sensor area of 8190×8190 μm2. In a widefield microscope

with 150-fold magnification (objective + beam expander, Table C in S1 File), the total sensor
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area corresponds to an area of 54×54 μm2 in object space. It should be noted that p x p pixels

can be combined to one superpixel (hardware binning), an approach that increases the SNR at

the expense of decreased spatial resolution. In this study, we performed hardware binning of 2

x 2 pixel and split the detector into two spectroscopic channels characterized by a resolution of

256×128 pixel each. Thus, the simulated object area 54×27 μm2 in each spectroscopic channel

yields an object size of 0.21×0.21 μm2 of the virtual camera pixel in image space perfectly

matching the diffraction limit of visible light (Table C in S1 File).

The total number of frames L determines the length of the video. The frame rate f is a rather

arbitrary value in simulated SMV, since greyscale videos are usually saved as xres × yres × L
matrices. Here, each xres × yres image was associated with a binning interval, typically between

10 ms and 100 ms. The binning interval is important for visualizing the SMV with a video

player and it affects the outcome of the kinetic analysis (Section 3.2).

Photoelectrons generated in response to incident photons are digitized, yielding an integer

data type with a given bit rate (BR). The BR defines the range of values used for the assignment

of pixel intensities in units of image counts, electron counts or photon counts. For example, at

a BR of 14 bit per pixel, the intensity adopts values from 0 to 214−1 = 16383 counts. It should

be noted, however, that the BR defines a saturated maximum of pixel intensity, which is

defined as the maximum of the measured relation between the variance of the gray value and

the incident photon flux in units photons/pixel [42]. Thus, the maximum detectable photon

flux is given by the variance of the respective image count value of the camera.

We simulated fluorescence intensity trajectories in units of photon counts (pc) per time bin

(pc/time bin) or per frame (pc/frame). This enables the evaluation of methods with SMV test

data sets independent from the camera specific image count signal. The MASH-FRET analyz-

ing software does not require pc as unit for the intensity; units are arbitrary and can be pc or

any other measure for the intensity. However, in the case where pc conversion is not provided

by the acquisition software of the camera, i.e., the detected fluorescence intensity is given in

units of image counts (ic) or electron counts (ec) per bin time (ec/time bin = cps) or per frame

(ec/frame = cpf), individual measures of the camera should be converted into photon [49].

Equations for converting photon counts into image counts and vice versa are provided in Sec-

tion 3.3.6 or [42].

3.3.2 Distributing single molecules within the FOV. We used two approaches to distrib-

ute N simulated molecules within one half of the FOV: (i) We positioned molecules at prede-

fined pixel locations (Fig 3A), yielding regular patterns similar to the ones obtained when

nanostructured materials like zero-mode waveguides are used for surface-immobilization

[50,51]. Here, overlap between individual PSFs is absent. (ii) We randomly distributed mole-

cules (Fig 3B), typically leading to overlapping PSFs as observed when surface immobilization

is achieved via biotinylated PEG or BSA [36,52].

To obtain a single molecule density ρ, which is defined as the number of SMs per area, and

to avoid overlap of different spots, the number of simulated molecules N was adjusted as a

function of the image dimensions, i.e., the FOV. To simulate a typical single molecule experi-

ment, we used a low surface molecule density (0.035 μm-2� ρ� 0.063 μm-2). On average, this

corresponds to 82� N� 146 molecules distributed over the simulated FOV of 256 x 128 pixel

(Fig 3B). Please note that we used subpixel accuracy to distribute molecules within the FOV,

resulting in different appearance of single molecules in SMVs depending on their localization

relative to the grid of pixels (Fig 3A). Subpixel accuracy in simulated SMVs is particularly

important for the evaluation of spot detection algorithms in super resolution microscopy tech-

niques [16,53].

3.3.3 PSF model. The intensity profile of a diffraction-limited spot within the conjugated

image plane using an ideal imaging system with a high numerical aperture (NA > 1) can be
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approximated with a normalized, symmetric 3D Gaussian function [30]. Here, we described

the detection probability per pixel of a molecule n by the detection point spread function

PSFdet in the focal plane:

PSFdet; n;D=Aðx; y; z ¼ 0Þ ¼
1

ffiffiffiffiffiffi
2p
p

w0;detD=A

exp �
ðx � xnÞ

2
þ ðy � ynÞ

2
þ ðz � z0ðtÞÞ

2

2w0;detD=A
2

 !

; ð4Þ

where the Gaussian width wdet,D/A,0 of the PSFdet, n, D/A depends on the detection system of the

microscope and the emission wavelength of the fluorophores (Table C in S1 File). We defined

the position of the individual SM, i.e., the center position (xn,yn), with subpixel resolution, and

we implement longitudinal chromatic aberration z0,D/A and linear focal drift along the optical

axis with z0(t) = m � t + z0,D/A where m is the focal drift rate.

A single fluorophore imaged with a magnifying microscope objective yields, according to

Abbe’s Law, a diffraction-limited spot of size wdet,0� λem/(2 NA). Imaging single Cy3.5 mole-

cules (λem = 600 nm) with a water-immersion objective (60-fold magnification, NA = 1.2),

results in a diffraction-limited spot size of 15 μm, a value that matches the camera-specific

pixel size (Fig 3A top and Table C in S1 File). Upon increasing the magnification to a factor

of 150, a typical value in the context of TIRFM, a diffraction limited spot spreads over a detec-

tion area of 3×3 pixel (Fig 3A bottom), or in the case of 2x2 pixel hardware binning over

1.5×1.5 pixel. The latter is used as default in our simulation software. It is important to men-

tion that for a microscope-independent evaluation of SM methods, the Gaussian width of the

PSF is given in pixel rather than micrometers.

3.3.4 Background simulation. Background signal arises from various environmental and

molecular sources, as well as photophysical processes [23]: (i) Environmental light (stray and

ambient light) is usually suppressed via blackout-material (blinds, coating, masking tape)

along the beam path and especially around the sample and/or the objective. (ii) The incident

laser excitation light leads to Rayleigh or Raman scattering from the sample, the optics or even

the detectors surface of the CCD camera [7]. The wavelength of scattered excitation light does

usually not overlap with the spectral range of interest, i.e., the emission wavelength of the fluor-

ophores, and can thus be suppressed by a suitable set of optical filters. (iii) Objective and sam-

ple chamber autofluorescence depends, for example, on the type and quality of glass. In

Fig 3. PSF and FOV simulation. (A) Example of simulated PSFs with wdet,0 = 1 pixel (top) and wdet,0 = 2 pixel

(bottom) and their appearance depending on their subpixel localization. (B) Representative averaged SMV featuring

randomly positioned SMs and an inhomogeneous illumination profile wex,x,0 = wex,y,0 = 256 pixel.

https://doi.org/10.1371/journal.pone.0195277.g003
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addition, the sample itself can be autofluorescent when single-molecules are imaged in living

cells or cell extracts [54] albeit the contribution of cellular autofluorescence can be reduced by

choosing a dye pair that is excited at λex� 520 nm[55]. Moreover, spurious adsorption of fluo-

rescent impurities to the surface is observed on a regular basis. (iv) Studying intermolecular

reactions by smFRET may require the presence of a fluorophore-labeled species at super-pico-

molar concentrations in solution [36,56]. Thus, freely diffusing and transiently adsorbing fluo-

rescent particles contribute to the fluorescence that adds to the overall background signal. (v)

The signal detected by a camera with closed shutter, so called dark images, numerically con-

tributes to the background with a bias-offsetμd. These dark images are not necessarily homoge-

nous and the particular pattern is camera dependent [43]. Relevant contributions in a

particular experiment, however, need to be identified on a case-by-case basis.

In our simulations, we modeled the background as spatially variable bg(x,y)D/A, which

accounts for background sources (ii-iv). Here, the background is a function of the intensity of

the light used for sample excitation. As laser beams with Gaussian cross-section profile are typ-

ically used for excitation [10], the excitation profile was described by a normalized, asymmetric

2D Gaussian function PSFex, centered in the middle of the respective FOV [10,15]:

PSFexðx; y; z ¼ 0Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pw0;ex;xw0;ex;y

p exp �
ðx � xcÞ

2

2w2
0;ex;x

þ
ðy � ycÞ

2

2w2
0;ex;y

þ ðz � znðtÞÞ
2

 !

; ð5Þ

where (xc,yc) is the center position of the FOV and w0,ex, x/y is the width of the Gaussian back-

ground profile. Again, the defocusing function z0(t) accounts for lateral chromatic aberration

and linear focal drift. It should be noted that this model neglects possible pattern of the dark

images (v), as these systematic contribution to the measured image count signal are easily cor-

rected for in an experiment [42,43]. To account for individual experimental conditions (optics,

magnification, diameter, etc.) of the incident laser beam, w0,ex,x/y can be adapted accordingly

depending on the actual TIR profile of the microscope used (Fig 3B, related parameters in

Schematic A in S1 File). To obtain a spatially invariant excitation profile and constant back-

ground, PSFex must be set to 1.

3.3.5 Photon flux incident on the camera detector. The total detected intensity I(x,y,l)D/

A of all incident photons on the camera detector including the contribution of a background

signal was defined as

Iðx; y; lÞD=A ¼ Iðxn; yn; lÞD=A 
 PSFdet; D=Aðx; y; z ¼ 0Þ þ bgD=A � PSFexðx; y; z ¼ 0Þ: ð6Þ

The intensity per pixel in the respective donor and acceptor channel was calculated by the

2D integral over the corresponding pixel dimensions:

Iðx; y; lÞD=A ¼

Zxþdpix ;yþdpix

x;y

Iðx0; y0; lÞD=Adx
0dy0: ð7Þ

3.3.6 Camera noise model. Camera noise is composed of photon or photoelectron shot

noise, amplification noise, spurious charge and camera-specific read-out noise, which contribute

in an additive fashion [42,57,58]. Herein, we modeled EMCCD camera noise according to Hirsch

et al. [43], taking only noise components into account, which are experimentally relevant: (i) We

considered shot noise from all light sources contributing to photons reaching the detector pixel I
(x,y,l)D/A. The probability of nph incident photons to be detected on the detector pixel (x,y) during

a frame l is given by a Poisson distribution P(nph;μph = I(x,y,l)D/A characterized by the mean
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number of incident photons μph. The simulation of sole photon noise is commonly used for the

simulation of single photon detection applications [19,45,59–62]. (ii) The second noise contribu-

tion is the camera shot noise σpe common to all (EM)CCDs or sCMOS [42,43]. The probability

of detecting nph photons, i.e., producing npe photoelectron, is the quantum efficiency η of the

detector already included via the gamma correction, and follows a binomial distribution. The

joint probability of the Poisson distribution and the binomial distribution is again a Poisson dis-

tribution P(npe;μpe = ηI(x,y,l)D/A characterized by the mean number of accumulated photoelec-

trons. (iii) During the read-out process, electrons are shifted through the pixel of the detector

area, the readout-register and the EM register by means of changing electrode voltages. This shift

creates unwanted electrons, a so-called clock induced charge (CIC) as one component of spurious

charge. The probability of observing CIC is very low, though, CIC nonetheless adds non-negligible

intensity spikes to the detected signal. These may introduce artefacts in SMV analysis. (iv) Ther-

mal noise, as another component of the spurious charge, is usually suppressed by cooling the

detector to very low temperatures (-80˚C). Therefore, we did not consider it further. According to

[43], the number of input electrons nie in the EM register is a convolution of the two Poisson dis-

tributions of photoelectrons and spurious charge P(nie;μie = ηI(x,y,l)D/A + CIC) (v) Amplification

noise of an EM register with gain g was modeled as a gamma distribution G(noe;μoe = gμie) where

the mean number of output electrons μoe = gμie consist of the Poisson distributed sum of all input

electrons arriving in the EM register. (vi) Readout-noise σd results from the conversion of the ana-

log electron signal, i.e., the number of output electrons noe, into a discrete image value μic = μoe/s.
We described readout noise with a Gaussian distribution N(nic;μic = μic,dark + μoe/s, σd) character-

ized by a standard deviation σd and the amplifier sensitivity or analog-to-digital factor s. We

added a constant bias offset μic,dark which is usually added electronically to avoid negative image

counts. (vii) Quantization noise σq of the analog-to-digital converter was neglected, because mod-

erate amplifier sensitivities are typically used. Thus, we yield the Poisson-Gamma-Normal (PGN)

noise model of the EMCCD camera described earlier [43]

pðnic; Iðx; y; lÞD=A; ZD=A;CIC; g; s;mic;darkÞ

¼ ðPðIðx; y; lÞD=A; ZD=A;CICÞ � GðgÞÞ � Nðsd; mic;darkÞðsnicÞ ð8Þ

In difference to reference [43], we found that the CIC noise probability is well described by

an exponential distribution Exp(CIC) = ACIC � exp(−I/τCIC) that features the terms ACIC and

τCIC (Fig 4). Here, ACIC depends on the EM gain and has usually very small values whereas

τCIC varies with the hardware binning and the vertical clock speed to shift the electrons to the

read-out register. Further, we described the number of output electrons noe of the EM register

with a normal distribution N(μoe = I(x,y,l)D/AηD/Ag, σoe) with mean image counts μoe and vari-

ance σoe
2 = μoe. We approximated the PGN model by a Normal-Exponential-Normal (NExpN)

model, where the weighted sum of a Normal distribution and the CIC noise was convoluted

with the read-out noise:

pðnic; Iðx; y; lÞD=A; ZD=A;ACIC; tCIC; g; s;mic;darkÞ

¼
ð1 � ACICÞNðIðx; y; lÞD=A; ZD=A; gÞ þ . . .

. . .þ ACIC � expð� I=tCICÞ

 !

� Nðsd; mic;darkÞðsnicÞ ð9Þ

For sufficiently large EM gains and photon count rates CIC noise becomes negligible.

Hence, the NexpN model simplifies to a Normal distribution with mean image counts μic and

variance σic, which we called Normal (N) noise model defined by the parameter set I(x,y,l)D/A,
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ηD/A,K and μic,dark:

pðnic; Iðx; y; lÞD=A; ZD=A;K; mic;dark; sicÞ ¼ NðIðx; y; lÞD=A; ZD=A;K; mic;dark; sicÞðnicÞ ð10Þ

In order to estimate the model parameters from experimental values, we recorded the signal

of single surface-immobilized, Cy3 labelled RNA molecules with varying fluorescence intensity

as described elsewhere [3,36]. The mean signal intensities μic and standard deviations σic are

shown in Fig 4A. Following the nomenclature introduced in reference [43] and the standards

Fig 4. Camera noise simulation. Representative experimental camera noise of an Andor iXon3 DU 897D camera,

following EMVA Standard 1288 notation [42]. (A) Standard deviation of camera noise as determined from single pixel

temporal intensity fluctuations over 100 frames of single Cy3-labeled RNA with EM gain = 300, tbin = 100 ms and a

readout rate of 10 MHz. Excitation intensities were varied to yield mean signal intensity rates between 0 and 6000 image

counts per frame. Fitting with Eq (13) yields: K = 57.7 IC e-1, μic,dark = 113 IC e, σd = 0.067 e and σq = 0 IC (B) SNR

characteristics of the dark count corrected intensity signal in comparison to an ideal image sensor. The camera units

(image counts) were converted into photon counts according to Eq (12). (C) Histogram of the experimentally observed

image counts with closed shutter (dark image) for the characterization of CIC noise. Pixel intensities were collected

from L = 100 video frames (512×512) using the same settings as in (A). Fitting with the NexpN model in Eq (9) resulted

in μoe = 1069 IC.s-1, ACIC = 0.02 and τCIC = 205 IC s-1. PGN noise model parameter (50000 samples): μph = 0 pc,

CIC = 0.02 e, others as determined in (A). N noise model parameter (50000 samples): μph = 0.02 pc (D) Histogram of

experimentally observed image counts of a single time trace (1000 frames) of Cy3 labelled RNA. PGN noise model

(50000 samples): μph = 85 pc, CIC = 0.02, others as determined in (A). Parameters of the NexpN noise model in Eq (9)

and the Normal distribution in Eq (10) are chosen in the same way as for the PGN noise model.

https://doi.org/10.1371/journal.pone.0195277.g004
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for the characterization of image sensors and cameras [42], we defined the temporal variance

σic
2 of the digital signal as the sum of the aforementioned noise sources:

s2

ic ¼ K2 s2

d þ s2

pe
|fflfflfflffl{zfflfflfflffl}

s2
ie

0

B
@

1

C
A

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
s2

oe

þ s2

q ð11Þ

Here, σd combines the noise related to the sensor read-out, the amplifier circuits and the

spurious charge that is considered to be independent from the incoming photon signal. K = g/s
is the overall system gain, i.e., a linear factor converting the charge into the digital output signal

μic as follows:

mic ¼ Kðmd þ mpeÞ ¼ Kðmd þ ZmphÞ ¼ mic; dark þ KZmph; ð12Þ

where μd denotes the mean number of electrons and μic, dark = Kμd the mean grey or offset-

value of a camera accessed experimentally in the complete absence of light (Fig 4A and 4C).

The combination of Eqs (11) to (13) yields the variance of the image count signal of the cam-

era assuming μpe = σ2
pe = ημph:

s2

ic ¼ K2s2

d þ s2

q þ Kðmic � mic; darkÞ ¼ K2s2

d þ s2

q þ K2Zmph: ð13Þ

The determination of K from regression analysis as depicted in Fig 4A is known as photon

transfer method [57,58]. K was further used to calculate the mean number of incident photons

μph as a function of the measured or simulated intensity signal of the camera μic and vice versa
in Fig 4B. With Eqs (12) and (13) one can write the SNR ratio of the camera signal as follows:

SNR ¼
mic � mic; dark

sic
¼

Zmp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

d þ s2
q=K2 þ Zmp

q : ð14Þ

Fig 4B shows the SNR comparison of a real and an ideal sensor. An ideal sensor is character-

ized by a detection efficiency η = 1, negligible dark σd = 0 and discretization noise σq/K = 0. Here,

the SNR of the investigated EMCCD as a function of photon counts is close to the square root

function of an ideal sensor. We validated the introduced noise models Eqs (8) to (10) by compar-

ing them to experimental noise distributions in absence and presence of light (Fig 4 and 4D).

Except for the simple N noise model in Eq (10) in case of dark images, we found all noise models

to be in good agreement with the experimentally derived signal intensity distribution.

Since recently, low-noise sCMOS cameras featuring megapixel resolution achieve similar

or even higher frame rates as their low-resolution CCD counterparts [11]. This allows for a

greater SM sensitivity and larger FOVs given the same magnification of the optical system.

Even though low-noise sCMOS cameras are devoid of amplification noise, the SNR is compa-

rable to EMCCDs. All relevant VSPs related to the camera noise model are implemented in the

GUI shown in Schematic A in S1 File.

4 A generalized approach for comparing algorithms using

simulated SMVs

Simulated SMVs may serve for comparing, evaluating and/or optimizing algorithms in

smFRET data analysis, such as spot detection, background correction, time trace generation,

and model selection. Herein, we used simulated SMV as ground truth providing the required

information as video simulation parameters to calculate evaluation measures. These measures
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allow the direct comparison of algorithm performance. Thus, a systematic variation of relevant

VSPs enables to find the confidence range of algorithms and their optimal parameterization.

We optimized these parameters for a number of commonly used SM localization algorithms

(Fig 5).

4.1 Evaluation measures and classification

To compare different algorithms used in the context of SMV data analysis, we first classified

the true values known from the input VSPs as ground truth (GT) (Fig 5A, panel I). The output

of the algorithm was then classified as true positive (TP, Fig 5A, panel II), i.e., correctly

detected values, false positive (FP, Fig 5A, panel III), i.e., erroneously detected non-existing

values, false negative (FN, Fig 5A, panel IV), i.e., undetected existing values which are incor-

rectly classified as non-value, or true negative (TN, omitted in Fig 5A as the herein tested algo-

rithms do not classify TNs), i.e., values correctly classified as non-value. We then quantified

the performance of different algorithms by computing the precision (also: positive predictive

value) and the recall (also called sensitivity) [63,64]:

recall ¼
TP

TPþ FN
and precision ¼

TP
TPþ FP

ð15Þ

In addition, the detection efficiency was quantified using the accuracy:

accuracy ¼
TPþ TN

TPþ TN þ FPþ FN
ð16Þ

Recall, precision and accuracy adopt values between 0 and 1 and reach 1 when TP 6¼ 0 and

FP = FN = 0. Since most smFRET-specific algorithms do not produce a TN class output,

TN = 0 in most cases. In the context of method evaluation, the accuracy can be used to opti-

mize the input MP in order to assess the method-specific limits of its particular output param-

eters, to quantify maximum accuracies and to test computation times. Since it is generalizable

and easily applicable to other algorithms, we believe that it may contribute to the standardiza-

tion, and hence, the reproducibility of smFRET data analysis.

4.2 SMV test sets with different VSPs for method evaluations

We generated a number of SMVs which served as GT for the comparison of different algo-

rithms. We classified the simulated SMVs depending on which VSP was varied and which SMV

property was changed, respectively (Table D in S1 File). In particular, we varied the following

VSPs: (i) The single molecule fluorescence intensity Itot,0, which affects the SNR, (ii) the PSF

width wdet,0, which mimics different imaging quantities, (iii) the molecule-to-molecule distances

IMD and (iv) the molecule surface density ρ, both of which affect SM spot overlap, (v) the spa-

tially variable background that affects the signal-to-background ratio, (vi) the trace length L and

(vii) the ratio of forward/backward transition rate constants kij / kji, both of which affect the

kinetic model determination and (vii) the heterogeneity associated with state-specific mean

FRET values and the total emitted fluorescence intensity, both of which may influence the

inferred model. All simulated SMVs are freely available for download at https://github.com/

RNA-FRETools/MASH-FRET for the individual assessment of smFRET-specific algorithms.

4.3 Application of simulated SMVs to optimize single molecule detection

parameters

To achieve their optimal performance, SM localization algorithms require optimized input

MPs (Fig 1). We optimized the input MPs of four spot detection algorithms, Houghpeaks
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Fig 5. MP Optimization for single molecule spot detection. (A) Classification criteria: Black filled circles mark the

ground truth (GT) of simulated SM coordinates (provided as VSP). Dotted circles illustrate a user-defined tolerance

radius used for classification of detected SMs (open circles) into I) true positive (TP, blue assigned by black arrow),

false positive (FP, red) and II) false negatives (FN, green) based on closest distance to a GT coordinate (greedy

approach) and being located within the tolerance radius. Example III) and IV) compare a greedy and Gale-Shapely

based approach where both show the same detection of SM but different classifications. For details, see text. (B) A sub-

image of 256×30 pixels from a 512×512 pixels video with a total of 24 × 12 single molecules. The total emission

intensity (given in photon counts per frame) decreases from the left to the right. White circles mark the GT
coordinates, blue, red and green mark TP, FP and FN, respectively. (C) Optimization of ISS algorithm

parameterization for SM detection using SMV category (i) (Table D in S1 File) with wdet,0 = 1 pixel. (C, left) Variation

of model parameters (MP): 35 combinations of ISS input parameters Ithresh (intensity threshold) and NhoodSize (spot

size) and their obtained color-coded recall, precision, and accuracy are shown for molecules of 40 pc total emitted

intensity Itot,0. The respective range for a maximum (= 1) in recall, precision and accuracy are indicated by red

bounding boxes. (C, middle and right) Variation of input parameters: Heat maps represent optimal parameterization

of Ithresh,opt (middle) and NhoodSizeopt (right) to achieve maximum recall (1st row), precision (2nd row), and accuracy
(3rd row) as function of PSF size wdet,0 and SM total emitted intensities Itot,0. Note that Itot,0 is varied from 1–300 pc

within a SMV, while wdet,0 varies from video to video (category (i), Table D in S1 File). The corresponding example

parameter optimization results for Itot,0 = 40 pc and wdet,0 = 1 pixel on the left are highlighted by grey squares in all

heatmaps.

https://doi.org/10.1371/journal.pone.0195277.g005
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(HP), in-series screening (ISS), Schmied (SCH) and TwoTone (2tone) (Table 2), and used

simulated SMVs of the category (i-ii) suitable for testing the ability of an algorithm to detect

SMs given a heterogeneous distribution of the total emitted intensities Itot,0. All four algo-

rithms apply an intensity cut-off Ithresh to the SM image prior to SM localization. This ensures

that the algorithm can be used at different signal-to-background ratios. All tested detection

algorithms process SMVs either sequentially (frame-by-frame) or upon averaging over all

frames (frame/time-averaged SMV). The algorithms differ, however, with regard to the num-

ber of input parameter, the size parameter related to the PSF width (HP and ISS) or make use

of a band pass kernel width (2tone). Different classification algorithms for TP, FP, and FN
have been presented: (i) the Greedy approach which classifies TPs using the nearest neighbor

criterion (type III in Fig 5A), and (ii) the Gale-Shapley approach, also known as stable mar-

riage problem, which aims at maximizing TPs (type IV in Fig 5A) [63,65]. We used the Greedy

approach, which is easy to implement and commonly applied. The maximum number of

detected spots per frame was fixed to an upper bound larger than the GT to allow for the detec-

tion of false positives The resulting values for TP, FP, and FN were used to determine the algo-

rithm-specific combination of input MPs yielding maximum precision, recall, and accuracy
(Eqs 15 and 16).

Fig 5C illustrates the optimization workflow for the home-written function ISS. Here, the

algorithms-specific spot detection parameters Ithresh and NhoodSize were varied (left panel).

Decreasing Ithresh improves recall (top row) but deteriorates precision (middle row), resulting

from a concomitant increases of true and false positives. The maximum values for evaluation

measures recall, precision and accuracy cover a range of MP, Ithresh and NhoodSize, depending

on the input parameters. These values are highlighted in Fig 5C using red bounding boxes for

the underlying SMVs of category (i) at Itot,0 = 40 pc and wdet,0 = 1 pixel. At 40 pc all evaluation

measures reach the maximum achievable value of 1, whereas the MP range for the maximum

accuracy is more limited than for recall and precision. From this range, maximum accuracy is

achieved exemplarily for Ithresh = 13 pc and NhoodSize = 9 pixels (Fig 5C, solid grey square).

Ithresh is the more critical value for high recall values within the examined parameter space in

category (ii) simulations co-varying Itot,0 and wdet,0. The NhoodSize parameter of ISS has no

impact on the mean recall, precision and accuracy for wdet,0 < 3 pixel and Itot,0 > 80pcpf. How-

ever, for conditions of decreasing SM signal (per pixel), i.e. towards wdet,0 = 3 pixel and

decreasing Itot,0 below 80 pcpf, maximal precision and accuracy can only be achieved by

decreasing Ithresh and increasing NhoodSize (Fig 5C, middle and right). Please note that there

is a strong drop of the maximum accuracy upon decreasing Ithresh (Fig 5C, left).

In order to optimize the input parameters of the other spot detection algorithms assessed,

both Itot,0 and wdet,0, as well as the horizontal intermolecular distance IMD and wdet,0 were co-

varied. The results are shown in Fig B in S1 File. For a constant fluorescence intensity, the

parameter Ithresh has a greater influence on accuracy than NhoodSize, in particular if IMD>>
wdet,0.. However, optimum values for Ithresh and NhoodSize depend on the signal intensity I(x,y,

l), the camera offset μic, dark, and the camera noise σic, and are thus specific to the present set of

simulation parameters assessed. The parameter optimization for 2tone is special, because we

found two parameter regimes yielding optimal results. The band pass kernel size BpSize of 1

and 3 requires Ithresh parameters of 5.5 and 1.5, respectively. Such an anti-correlated effect

between two parameters yielding maximum accuracy was demonstrated for ISS at increasing

wdet,0 and decreasing Itot,0 values too. Without going into methodical details, a modest increase

of Ithresh usually reduces FPs, which can be a consequence of image artifacts brighter than the

local background caused by image processing steps used in a SM detection method. 2tone

shows a clear preference of BpSize = 1 for the Itot,0 dependence which is not the case for the

IMD dependence.
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In summary, reducing only the parameter Ithresh in the four investigated SM localization

methods primarily results in more TPs and FPs, and thus, higher recall but lower precision. In

general, a PSF theoretically leaks out of the ROI defined by the neighborhood size parameter

NhoodSize, making e.g. ISS and HP prone for the detection of FPs at the boundary of the

Nhoodsize-ROI. SM localization methods may contain image processing steps (usually imple-

mented as black-box) that entail similar PSF smear effect (e.g. kernel size of 2tone). Thus, high-

est accuracy is often a compromise between Ithesh and other parameters like Nhoodsize. In

smFRET, for low molecule densities where PSF overlap is statistically rare, one might consider

prioritizing precision over recall, a strategy to avoid duplicates (FPs located close to GT).

Table 2. Spot detection algorithms tested.

Method Type/origin Parameters Source

Houghpeaks (HP) designed for identifying peaks in images Intensity threshold Ithresh 11–25 pc

(450–800) pc

Matlab image processing toolbox

Vertical and horizontal spot size NhoodSizea 1, 3, 5, 7, 9

pixels

max. number of spots 9000

in-series screening (ISS) home-built algorithm inspired from HP see HP MASH-FRET

Schmied (SCH) designed for super-resolution microscopy min. intensity-to-background ratio 1.5–3 a.u.

(1.05–3)

[66]

min. distance to image edge 3

TwoTone (2tone) designed for analyzing smFRET SMVs Intensity threshold Ithresh 1–6 a.u. [15]

bandpass filter kernel BpSize (4–6) a.u.

1, 3, 5, 7, 9

Input parameters in brackets are specific to the analysis of time-averaged SMVs.
a”The suppression neighborhood is the neighborhood around each peak that is set to zero after the peak is identified.” Compare Matlab documentation.

https://doi.org/10.1371/journal.pone.0195277.t002

Fig 6. Evaluation of single molecule spot detection after MP optimization. SM detection was performed with four

different algorithms, ISS, HP, Sch and 2tone, using simulated SMV of category (i) (Table D in S1 File) with and

wdet,0 = 1 pixel varying molecules total emitted intensity Itot,0 form 1 to 300 pc. (left) Recall, precision, and accuracy
values of exemplarily chosen Itot,0 values. (right) Ranking of the four algorithms for recall, precision, and accuracy.

https://doi.org/10.1371/journal.pone.0195277.g006
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After parameter optimization, SM localization methods are compared in terms of recall,
precision and accuracy using their individual set of optimized MP and varying SM total emitted

intensity Itot,0 (Fig 6A). To enhance performance contrast, the individual result for recall, preci-
sion and accuracy were ranked between the four assessed methods with 1 to 4 points. In case of

equal performance, ranking points are equally shared between the respective methods (Fig

6B). Both methods 2tone and ISS have a low false detection rate and thus a high precision.

This is is beneficial for the detection of SM spots and a subsequent SM trace generation to

avoid “empty” time traces which contain only background signal. ISS achieved best values for

accuracy, however, comparable with 2tone. In detail, we find ISS to perform better for higher

and 2tone for lower intensity values Itot,0 (Fig 6B). Therefore, ISS and 2tone are both recom-

mended for SM localization in SMVs akin to category (i). Note, that for other categories evalu-

ation results may differ. To provide a deeper insight into the parameter optimization and

method comparison presented in this section, we refer to https://github.com/RNA-FRETools/

MASH-FRET.

5 Conclusion

The first part of this article describes theoretical and practical aspects of simulating camera-

based smFRET videos. Simulated SMVs presented herein feature true experimental conditions

like realistic camera noise based on Emva Standard 1288 Release 3.1, the simulation of com-

plex kinetic models of multi-state systems potentially showing kinetic heterogeneity, inhomo-

geneous Gaussian background, and variable SM surface densities. In addition, SM cross

sample variability is accounted for in terms of Gaussian distributions of the total emission

intensities, FRET states and gamma correction factors. The SMV simulation tool is integrated

in our Matlab-based Multifunctional Analysis Software for Handling single molecule FRET

data (MASH-FRET), which is freely available for download https://github.com/RNA-

FRETools/MASH-FRET.

In the second part, we used the simulation tool to generate well-annotated test data sets that

are independent of operating system and software. These test data sets are available online

under https://github.com/RNA-FRETools/MASH-FRET and can be used as GT to evaluate

computational methods in smFRET data analysis. We illustrated how simulated SMVs can

be used to optimize the performance of four spot detection algorithms. For this purpose,

we adapted the Greedy approach to categorize detected coordinates as TPs, FPs, and FNs, a

classification that was used to define recall, precision and accuracy. This approach provides a

standardized way of scoring the performance of spot detection algorithms. We provided a

quantitative summary of optimized parameters of the methods assessed as a function of dif-

ferent PSF widths, SM emission intensities and intermolecular distances. We observed that

method accuracies and parameterizations of all spot detection algorithms assessed are distinct

functions of wdet,0, Itot,0 and IMD. Based on our results we want to emphasize the importance

of a careful method parameterization prior to SM detection.

6 Software availability

All algorithms have been encoded in a program called Multifunctional Analysis Software for

Heterogeneous single molecule FRET data (MASH-FRET). MASH-FRET was developed with

MATLAB 7.12 (R2011a). The compatibility was further tested on Windows 8, 8.1 and 10 with

MATLAB 7.12 (R2011a) to 9.2 (R2017a). MASH-FRET is available open source under the

GPL 3.0 license for download at https://github.com/RNA-FRETools/MASH-FRET. See the

README.md and the wiki on for installation details and software usage.
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