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Abstract 

Introduction:  After a stroke, a wide range of deficits can occur with varying onset latencies. As a result, assess-
ing impairment and recovery are enormous challenges in neurorehabilitation. Although several clinical scales are 
generally accepted, they are time-consuming, show high inter-rater variability, have low ecological validity, and are 
vulnerable to biases introduced by compensatory movements and action modifications. Alternative methods need 
to be developed for efficient and objective assessment. In this study, we explore the potential of computer-based 
body tracking systems and classification tools to estimate the motor impairment of the more affected arm in stroke 
patients.

Methods:  We present a method for estimating clinical scores from movement parameters that are extracted from 
kinematic data recorded during unsupervised computer-based rehabilitation sessions. We identify a number of 
kinematic descriptors that characterise the patients’ hemiparesis (e.g., movement smoothness, work area), we imple-
ment a double-noise model and perform a multivariate regression using clinical data from 98 stroke patients who 
completed a total of 191 sessions with RGS.

Results:  Our results reveal a new digital biomarker of arm function, the Total Goal-Directed Movement (TGDM), 
which relates to the patients work area during the execution of goal-oriented reaching movements. The model’s 
performance to estimate FM-UE scores reaches an accuracy of R2 : 0.38 with an error ( σ : 12.8). Next, we evaluate its reli-
ability ( r = 0.89 for test-retest), longitudinal external validity ( 95% true positive rate), sensitivity, and generalisation to 
other tasks that involve planar reaching movements ( R2 : 0.39). The model achieves comparable accuracy also for the 
Chedoke Arm and Hand Activity Inventory ( R2 : 0.40) and Barthel Index ( R2 : 0.35).

Conclusions:  Our results highlight the clinical value of kinematic data collected during unsupervised goal-oriented 
motor training with the RGS combined with data science techniques, and provide new insight into factors underlying 
recovery and its biomarkers.
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Introduction
Stroke is the second major cause of death and disability 
worldwide, with about 15 million new cases every year 
[1]. One-third of these cases lead to persistent cognitive 
and motor disabilities [2]. About 80% of stroke survivors 
present weakness and partial loss of voluntary control in 
the upper-extremities [3], or hemiparesis, which is often 
associated with other sensorimotor alterations, such as 
hypertonia or tremor.

Although hemiparesis is a highly prevalent symp-
tom and severely limits the independence of affected 
patients, its causes and recovery dynamics are not fully 
understood [4]. Recent literature converges on the idea 
that recovery is mainly due to a combination of residual 
corticospinal tract capacity and an upregulation of the 
reticulospinal tract [5, 6]. Further, recovery seems to 
follow a temporal structure where most of the improve-
ment occurs during the first months post-stroke [7, 8]. 
So far the assessment of the hemiparesis phenotype and 
its progression, however, are based on assessment meth-
ods with known limitations (e.g. Fugl-Meyer Assessment 
[9, 10], Action Research Arm Test [11, 12]) and there is 
a need for more sensitive, objective, and reliable alterna-
tives that are also compatible with contemporary digital 
health technologies.

A recent systematic review [13] of a total of 225 studies 
(N = 6197) using 151 different kinematic metrics found 
that kinematic assessments of upper limb sensorimo-
tor function are poorly standardised and rarely measure 
clinimetrics in an unbiased manner. Specifically, using 
descriptors of accuracy, efficacy, efficiency, movement 
planning, precision, spatial posture, speed, temporal pos-
ture, and range of movement together with clinimetric 
properties of these descriptors (i.e., reliability, measure-
ment error, convergent validity, and external validity), 
the authors showed that the studies analysed exclusively 
focused on finding correlations between measures of 
impairment, and only two of the studies reported correla-
tions in change. Overall, there is very limited information 
regarding test-retest reliability and the external validity 
of the change of kinematic outcome measures of reach-
ing performance [14]. Exceptionally, Murphy et  al. [15] 
explored external validity of the change in a number of 
kinematic descriptors and found a significant covariation 
of the Action Research Arm Test (ARAT) scores with 
movement time ( R2 = 0.36), smoothness ( R2 = 0.31), and 
trunk displacement ( R2 = 0.35). Although the results are 
promising, this study involves a limited number of sub-
jects (N = 24) from a highly homogeneous sample (i.e., 
acute patients only). Further, the ARAT clinical scale pre-
sents poor robustness to compensation and is especially 
vulnerable to the use of explicit strategies to improve per-
formance. Majeed et al. [16] explored the application of 

models based on LASSO regression to predict changes 
in motor ability (FM-UE) and motor function (Wolf 
Motor Function Test, WMFT). These models proposed 
that recovery in both scales can be approximated by 
the patient’s age, the patient’s motor control during the 
execution of fast movements, and other demographic 
and clinical features, altogether accounting for 65% and 
86% of the variability for the FM-UE and WMFT scales 
respectively. Although these models reached exceptional 
accuracy, their utility is limited because they make use 
of kinematic data obtained during the execution of very 
specific pointing movements supervised by clinicians 
and/or researchers, and are based on generic unbounded 
linear models, with the consequence that their estimated 
values could be largely outside the meaningful range of 
the scale.

We propose a new approach towards using kinematic 
data obtained in unsupervised rehabilitation sessions to 
estimate the level of impairment and functional recov-
ery. Data is obtained from patients engaging with goal-
oriented embodied individualised training with the 
Rehabilitation Gaming System (RGS) [17, 18]. The RGS 
combines the paradigm of action execution with that of 
observation of the corresponding movement in Virtual 
Reality (VR), this goal is achieved by having the patients 
perform tasks from a first-person perspective, where the 
movement of their limbs are captured by a camera or a 
depth sensor (i.e. Microsoft Kinect) and mapped to an 
analogous virtual representation on a computer screen. 
RGS includes individualisation mechanisms to adjust the 
difficulty of the task to the capabilities of the patient, con-
textual restrictions, and explicit and implicit feedback.

We first explore the potential of hand movements col-
lected during unsupervised RGS sessions to characterise 
hemiparesis in stroke patients. Secondly, we build and 
analyse the performance (i.e., test-retest reliability, valid-
ity, sensitivity, and generalisation) [13] of a model for 
estimating impairment and recovery scores captured by 
standardised clinical scales.

Methods
Subjects
Our retrospective analysis uses data of 191 RGS ses-
sions from 98 individuals with hemiparesis (age in [23, 
87], mean 63; days post-stroke in [5, 3045], mean 400; 
Table  1) who were recruited between 2010 and 2015 to 
participate in studies conducted in Barcelona and Tar-
ragona, Spain [18–20]. Participants met the following 
inclusion criteria: (1) ischemic strokes (middle cerebral 
artery territory) or hemorrhagic strokes (intracerebral); 
(2) mild-to-moderate upper limb hemiparesis (Medical 
Research Council scale for proximal muscles > 2 ) after a 
first-ever stroke; (3) age between 20 and 90 years old; and 
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(4) the absence of any significant cognitive impairment 
(Mini-Mental State Evaluation > 22).

Protocol
Participants followed a rehabilitation protocol including 
3–5 weekly sessions of 30 minutes each for 3–12 weeks 
using the RGS in Fig. 1. The RGS consists of a PC, a 17 
inch LCD touch display, an image-based motion cap-
ture device positioned on top of the screen [18]. The 
virtual tasks logic and graphics are implemented using 

the Torque 3D and Unity 3D game engines. The joint 
movements of the user’s head, shoulders and elbows are 
tracked and mapped onto an avatar through a biome-
chanical model using a custom-developed vision-based 
motion capture system. Arm movements are displayed 
on a screen from a first-person perspective, realising a 
rehabilitation paradigm that combines goal-oriented 
embodied action execution and observation.

For the RGS sessions in the main dataset (Table 1) the 
participants are instructed to intercept virtual spheres by 
executing horizontal bimanual movements over the sur-
face of a table (‘Spheroids’ protocol, cf. inset in Fig.  1). 
The task parameters (the frequency of sphere appear-
ance, their speed, their range, and size) are combined in 
a single parameter (‘difficulty level’) and automatically 
adjusted during the session in order to maintain the 
user’s performance between 70 and 80% success rate [17, 
21]. The system allows for the storage and extraction of 
performance parameters as well as hand path trajectories 
derived from joints’ positions and rotations recorded at 
about 100 Hz.

During the rehabilitation patients are evaluated using 
standard clinical scales: Fugl-Meyer Assessment for 
the upper extremity (FM-UE), Chedoke Arm and Hand 
Activity Inventory (CAHAI) and Barthel Index (BI). 
When collecting the 191 samples (Table 1), the following 
measures are taken to improve data quality:

•	 The clinical score measurements (FM-UE, CAHAI, 
BI) are coupled to the RGS session closest in time, 

Table 1  Characteristics of the 191 samples composing the main dataset (single session, Spheroids scenario)

The r columns refer to the Pearson correlation coefficients with the FM-UE, CAHAI, and BI clinical scales, respectively. Correlations below the threshold r ∼ 0.081 
(Fig. 12 in Appendix) are in parenthesis. The clinical scales are measured no more than 4 days before or after the coupled RGS session. The variables (6–12) are 
obtained directly from RGS log files. Characteristics of second-order variables for this dataset are shown in Table 5 in Appendix

Variables Range [min, max] Mean SD r(FM-UE) r(CAHAI) r(BI) Missing

FM-UE score [4, 66] 43 16 1 0.89 0.34 –

CAHAI score [13, 91] 52 26 0.89 1 0.50 –

BI score [10, 100] 80 21 0.34 0.50 1 15

1. Gender Female/male 73/118 – 0.17 0.11 (0.036) –

2. Age [23, 87] 63 12.8 (−  0.015) −  0.10 −  0.30 –

3. Dominant side more affected Yes/no 72/119 – (−  0.013) (0.039) 0.21 –

4. Time since stroke (days) [5, 3045] 400 625 −  0.25 −  0.17 0.22 –

5. Sessions completed so far [2, 49] 10 11 0.31 0.38 0.32 –

6. Work area (m2) [0.011, 1.8] 0.38 0.35 0.29 0.27 0.14 –

7. Distance covered(m) [2.6, 240] 56 34 0.18 0.21 0.26 -

8. Performance (% success) [0.37, 0.94] 0.68 0.105 0.33 0.37 0.33 -

9. Maximum reaching speed (m/s) [2.8, 88] 18 16 0.17 0.13 (0.061) –

10. Difficulty level reached [−  0.16, 0.89] 0.46 0.23 0.45 0.52 0.46 –

11. Smoothness (mm) [0.17, 3.7] 1.2 0.55 0.42 0.39 0.28 –

12. TGDM (m) [0.011, 0.12] 0.062 0.021 0.52 0.58 0.43 –

Fig. 1  The RGS system [17, 18] used in the rehabilitation protocol 
followed by the patients in the collection of the data in this study. In 
the inset, we show a screenshot from the ‘Spheroids’ activity during 
an RGS session
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with a maximum time separation of 4 days between 
the measurement and the RGS session;

•	 The first two RGS sessions of a patient at the start of 
the rehabilitation trajectory are excluded to ensure 
that patients are familiar with the RGS environment 
for all collected samples.

Outcomes and analysis
To analyse the potential of RGS-derived movement 
descriptors for capturing both impairment and recovery 
in standardised clinical scales, we first extract a set of 
variables that are known to correlate with the severity of 
hemiparesis [13, 16]. Next, we define a model that com-
bines the information of several variables to estimate the 
patient’s score on the FM-UE clinical scale. The model 
includes an error estimate. We use repeated cross-valida-
tion to avoid overfitting, allocating 50% of the samples to 
the training set and 50% to the validation set. We study 
the model evaluating its convergent validity, test-retest 
reliability, external validity, and generalisation to other 
tasks and clinical scales.

Analysis of convergent validity: estimating impairment
To explore the convergent validity of RGS-derived kin-
ematic descriptors in comparison to standardised clinical 
assessments, we compute Pearson correlations between 
all the variables (the RGS-derived descriptors and the 
baseline characteristics) and the clinical scores. By com-
paring these to a randomised outcome distribution we 
identify a threshold of r ≃ 0.081 for all the Pearson cor-
relations variable-scores (Fig.  12 in Appendix). Sub-
sequently, we adopt a nonlinear parametric model to 
combine information from several variables for estimat-
ing the patients’ impairment level (i.e., FM-UE scale). We 
use only the patient’s baseline characteristics and RGS-
derived movement descriptors (extracted from a single 
session logfile) as predictors. In particular, we rule out 
the two variables sessions completed so far and time since 
stroke and functions of them. In this way, the estimate 
is intended to assess the clinical status of the patient at 
a given moment without knowledge of the rehabilitation 
history. To avoid overfitting, we perform repeated cross-
validation with 50% of samples for training and 50% for 
validation, obtaining the optimal active set of variables 
possible for our dataset. In the cross-validation proce-
dure, we define the accuracy of the model as the per-
centage of samples that are correctly estimated above or 
below the median score (e.g. 47 for FM-UE). Additionally, 
we report the values of the Leave-one-out cross-valida-
tion (LOOCV) for the optimal active set. To quantify the 
performance of the model, we compare true and esti-
mated FM-UE scores reporting the average error, the 

Pearson correlation, and the coefficient of determination. 
Finally, we report the performance of the estimation of 
FM-UE obtained by a linear model with the same active 
set of variables.

Analysis of test–retest reliability
To evaluate the test-retest reliability, we consider two 
unseen datasets each composed of 921 RGS sessions, for 
a total of 1842 unseen RGS sessions. Each session in the 
first dataset ‘test’ is associated with a session in the sec-
ond dataset ‘retest’ and obtained from the same patient 
within less than 48 h. The small time frame makes it plau-
sible that the clinical state of the patient is unchanged 
between the two test–retest sessions, and so they can 
be used to assess the reliability of the regression models. 
These data were collected in the same trials as the main 
dataset, but they correspond to rehabilitation sessions 
for which we do not have an associated measurement of 
a clinical scale (so they cannot be used for training the 
model). To quantify the reliability in the estimation of 
the FM-UE scores, we evaluate the intraclass correlation 
coefficient (ICC) between the estimations obtained by 
the model for test and retest sessions.

Analysis of external validity: estimating the change 
in impairment
Starting from the original dataset (Spheroids, Table  1), 
we design a new dataset (recovery dataset, Table  2) 
composed of 54 samples where each sample repre-
sents a couple of sessions of the same patient for which 
the time lapsed between the two is larger than 16 days. 
Next, we compute the correlations between the change 
in the movement descriptors and clinical improvements. 
We utilise this dataset to analyse the external validity 
of the previous model (obtained for estimating impair-
ment) in detecting changes in the clinical status of the 
same patient. Therefore, we adopt the same set of vari-
ables used for the estimate of impairment. We evaluate 
the performance of the model by comparing the true 
and predicted change of FM-UE score. Next, we iden-
tify 38 out of the 54 samples from the recovery dataset 
(Table 2) for which the associated �FM-UE values exceed 
an MDC of 4 points. We then determine the sensitivity of 
the model evaluating the percentage of �FM-UE that are 
correctly predicted above the MDC.

Analysis of task generalisation
The Spheroids protocol requires predominantly move-
ments in the lateral (left/right) direction. To explore 
the potential of the model to generalise to other tasks 
that involve bimanual 2D planar reaching movements, 
we identify a second dataset of 37 samples from a pre-
vious study in which 19 subacute stroke patients with 
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hemiparesis trained with a different RGS-based activ-
ity which is a variation on the well-known arcade game 
‘Whac-A-Mole’ [18, 22]. The observed FM-UE scores in 
this dataset are in the range [5,  60], with a mean of 37 
and an SD of 14. The gameplay of Whac-A-Mole requires 
movements on the full 2d plane so, besides the move-
ment descriptors used for Spheroids, we define inde-
pendent descriptors for the movements in the front/back 
direction. Subsequently, we adopt the nonlinear paramet-
ric model to combine information from different varia-
bles to estimate the impairment level as measured by the 
FM-UE scale. To quantify the performance of the model, 
we compare true and estimated FM-UE scores reporting 
the average error, the Pearson correlation, and the coef-
ficient of determination.

Analysis of generalisation to other clinical scales
To explore the potential of the model to generalise for the 
estimation of impairment captured by other standardised 
clinical approaches, we considered the estimation of the 
CAHAI and BI scales that are available in the Spheroids 
dataset (Table 1). We, therefore, follow the same steps as 
above to analyse the convergent validity of the model in 
estimating CAHAI and BI scores. It is useful to anticipate 
here that the results for CAHAI are close to those for 
FM-UE. This similarity is expected as the two scales have 
a high relative correlations and comparable correlations 

to most of the variables, cf. Table  1. To be quantitative, 
we can consider the case in which the FM-UE score SFMi  
of the ‘Spheroids’ dataset is estimated by simply rescaling 
the corresponding CAHAI value SCAHAI

i  by 66/91; this 
leads to the standard error

and an R2 value of 1− σ
2
FM,CAHAI/σ

2
FM ≃ 0.62 . Estimating 

BI scores from kinematic descriptors is instead generally 
harder. This can be explained by the lower correlation of 
BI scores with most of the variables (Table 1). If we esti-
mate the FM-UE score by a simple rescaling of the BI 
value by 66/100 we get a standard error of

and a R2 value of 1− σ
2
FM,BI/σ

2
FM ≃ 0.12 . So we see again 

that BI carries different information than FM-UE (or 
CAHAI). The above values give us a natural benchmark 
to assess the performance of the model estimation of the 
clinical scales.

We conducted these analyses using in-house software 
(SaddlePoint Signature v2.9.3).

(1)
1

191

√

√

√

√

191
∑

i=1

[

(

SFMi − (66/91)SCAHAI
i

)2
]

≃ 10.1

(2)
1

176

√

√

√

√

176
∑

i=1

[(SFMi − (66/100)SBIi )
2
] ≃ 15.5

Table 2  Characteristics of the 54 samples composing the recovery dataset

We select couple of sessions of the same patient with a delay of at least 16 days from the main dataset, Table 1. The last three columns report the Pearson coefficient 
correlation between the variable and the change in the clinical score between the two sessions. Correlations below the threshold r ∼ 0.14 are in parenthesis. 
Characteristics of second-order variables for this dataset are shown in Table 6 in Appendix

Variables Range [min,max] Mean SD r(�FM-UE) r(�CAHAI) r(�BI) Missing

Change in FM-UE score [−  2, 35] 9.1 9.1 1 0.68 0.67 –

Change in CAHAI score [−  1, 75] 25 19 0.68 1 0.72 –

Change in BI score [−  6, 69] 19 22 0.67 0.72 1 13

1. Gender Female/male 24/30 – (−  0.0046) 0.14 0.29 –

2. Age [42, 84] 65 13 −  0.25 (0.061) (0.051) -

3. Dominant side more affected Yes/no 24/30 – −  0.21 (0.0065) (−  0.043) –

4. Days elapsed between the two sessions [17,89] 49 26 (0.037) 0.31 0.39

5. Sessions completed so far (at first) [5, 46] 23 14 −  0.45 −  0.33 −  0.46 –

6. Change in work area ( m2) [−  1.2, 1.2] 0.066 0.43 0.15 (0.048) 0.12 –

7. Change in distance covered (m) [−  68, 75] 14 23 0.21 0.22 0.19 –

8. Change in performance (% success) [−  0.17, 0.40] 0.076 0.11 (0.075) (0.12) 0.22 –

9. Change in max. reaching speed (m/s) [−  51, 77] 3.3 21 (0.087) (0.048) (0.063) –

10. Change in difficulty [− 0.12, 0.91] 0.21 0.20 0.38 0.39 0.36 –

11. Change in smoothness (mm) [−  0.51, 1.8] 0.22 0.50 0.37 0.35 0.39 –

12. Change in TGDM (m) [−  0.046, 0.14] 0.024 0.035 0.48 0.55 0.49 –

   Initial FM score [13,66] 44 15 − 0.44 −  0.20 (−  0.13) –

   Initial CAHAI score [14,90] 48 22 −  0.50 −  0.50 − 0.38 –

   Initial BI score [31,100] 72 23 −  0.60 −  0.64 −  0.82 13
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Identification of variables
Given the technical constraints of the setup (e.g., sam-
pling rate) and the nature of the training protocol (i.e., 
execution of horizontal reaching movements), we 
extracted all task-relevant kinematic measures of arm 
use that we could identify in the literature [13] . In total 
we obtained 31 variables, 12 first-order variables and 
19 second-order variables obtained as functions of the 
first-order ones.

We identify two groups of first-order variables: (1) 
demographic and physiological data at recruitment, 
variables 1–5 in Table 1, and (2) kinematic descriptors 
extracted for the more affected limb during training 
sessions, variables 6–12 in Table  1. For the evaluation 
of all kinematic descriptors, the first and last two min-
utes of each training session are discarded to avoid the 
interference of behaviours or events related to the start 
and the ending of the training session (i.e., revision of 
instructions, postural adjustments, exposure to the 
final score screen, etc.).

Second-order variables include chronicity (i.e. acute, 
sub-acute, and chronic categories) and the difference 
between the less and the more affected upper-limb in 
each of the quantitative first-order variables, as well as 
their logarithmic transformations. The descriptive sta-
tistics of second-order variables are given in Table 5 in 
the Appendix.

Among the above-mentioned variables, most are 
well-known [13]. The work area is computed as the 
area of the complex hull of the hand movements using 
standard methods (Jarvis’ Algorithm [23]). The dis-
tance covered refers to the total length of the hand 
paths. The performance success rate is defined as the 
ratio of spheres intercepted over the total. However, 
we introduce also the new descriptors ‘Smoothness’ 
and ‘Total-goal directed movement’ (TGDM). Spe-
cifically, to extract information on UE motor function 
we introduce an original kinematic descriptor, J (σ ) , 
to assess the patient’s movements at a specific tempo-
ral resolution, σ . This metric allows us to isolate goal-
oriented movements from the hand trajectory in a 
certain direction, assumed to be stored over time as a 
function f(t). For the main dataset, we consider the left/
right direction, as it is the principal axes in the move-
ment dynamics of the ‘Spheroids’ protocol. We assume 
measurements are taken at discrete time points ti = i� 
for i = 0, 1, . . . ,T − 1 , with � being the timestep (for 
the ‘Spheroids’ dataset we have � ≃ 0.01 s). We define 
the total hand displacement during goal-oriented 
movements J (σ ) as the difference between the actual 
movements and a smoothed version of the discrete 
movements. The smoothed hand path fσ (t) is obtained 
using a Gaussian smoothing process

where the parameter σ defines how smooth the new tra-
jectory will be, see an example in Fig. 2. Therefore J (σ ) is 
obtained as

Following this analysis method, we derive the two new 
variables corresponding to the value of J (σ ) at the two 
peaks in the σ-dependent Pearson correlation with the 
clinical scales, Fig. 3: ‘Smoothness’ in correspondence to 
the high-frequency peak, and ’TGDM’ in correspondence 
to the low-frequency peak. The location of the two peaks 
is weakly dependent on the clinical scale considered, yet 
it appears to be related to the data structure: the high-fre-
quency peak is linked to the time resolution of the data 
( � ≃ 0.01 s), while the low-frequency peak is related to 
the typical timescale of the Spheroids protocol (i.e. a set 
of spheres is launched every ∼ 10 s).

Models description
To combine variables for estimating clinical scores of 
impairment and recovery, we introduce a model that 
allows for the presence of noise on both the variables 
Z and the score S, and we hence name it a double-
noise parametric model. Its generative functional 
form is

where θ = {β ,β0,A,B, σ1, σ2} are the p+ 5 model hyper-
parameters to be inferred: β (association parameters of p 
active variables), β0 (parametric offset), A and B (range 
offsets), σ1 and σ2 (noise strengths). The sources of noise 
u (the covariate noise) and v (the score noise) are both 
assumed to be standard normally distributed. Since 
tanh(−x) = − tanh(x) , we remove the resulting param-
eter sign ambiguity by enforcing B ≥ A . Note that the 
saturation of the sigmoidal function captures the limits of 
the clinical scores so that the average over the noise of 
the estimated score S is constrained in the interval [A, B].

The probability of a particular score S, given the vari-
ables and the hyperparameters, is given by

(3)fσ (ti) =

∑T−1
j=0 f (tj) exp

[

−

(ti−tj)
2

2σ 2

]

∑T−1
j=0 exp

[

−

(ti−tj)2

2σ 2

]

(4)J (σ ) =

√

∑T−1
i=0 [fσ (ti)− f (ti)]

2

T
.

(5)
S(Z|θ) =

B− A

2
tanh (β · Z + β0 + σ1u)

+

B+ A

2
+ σ2v
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Fig. 2  An example of the smoothed trajectory fσ (t) Eq. 3 (green line) for lateral (left/right) direction hand movements with σ = 20s (left) σ = 0.5s 
(center) and σ = 0.02s (right) compared to the real trajectory as recorded by the camera (purple line). The black box indicates the area of interest 
depicted in the next row
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with the short-hands Dv = (2π)
−

1

2 e
−

1

2
v2
dv , a = (B− A)/2 , 

b = (B+ A)/2 . We use the following (improper) prior 
distribution over the parameters θ:

We take p(σ1) ∼ e−q/σ1 and similar for σ2 with q being a 
very small number, typically of the order of the accuracy 
of the numerical work, e.g. q ∼ 10−10 . These priors guar-
antee that the log-likelihood function is bounded from 
below.

We adopt Maximum A Posteriori (MAP) inference: 
given the dataset D = {(Z1, S1), . . . , (Zn, Sn)} , the opti-
mal parameters θ correspond to the maximum of the 
posterior probability or, alternatively, to the minimum 
of the regularised log-likelihood function:

The errors on the inferred parameters θ are estimated 
from the curvature of the regularised log-likelihood func-
tion at the minimum.

(6)

p(S|Z, θ)

=

1

σ2

√

2π

∫

Dv e
−

1

2σ22

[S−a tanh(β·Z+β0+σ1v)−b]2

(7)p(θ) = Z−1e−
1
2dβ

2
p(σ1) p(σ2).

(8)

�(θ) = −

n
∑

i=1

log

∫

Dz e
−

1

2σ22

[Si−a tanh(β·Zi+β0+σ1z)−b]2

+

1

2
dβ2

+ n log(σ2)+
q

σ2
+

q

σ1
.

Two simpler models derived from Eq. 8 can be con-
sidered corresponding to having either score noise only 
or covariate noise only:

•	 Score noise model, σ1 = 0 . Taking the limit σ1 → 0 
in Eq. 8 gives 

•	 Covariate noise model, σ2 = 0 Taking the limit 
σ2 → 0 in Eq. 8 gives 

 provided |Si − b| < a for all i, otherwise 
�cov(θ) = ∞ . This implies that for each b the mini-
misation over a is to be carried out strictly over the 
open interval a > maxi|Si − b|.

(9)

�sco(θ) =
1

2σ 2
2

n
∑

i=1

[Si − b− a tanh(β · Zi + β0)]
2

+ n log(σ2)+
1

2
dβ2

+

q

σ2
,

(10)

�cov(θ) =
1

2σ 2
1

n
∑

i=1

[

tanh−1
(Si − b

a

)

− β · Zi − β0

]2

+

n
∑

i=1

log
[

a2 − (Si − b)2
]

+ n log
(

σ1

a

)

+

1

2
dβ2

+

q

σ1
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Fig. 3  Pearson correlation coefficient between clinical scales 
(FM-UE, CAHAI, BI) and J(σ ) (Eq. 4) obtained for the lateral (left/right) 
direction of the paretic hand trajectory at different values of σ for 
the ‘Spheroids’ dataset (Table 1). The high-frequency peak is at about 
σ = 0.01 s for all three scales. The low-frequency peak is at σ = 8.8 s 
for FM-UE, σ = 5.9 s for CAHAI, and σ = 17 s for BI

Fig. 4  Correlogram of clinical scales and variables, Table 1. The scale 
indicates the value of the correlation coefficients, going from − 1 (full 
negative correlation) to 1 (full positive correlation). Black bordered 
squares indicate significant correlations ( p < 0.05)
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Results
Identification of features
Several of the kinematic descriptors, in particular TGDM 
and the difficulty level reached (difficulty) correlate highly 
with all clinical scales, cf. Table  1 and Fig.  4. Generally, 
there is a high level of consistency between correlations of 
the variables with the different clinical scales examined. 
The main exceptions are age and the time since stroke 
(days-s). The former does not display a relevant correla-
tion with FM-UE and CAHAI scores but it is negatively 
correlated with BI ( r = −0.30 , p < 0.0001 ), while the 
latter correlates negatively with the FM-UE ( r = −0.25 , 
p = 0.00049 ) and CAHAI ( r = −0.17 , p = 0.019 ) scores 
but positively with BI ( r = 0.22 , p = 0.0033 ). The cor-
relation between FM-UE and CAHAI scores is high 
( r = 0.89 , p < 0.0001 ), while the consistency with BI is 
significantly lower: ( r = 0.34 , p < 0.0001 with FM-UE; 
r = 0.5 , p < 0.0001 with CAHAI). Generally, the correla-
tions of the kinematic descriptors are higher with FM-UE 
and CAHAI than with BI.

All kinematic variables show consistent inter-variables 
correlation, cf. Fig. 4. In particular, the maximum speed 
achieved during reaching (max-sp) correlates highly with 
the work area (w-area) ( r = 0.76 , p < 0.0001 ). The vari-
able age correlates negatively with TGDM ( r = −0.31 , 
p < 0.0001 ) and difficulty ( r = −0.24 , p = .00098 ), while 
it is uncorrelated with FM-UE and CAHAI scores, but 
not to BI ( r = −0.30 , p < 0.0001 ). This suggests that age-
related technology proficiency may affect the kinematic 
descriptors. Nevertheless, this effect is relatively weak, 
i.e., the correlations of difficulty and TGDM with the 
clinical scores are significantly higher than the ones with 
age.

To better understand the meaning of the two variables 
obtained with the smoothing techniques (smoothness and 
TGDM), we also extract finite time-windowed variables 
for comparison (64 s for the range variable; 14 s for the 
speed). Specifically, we compute the maximum range of 
movement (left/right direction) within overlapping time 
windows of size σ , where σ is again fixed by the condition 
of maximum correlation with the clinical scale of inter-
est, and we average the measurements across all possible 
windows along the whole RGS session. The resulting val-
ues show a very high correlation with the TGDM variable 
( r = 0.98 , p < 0.01 ) and show very similar Pearson coef-
ficients with the FM-UE ( r = 0.54 , p < 0.01 ), CAHAI 
( r = 0.57 , p < 0.01 ) and BI ( r = 0.44 , p < 0.01 ) clinical 
scales. These results suggest that the TGDM is capturing 
information about the typical range of movement associ-
ated with the scenario events occurring within relevant 
time windows (i.e. about 10 seconds in the Spheroids sce-
nario). Following the same method, we extract time-win-
dowed maximum reaching speed. The resulting values 

show a very high correlation with the smoothness vari-
able ( r = 0.87 , p < 0.01 ) together with very similar Pear-
son coefficients with the FM-UE ( r = 0.42 , p < 0.01 ), 
CAHAI ( r = 0.39 , p < 0.01 ) and BI ( r = 0.21 , p < 0.01 ) 
clinical scales. These results suggest that smoothness is 
linked to the ability of the patient to perform fast move-
ments to complete the RGS tasks.

Convergent validity: estimating impairment
We found that the three models implemented (double 
noise model, score noise model, covariate noise model) 
offer comparable performance in estimating the FM-UE 
scale on the dataset in Table  1. The typical error in the 
final estimate is of order ∼ 10 , while the inferred noise 
score error σ2 is typically ∼ 0.1 . This result supports that 
the score noise has a low impact, therefore we select the 
covariate noise model to decrease the number of param-
eters to be inferred.

The most relevant variables for the estimate of the 
FM-UE score are difficulty and Diff. TGDM (difference 
in TGDM between the non-paretic arm and the paretic 
arm). The total number of active variables is 6 and they 
are shown in Table 3. We have enforced the presence of 
Diff. distance covered in the active variable set since it is 
relevant in the estimate of clinical change, Tables 2 and 6. 
Note that the resulting active variable set does not con-
tain the patient’s baseline variables and the estimation of 
scores on clinical scales are solely obtained from RGS-
derived data. This also means that estimates made by this 
model for different RGS sessions of the same patient are 
considered independent measurements. In total, we use 
10 parameters (6 association parameters and 4 hyperpa-
rameters) inferred from the 191 sessions.

The hyperparameters of the model that predicts 
FM-UE are given by the following mean values and 
standard deviations: a = 32.72(0.85) , b = 34.55(0.73) , 
σ1 = 0.551(0.043) and β0 = 0.370(0.051) . Using LOOCV, 

Table 3  The association parameters β of the optimal variable 
set for estimating FM-UE scores and FM-UE change ( �FM-UE ), 
Spheroids protocol

Note that for FM-UE change the value of a variable refers to the difference 
between the two sessions. The values listed here refer to the normalised 
variables, so that the values of the different β s are directly comparable. 
Estimated standard deviations in parentheses

Covariate β(FM-UE) β(�FM-UE)

Difficulty 0.186(0.051) 0.194(0.062)

TGDM 0.049(0.087) 0.184(0.090)

Diff. Distance covered 0.027(0.044) −  0.220(0.080)

Diff. TGDM −  0.197(0.057) −  0.043(0.070)

Log. work area 0.073(0.059) −  0.108(0.064)

Log. smoothness 0.086(0.079) −  0.070(0.078)
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we obtain that for the active variable set Table 3 the accu-
racy on the training set is 0.755 while the accuracy on the 
validation set is 0.746.

Eventually, we compare the true and predicted score 
values, shown in Fig.  5. The model predicts the FM-UE 
score with an average error of EFM ∼ 12.8 , Pearson r 
true-predicted of 0.63, and a coefficient of determina-
tion R2

= 0.38 . These values are intermediate between an 
estimation based on simple rescaling of CAHAI and BI 
scores, Eqs. 1,2.

To further exemplify the features of the above 
model, we compare with the simple linear model 
S = β · Z + β0 + σu with the same covariates as in 
Table  3. The inferred values of β for normalised vari-
ables are in this case (same order as in Table 3) 2.32(0.71), 
1.86(0.81), −0.84(0.72) , −2.58(0.74) , 1.27(0.75), 
1.46(0.79) with β0 = 42.98(0.66) and σ = 12.90(0.93) . 
The linear model predicts the FM-UE scores with an 
average error of EFM ∼ 17.3 , Pearson r true-predicted of 
0.60, and a coefficient of determination R2

= 0.14 . Inter-
estingly, the range of estimated FM scores in the data-
set is now [16,  84], with 46 scores (over 191) estimated 
above 66. This result exemplifies the problem of mapping 
unbounded variables on a finite range and illustrates the 
need for a nonlinear function as in Eq. 5.

Robustness: test–retest reliability
In Fig. 6 we show the FM-UE estimations obtained by the 
model for the test and retest sets. The ICC between the 

‘test’ and ‘retest’ is 0.89, which is at the high end of the 
‘Good’ agreement measure according to the Koo and Li 
guidelines [24]. In Fig. 6 we also show the interval defined 
by the standard error of the regression E ≃ 12.7 . We 
measure an average retest error 

√

∑

i(S
test
i − Sretesti )

2
/N  

equal to 5.9. Finally, we estimate a minimally detectable 
change (MDC) [25] of 11.6 points.

These results support the internal consistency of this 
assessment method to estimate the clinical scores of the 
patients.

External validity: estimating the change in impairment
We observe that the Pearson correlation between change 
in FM-UE ( �FM-UE ) and change in CAHAI ( �CAHAI ) 
is r = 0.68 , Pearson between �FM-UE and change in BI 
( �BI ) is r = 0.67 , while the Pearson correlation between 
�CAHAI and �BI is r = 0.72.

For each sample, we consider now as variables the 
change (between the two sessions) of the original vari-
ables. By comparing it to a randomised outcome distribu-
tion, we identify a threshold of r ∼ 0.14 for the Pearson 
correlations variable-score. Several of the variables corre-
late highly with the change in all three clinical scores, cf. 
Tables 2 and  6 in the Appendix. The highest correlated 
variable is Change in TGDM ( r = 0.48 , p = 0.00024 with 
�FM-UE ; r = 0.55 , p < 0.0001 with �CAHAI ; r = 0.49 , 
p = 0.0011 with �BI ). Note that, in comparison to 
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Fig. 5  True FM-UE versus predicted FM-UE for the 191 samples of 
Table 1 (Spheroids scenario), using the covariate noise model with 
association parameters given in Table 3
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Fig. 6  Estimate of the FM-UE scores of the first session (test) vs 
estimate of the FM-UE scores of second session (retest) for unseen 
921 couples of RGS sessions. Each couple is recorded from a same 
patient within 48 hours. The estimates are obtained using the 
covariate noise model with association parameters given in Table 3
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estimating a single session’s score, the variables age and 
chronic correlate more with the outcome when predict-
ing the score change. The initial scores (the clinical scores 
at the first session) have a high correlation with change 
because of ceiling effects. In Fig. 7 we show the correlo-
gram of all the variables and clinical scales. We observe 
that generally the correlations between kinematic 

descriptors in a single session (Fig.  4) are preserved 
also when considering the change between sessions; for 
example, the highest inter-variables correlation is for 
Change in w-area and Change in max-sp at ( r = 0.87 , 
p < 0.0001).

The association parameters of the model that esti-
mates �FM-UE are shown in Table 3. The corresponding 
model hyperparameters are a = 23.3(3.3) , b = 20.9(3.2) , 
σ1 = 0.430(0.060) , and β0 = −0.68(0.12).

We compare the true and predicted �FM-UE in Fig. 8. 
The Pearson correlation between true �FM-UE and 
predicted �FM-UE is 0.76. The value of the coefficient 
of determination R2 is 0.57. These results show that the 
model has a good external validity to clinical change with 
a precision comparable to the one obtained for the cross-
sectional FM-UE score.

Sensitivity: estimating recovery
We obtain that the model correctly predicts recovery in 
36 over 38 of the cases with �FM-UE ≥ 4 , indicating a 
TPR of 95%.

Task generalisation
For the task generalisation analysis, we consider a dataset 
composed of 37 RGS sessions from 19 hemiparetic par-
ticipants that trained in a rehabilitation protocol derived 
from Whac-A-Mole [18].

Unlike the Spheroids protocol, the gameplay of Whac-A-
Mole requires movements on the full 2d plane. In response, 
we utilise the smoothing technique in both cardinal axes of 
the task. i.e. front/back and left/right directions. Pearson 
correlations between the clinical scales and the variable J (σ ) 
reveal a similar pattern to the one observed in the Spheroids 
scenario, with a peak of the Pearson coefficients at about 
1s corresponding to the variable TGDM in each direction 
(Fig. 13 in Appendix). The location of the main peak is again 
close to the typical timescale of the protocol. For the FM-UE 
score, the highest Pearson coefficient is observed in the 
frontal direction ( r = 0.54 for σ = 1.3s ); the lateral hand 
displacement peak is ( r = 0.50 at σ = 1.1s).

When predicting clinical scales, we use now only 2 
active variables in order to limit overfitting: the variables 
TGDMfb (Total-goal directed movement for front/back 
direction) and TGDMlr (Total-goal directed movement 
for left/right direction). We then infer 6 parameters (2 
association parameters + 4 hyperparameters) from the 
37 RGS sessions. The two association parameters are 
(for normalised variables) βTGDMfb = 0.15(0.13) and 
βTGDMlr = 0.18(0.14) . The hyperparameters of the model 
that predicts FM-UE for the ‘Whac-A-Mole’ scenario are 
given by a = 31.9(3.5) , b = 31.0(2.5) , σ1 = 0.49(0.11) , 
and β0 = 0.21(0.13).

Fig. 7  Correlogram of change of clinical scale and change in 
variables between couples of sessions of the same patient, Table 2. 
The scale indicates the value of the correlation coefficients, going 
from −1 (full negative correlation) to 1 (full positive correlation). Black 
bordered squares indicate significant correlations ( p < 0.05)

Fig. 8  True versus predicted �FM-UE for 54 data points of recovery 
dataset (Table 2), using the covariate noise model with association 
parameters given in Table 4
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The FM-UE estimates are shown against the true val-
ues in Fig.  9. The Pearson correlation between true 
FM-UE and predicted FM-UE is 0.63, the average error 
is E ∼ 11.2 , and the value of the coefficient of determina-
tion R2 is 0.39.

Generalisation to CAHAI and BI
Overall, the CAHAI scale has similar properties 
to FM-UE in relation to the kinematic descriptors, 
Fig.  4. To stress the generalisation potential of the 
model, we can then adopt the same model introduced 
in Table  3 for estimating the FM-UE and CAHAI 
scores. The association parameters for CAHAI are 
reported in Table  4. The most important variables 
are difficulty and TGDM. The hyperparameters of the 

covariate noise model that predicts CAHAI scores are 
a = 39.158(0.099) , b = 51.962(0.079) , σ1 = 0.953(0.064) , 
and β0 = 0.0319(0.071) . The predicted scores are plot-
ted against the true CAHAI values in Fig.  10. The 
model predicts the CAHAI score with an average error 
of ECAHAI ∼ 20.1 , Pearson r true-predicted of 0.66, and 
a coefficient of determination R2

= 0.40 . This accuracy 
is close to what we obtained for estimating the FM-UE 
score, Fig. 5.
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Fig. 9  True versus predicted FM-UE for 37 samples of the 
Whac-A-Mole dataset, using the covariate noise model with two 
active variables (TGDMfb and TGDMlr)

Table 4  The association parameters β for estimating the CAHAI 
score, Spheroids scenario

The active variables are the same as in Table 3. The values refer to the normalised 
variables so that the values of the different β s are directly comparable.

Covariate β(CAHAI)

Difficulty 0.333 (0.087)

TGDM 0.36 (0.15)

Diff. Distance covered 0.016 (0.088)

Diff. TGDM − 0.187 (0.098)

Log. work area 0.09 (0.10)

Log. smoothness − 0.04 (0.14)
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Fig. 10  True versus predicted CAHAI for 191 data points of Spheroids 
dataset (Table 1), using the covariate noise model with association 
parameters given in Table 4
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Fig. 11  True FM-UE versus true CAHAI (green dots) and predicted 
FM-UE versus predicted CAHAI (purple triangles with errorbars) for 
191 data points of Spheroids database (Table 1). We use the covariate 
noise model with association parameters given in Table 3 for FM-UE 
and Table 4 for CAHAI
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In Fig.  11 we compare FM-UE and CAHAI, both for 
the true scores and the predicted scores. We note that 
the relationship between FM and CAHAI is generally 
well preserved in the estimates; for example, the Pearson 
between FM-UE and CAHAI scores is r = 0.89 for true 
values and r = 0.88 for estimates. The fact that the vari-
ability in the true FM-UE vs true CAHAI is seemingly 
comparable to the one in the model, reinforces the idea 
that the precision we achieve is similar to the one of esti-
mating FM-UE directly from CAHAI, as we estimated 
using Eq. 1.

Finally, we observe that the model that predicts FM-UE 
and CAHAI scores does not work well for the BI. Most 
kinematics variables have a significantly smaller correla-
tion with the BI (in particular work area, TGDM, smooth-
ness) while baseline information and clinical history of 
the patient are comparatively more relevant (for example 
the patient’s age, Table 1 and Fig. 4). The active variable 
set for BI is composed of 5 variables ( β values for nor-
malised variables): age ( β = −0.21(0.15) ), sessions com-
pleted so far ( β = 0.24(0.19) ), difficulty ( β = 1.21(0.72) ), 
Log. time since stroke ( β = 0.14(0.14) ), Log. Diffi-
culty ( β = −0.91(0.70) ). Using a double noise model, 
Eq.  8, we infer the hyperparameters a = 51.56(0.10) , 
b = 49.22(0.12) , σ1 = 0.5948(0.0072) , σ2 = 0.178(0.027) , 
and β0 = 1.025(0.011) . Comparing true and predicted 
BI scores, we measure an average standard error of 
EBI ∼ 16.8 , a Pearson correlation true-prediction of 0.62, 
and a coefficient of determination R2 of 0.35. This accu-
racy is comparable to the one achieved by the models 
for FM-UE and CAHAI scores. Nevertheless, the dataset 
Table 1 is very unbalanced towards high BI scores (mean 
score 80, with only 3 samples with a score below 25), so 
may not generalise well to homogeneous unseen BI data 
(i.e., the precision for low scores may be relatively poor).

Discussion and conclusion
Our understanding of post-stroke motor recovery 
depends on our capacity to evaluate and characterise 
impairment and disability. Current standardised assess-
ment methods are mostly subjective and present relevant 
unsystematic variability due to differences in the evalua-
tors’ training, lack of systematicity in the administration 
of the assessments, and often are excessively focused on 
one single aspect of the impairment and/or disability.

Different rehabilitation approaches show a prefer-
ence for using (and even targeting) specific assessment 
methods for the evaluation of their therapeutic efficacy, 
and often these methods have been developed by the 
same team of authors. For example, the effectiveness 
of Constraint-Induced Movement Therapy [26] is usu-
ally evaluated using the Wolf Motor Function Test [27] 
and the Motor Analog Scale [28], while the effectivity of 

occupational therapy has been frequently assessed using 
the Barthel Index [29] and the Functional Independ-
ence Measure [30]. There is an urgent need to establish 
alternative methods for a common evaluation proto-
col and characterisation of the hemiparesis phenotype, 
thus allowing us to identify specific impairment features 
that could advance our understanding of the recovery 
dynamics and guide the design of effective rehabilitation 
therapies. In pursuing this objective, we have conducted 
a careful analysis of the kinematic data from the upper-
extremities of 191 individuals with post-stroke hemi-
paresis, and we have constructed a model for estimating 
impairment and recovery. Our results reveal a new digital 
biomarker of upper-limbs motor impairment, the Total 
Goal-Directed Movement (TGDM), which relates to the 
patients’ range of motion during the execution of mean-
ingful goal-oriented reaching movements. The TGDM 
strongly correlates with the level of impairment captured 
by the FM-UE and the level of disability captured by the 
CAHAI, and also carries relevant information about the 
patients’ progress, showing a high correlations with the 
magnitudes of improvement and deterioration estimated 
by both scales. The model presents high external valid-
ity of impairment estimates ( R2 : 0.38), robustness (test–
retest reliability) (ICC: 0.89), external validity of recovery 
estimates ( R2 : 0.57), sensitivity (TPR: 95%) and task gen-
eralisation ( R2 : 0.39). Despite the high heterogeneity 
of the sample and the high level of noise of the selected 
kinematic parameters, the model’s accuracy to estimate 
the FM-UE is comparable to other standardised clini-
cal scales, such as CAHAI. These results are especially 
interesting given the currently limited evidence about 
the external validity of the change of kinematic outcome 
measures of reaching performance in people with hemi-
paresis after stroke [31]. According to a recent systematic 
review on the clinimetric properties of kinematic upper 
limb assessments [13], only two papers captured exter-
nal validity of change (i.e., ability to capture longitudinal 
changes in the measured construct), and just nine param-
eters showed enough evidence to estimate recovery (i.e., 
number of velocity peaks, trunk displacement, task/
movement time). The quality of evidence however was 
very low for all metrics. Further, our results outperform 
previous methods to estimate the level of impairment 
[15, 16] in two fundamental aspects: (1) it shows robust-
ness to compensation and is resistant to using explicit 
strategies to boost performance, and (2) it exclusively 
relies on metrics collected under unsupervised rehabilita-
tion sessions. Although current recommendations point 
out that wearables with integrated Inertial Measurement 
Units and vision-based tracking systems are insufficient 
to measure the quality of movement and improvement in 
motor function, our findings, together with the growing 
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evidence supporting distance travelled as an accurate and 
responsive digital biomarker of recovery [32], suggest the 
opposite and advocate for further studies to clarify the 

limitations of these estimations, in particular regarding 
the responsiveness.

Although these results support that our method is able 
to capture improved sensorimotor control during game-
play (i.e., motor synergies), we cannot discard the con-
tribution of task-related learning processes to the overall 
change measured. In addition, it is important to notice 
that the RGS setup did not provide antigravity support, 
thus the different capabilities of the participants to elevate 
the elbow and wrist may explain part of the unsystematic 
variability we observe in the model’s performance.

The relevance of our results is emphasised by their 
consistency across clinimetric properties and by their 
generalisation potential, relying on a large and heteroge-
neous dataset of patients at different stages post-stroke. 
Notice however that its generalisation potential has been 
evaluated in similar setups using vision-based systems 
(camera- or depth-sensor-based) tracking the joints of 
the upper limbs during the performance of planar reach-
ing arm movements. We believe that the applicability of 
the TGDM and its derived models to evaluate impair-
ment and motor recovery is promising for a number of 
reasons: (1) it can be derived from unimanual displace-
ments executed in the horizontal plane, (2) it does gener-
alise to other tasks involving two-dimensional horizontal 
reaching movements towards targets, and (3) it can be 

Table 5  Characteristics of the secondary variables for the 191 samples composing the main dataset (obtained from first-order 
variables, Table 1)

The r columns refer to the Pearson correlation coefficients with the FM-UE, CAHAI, and BI clinical scales, respectively. Correlations below the threshold r ∼ 0.081 
(Fig. 12 in Appendix) are in parenthesis. From the time since stroke, we obtain the categories Acute (5–90 days), Sub-acute (3–12 months), and Chronic (over 1 year). 
The variables obtained directly from the RGS system log files are in Italic type. The Diff. variables are obtained as the difference between the value observed for the less 
affected arm and the value for the more affected one. The Log. variables are obtained as the natural logarithm of the corresponding first-order variables

Variables Range [min, max] Mean SD r(FM-UE) r(CAHAI) r(BI)

15. Chronic Yes/no 57/134 – −  0.25 −  0.17 0.14

   <Subacute> Yes/no 74/117 – – – –

16. Acute Yes/no 60/131 – 0.32 0.18 −  0.15

17. Diff. work area ( m2) [−  1.3, 1.6] 0.25 0.50 −  0.31 −  0.29 (−  0.069)

18. Diff. distance covered (m) [−  160, 120] 11 34 −  0.32 −  0.26 −  0.12

19. Diff. performance (% success) [−  0.22, 0.53] 0.087 0.13 −  0.26 − 0.22 −  0.16

20. Diff. maximum reaching speed (m/s) [−  61, 98] 8.1 23 −  0.22 −  0.22 −  0.15

21. Diff. difficulty level reached [−  0.47,0.63] 0.11 0.19 −  0.22 −  0.15 (−  0.058)

22. Diff. smoothness (mm) [−  2.6, 4.4] 0.34 0.75 −  0.29 −  0.28 −  0.20

23. Diff. TGDM (m) [−  0.035, 0.084] 0.015 0.021 −  0.52 −  0.47 −  0.24

24. Log. time since stroke (days) [1.6, 8.0] 4.8 1.7 −  0.24 (−  0.076) 0.36

25. Log. sessions completed so far [0.0, 3.9] 1.8 0.9 0.29 0.38 0.42

26. Log. work area [−  4.3, 0.62] −  1.3 0.9 0.40 0.38 0.19

27. Log. distance covered [0.92, 5.5] 3.8 0.7 0.26 0.32 0.34

28. Log. maximum reaching speed [1.0, 4.5] 2.6 0.73 0.26 0.20 (0.045)

29. Log. difficulty level reached [−  0.16, 0.60] 0.25 0.14 0.44 0.50 0.45

30. Log. smoothness [− 1.7, 1.4] 0.012 0.48 0.48 0.46 0.33

31. Log. TGDM [−  4.7, −  2.1] −  2.9 0.48 0.52 0.56 0.43

Fig. 12  Distribution of Pearson correlation coefficients measured 
between the FM-UE scores and all the variables in Tables 1 and 5. The 
light blue line is the distribution obtained for random outcomes
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estimated during unsupervised motor training. Our 
results provide an example of how digital biomarkers of 
motor deficits derived from behavioural data could guide 
the design of automated assessment platforms for a con-
tinuous and remote monitoring of impairment.

Appendix
In Table  5 we report the descriptive statistics of the 
secondary variables (functions of primary variables in 
Table 1) for dataset Spheroids.

The distribution of the Pearson correlation coefficients 
of the FM-UE score with all the variables in Tables  1 
and 5 is shown in Fig. 12. This is compared with the dis-
tribution obtained with the randomised outcome, whose 
standard deviation is r ≃ 0.081.

In Table  6 we report the descriptive statistics of the 
secondary variables (functions of primary variables in 
Table  2) for the recovery dataset (change of variables 
and clinical scales between two RGS sessions of the same 
patient with a delay of at least 16 days).

In Fig. 13 we show the Pearson’s r between J (σ ) Eq. 4 
and the clinical scales as a function of the timescale σ 
for the database Whac-A-Mole, Sec. Task Generalisa-
tion. This is a dataset composed of 37 RGS sessions 

with a limited range of the clinical scales: FM-UE range 
of observations [5, 60], mean 37, SD 14; CAHAI range 
of observations [7,  49], mean 32, SD 15; BI range of 
observations [48,  100], mean 85, SD 13. The Whac-
A-Mole scenario requires movements in all 2D place 
(unlike Spheroids scenario, Table  1), so we define two 
independent J (σ ) : one associated with the front/back 
trajectory and one associated with the lateral (left/
right) trajectory. In Fig. 13 we show that in both direc-
tions there is a peak in the Pearson’s r at about σ = 1 
s for all three clinical scales. In correspondence with 
these two peaks, we define two variables: TGDMfb 
(Total-goal directed movement in front/back direction) 
and TGDMlr (Total-goal directed movement in the 
left-right direction). We stress that the timescale of the 
peak is roughly equivalent to the timescale of the game-
play of the Whac-A-Mole scenario. Finally, we note that 
for the same analysis done in the Spheroids scenario we 
observe two clear peaks in the lateral direction (Fig. 3). 
In Whac-A-Mole instead, the high-frequency peak is 
not clearly visible. One factor that may affect this dif-
ference is that the gameplay of Whac-A-Mole is faster 
than Spheroids (roughly 1 s instead of 10 s) so that the 
separation between the two potential peaks is smaller. 
Other factors that may influence the absence of the 
second peak are the fact that the gameplay is 2D (so 

Table 6  Characteristics of the secondary variables for the 54 samples composing the recovery dataset (obtained from first-order 
variables, Table 2)

We select couple of sessions of the same patient with a delay of at least 16 days from the main dataset, Table 1. The r columns refer to the Pearson correlation 
coefficients with the FM-UE, CAHAI, and BI clinical scales, respectively. Correlations below the threshold r ∼ 0.14 are in parenthesis. The variables obtained directly 
from RGS system log files are in Italic type. The Diff. variables are obtained as the difference between the value observed for the less affected arm and the value for the 
more affected one. The Log. variables are obtained as the natural logarithm of the corresponding first-order variables

Variables Range [min,max] Mean SD r(�FM-UE) r(�CAHAI) r(�BI)

15. Chronic Yes/no 10/44 – −  0.30 −  0.44 −  0.38

   <Subacute> Yes/no 10/44 – – – –

16. Acute yes/no 34/20 – 0.19 0.44 0.53

17. Change in diff. work area (m) [−  1.5, 1.8] −  0.13 0.67 −  0.30 (−  0.060) −  0.24

18. Change in diff. distance covered (m) [−  94, 150] 3.1 40 −  0.45 0.23 −  0.30

19. Change in diff. performance (% success) [− 0.22, 0.53] 0.087 0.13 0.18 (0.10) 0.17

20. Change in diff. maximum reaching speed (m/s) [− 76, 71] −  5.1 30 −  0.28 −  0.16 − 0.32

21. Change in diff. difficulty [−  0.46, 0.62] 0.0095 0.21 (0.064) (0.12) 0.14

22. Change in diff. smoothness (mm) [−  2.7, 1.4] −  0.17 0.85 −  0.41 −  0.26 −  0.47

23. Change in diff. TGDM (m) [−  0.12, 0.088] −  0.0050 0.040 − 0.51 −  0.43 −  0.56

24. Log. time since stroke (at first) [0.41, 1.2] 0.73 0.16 −  0.36 −  0.37 −  0.40

25. Log. sessions completed so far (at first) [0, 1.2] 0.52 0.39 −  0.55 −  0.36 −  0.55

26. Change in Log. work area [−  6.4, 1.5] −  0.79 1.6 (0.062) (0.057) (0.11)

27. Change in Log. distance covered [−  0.90, 5.6] 3.0 2.0 0.18 0.16 0.17

28. Change in Log. maximum reaching speed [−  1.8, 5.6] 1.4 2.3 0.15 0.30 0.17

29. Change in Log. difficulty [−  3.8, 0] −  1.4 0.90 (0.064) (0.13) (0.024)

30. Change in Log. smoothness [−  2.0, 3.0] 0.63 1.1 0.31 0.32 0.37

31. Change in Log. TGDM [−  10, 0.5] −  1.4 1.8 (0.035) 0.17 (0.037)
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that the speed in one direction is less informative) or 
the inadequate time-resolution of the camera (different 
from the one used for Spheroids).
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