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Over the last 15 years, basic thresholding techniques in combination with standard statistical correlation-based
data analysis tools have beenwidely used to investigate different aspects of evolution of acute or subacute to late
stage ischemic stroke in both human and animal data. Yet, a wave of biology-dependent and imaging-dependent
issues is still untackled pointing towards the key question: “how does an ischemic stroke evolve?” Paving the
way for potential answers to this question, bothmagnetic resonance (MRI) and CT (computed tomography) im-
ages have been used to visualize the lesion extent, either with or without spatial distinction between dead and
salvageable tissue. Combining diffusion and perfusion imaging modalities may provide the possibility of
predicting further tissue recovery or eventual necrosis. Going beyond these basic thresholding techniques, in
this critical appraisal, we explore different semi-automatic or fully automatic 2D/3D medical image analysis
methods and mathematical models applied to human, animal (rats/rodents) and/or synthetic ischemic stroke
to tackle one of the following three problems: (1) segmentation of infarcted and/or salvageable (also called pen-
umbral) tissue, (2) prediction of final ischemic tissue fate (death or recovery) and (3) dynamic simulation of the
lesion core and/or penumbra evolution. To highlight the key features in the reviewed segmentation and predic-
tion methods, we propose a common categorization pattern. We also emphasize some key aspects of the
methods such as the imaging modalities required to build and test the presented approach, the number of
patients/animals or synthetic samples, the use of external user interaction and themethods of assessment (clinical
or imaging-based). Furthermore, we investigate how any key difficulties, posed by the evolution of stroke such as
swelling or reperfusion, were detected (or not) by eachmethod. In the absence of any imaging-based macroscopic
dynamic model applied to ischemic stroke, we have insights into relevant microscopic dynamic models simulating
the evolution of brain ischemia in the hope to further promising and challenging 4D imaging-based dynamic
models. By depicting the major pitfalls and the advanced aspects of the different reviewed methods, we present
an overall critique of their performances and concluded our discussion by suggesting some recommendations for
future research work focusing on one or more of the three addressed problems.

© 2012 The Authors. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Stroke is the third leading cause of death in industrialized countries
(Bonita, 1992) and a major cause of death worldwide (Sudlow and
Warlow, 1997). The commonest type of stroke is an ischemic stroke,
resulting from disruption of blood flow within the brain caused by oc-
clusion of an artery. This deprives the brain of oxygen and nutrients
and initiates a dynamic sequence of pathophysiological events. Where
the blood flow interruption is too severe or for too long, cell death by
necrosis or apoptosis occurs and an irreversibly injured infarct core is
formed. If the blood supply is less badly disrupted, or the disruption
only lasts for a short period of time, then the brain tissue may not be
permanently damaged but may survive for a variable period of time in
a shut down but viable state that can recover if blood flow is restored
quickly enough. This potentially reversibly damaged brain tissue usual-
ly surrounds the ischemic lesion core and is referred to as the “ischemic
penumbra” (Symon, 1980) (Fig. 1). The neurons in the penumbral tis-
sue are functionally shut down, resulting in loss of neuronal function
in all the tissue where blood flow has fallen below the critical level re-
quired to sustain neuronal function (hypoperfusion). If the blood flow
is not restored then the penumbral tissue will proceed to infarction
and the original core lesion will grow to occupy a larger part of the
brain with possibly much greater functional disability than if less tissue
had been permanently damaged. Since the 1970s, salvage of this pen-
umbral tissue has been the main target of stroke therapy (Astrup et
al., 1977, 1981; Wardlaw, 2010).

Identifying effective stroke treatments remains a difficult chal-
lenge since it is assumed that the penumbral tissue is only salvage-
able within the first few hours after onset of ischemia (Wardlaw,
2010). Therefore, the main therapeutic decisions are to quickly recan-
alize the main blocked artery to prevent the infarct expansion. Imag-
ing methods could play a key role in defining the extent of tissue at
risk of infarction if it were possible to define perfusion levels or
changes in tissue imaging signatures that indicated viable or
non-viable tissue reliably. Indeed, imaging using positron emission
tomography (PET) was the first method in humans to demonstrate
the existence of penumbral tissue by identifying areas where there
was low blood flow but persisting increased oxygen extraction from
the blood and ongoing glucose metabolism. In contrast, areas that
had progressed beyond the point of no viability showed low flow
and no glucose metabolism or oxygen extraction from the blood.

PET is not widely available and is not a practical technique for use
in acute stroke. More practical and available methods include com-
puted tomography (CT) or magnetic resonance (MR) with perfusion
imaging. These offer considerable opportunities through image pro-
cessing and analysis methods to quantify the tissue diffusion and
perfusion changes precisely and define viable and non-viable tissues.
As a result medical image analysis approaches and statistical tools
have been explored during the last 15 years to identify different tis-
sue states. Differentiating and spatially localizing dead and salvage-
able tissue, predicting the final ischemic tissue outcome, and
understanding factors that influence the dynamic evolution of infarct
core and the penumbra such as lesion swelling, collateral flow path-
ways and spontaneous reperfusion, are the center of our focus in
this review paper.

So far, approaches to these questions have relied on basic
thresholding techniques and commonly used standard statistical
correlation-based data analysis tools mostly applied to 2D images,
such as in Astrup et al. (1981), Na et al. (2004), Olivot et al. (2009)
and Shih et al. (2003). These have been used to depict or predict
stroke evolution but have resulted in the identification of multiple
different thresholds with overlap in values from different studies for
lesion core and penumbra (Dani et al., 2012). This was compounded
by differences in definitions of non viable and penumbral tissues
(18 different definitions of penumbra and 11 of lesion core in studies
using CT or MR perfusion imaging (Dani et al., 2012)). Furthermore, it
was only fairly recently that the importance of geographical
co-location of perfusion and structural images in mapping the evolu-
tion of viable–non-viable tissue was recognized (Nagakane et al.,
2011). Prior to that, most analyses simply used numeric volume
measures.

Medical image analysis has advanced substantially in recent years
and we looked beyond the techniques used so far in stroke by identi-
fying studies, such as dynamic evolution models that might be able to
handle the more complex problems encountered in typical ischemic
stroke image (Duncan and Ayache, 2000). Coalescing spatial and
temporal information into models characterizing changes in cancer-
ous lesions suggested that these new approaches might help under-
stand the factors influencing spatiotemporal evolution of other
brain diseases like strokes (Duncan and Ayache, 2000). It was these
developments that initiated our search for studies exploring more so-
phisticated image analysis of acute/subacute ischemic stroke. Nota-
bly, in the past decade, clinicians primarily used 2D visual and
manual assessment of MR/CT images to guide their decisions for pa-
tient treatment. However, much more powerful methods that made
efficient use of medical image analysis methods and robust computa-
tional mathematical frameworks may be available. Failure to use
these may delay in advances in stroke.

In this paper, we surveyed the current literature to identifymethods
to overcome three key barriers to advancing our understanding of is-
chemic stroke lesion evolution and hence therapy planning at acute
and subacute stages: (i) The differentiation of potentially salvageable



Fig. 1. (a) Ischemic penumbra and infarct core at acute time. Red shaded region represents the ischemic penumbra identified using an MTT perfusion map while the blue one rep-
resents the infarct core manually delineated on the DWI image. A large area of perfusion/diffusion mismatch is clearly distinguishable. (b) Swelling at acute time of stroke onset
observed in a DWI image. A massive swollen infarct occupies most of the MCA territory distorting the right ventricle. (c) An example of the influence of partial reperfusion in pen-
umbra and core evolution patterns. The acute DWI (left) and the acute perfusion TTP map (right) demonstrates the “reverse” mismatch revealing a partial reperfusion where the
TTP appears normal in the anterior portion of the MCA territory. (d) Scattered lesion at acute timepoint (3 h). The manually delineated lesion in 3 different axial slices in a DWI
image is composed of two topologically separate components. (e) Scattered lesion at a subacute timepoint (6 days). For the same patient showed in (d), the evolution of the spatial
boundaries of the manually delineated scattered lesion is shown at a subacute timepoint. (f) Perfusion/diffusion mismatch and the influence of perfusion parameters on the bound-
ary of the visible mismatch. The red contour represents the DWI lesion depicted at an acute timepoint superimposed with both MTT (in blue) and CBF (in green) lesions manually
delineated at an acute timepoint.
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and permanently damaged brain from normal tissue using automatic/
semi-automatic segmentation algorithms. (ii) The prediction of the is-
chemic tissue fate (progression to infarction or salvage). (iii) Finally to
simulate the dynamic evolution of the ischemic region. Hence, we
looked for papers that developed new or adapted existing medical
image analysis methods to quantify changes in the acute/subacute
(3 h to 6 days) ischemic stroke lesion using MR or CT clinical human/
animal data and/or synthetic data.

We aimed to:

1) highlight the commonbiologically-dependent or imaging-dependent
problems that have to be overcome for any image processing algo-
rithm to successfully quantify or model data acquired in the stroke
subjects; such as swelling and spontaneous reperfusion;

2) document the state-of-the art of the medical image analysis ap-
proaches applied to acute/subacute ischemic stroke tackling seg-
mentation, prediction, or dynamic evolution modeling;

3) evaluate the overall performance of any identified methods in-
cluding a critique of potential limitations and how any key prob-
lematic issues have been addressed;

4) identify any promising method that has not yet been applied to
differentiate tissue state or model lesion evolution in acute stroke.
The remainder of this paper is structured as follows. In Section 2, we
will briefly describe commonly used imaging modalities (MR or CT) to
diagnose stroke, highlighting the major challenges specific to stroke
that image processing algorithms need to incorporate. In Section 3, we
describe our literature searching and assessment methods. Section 4
presents the overall results of our search and highlights the essential
features of the medical image analysis methods and dynamic evolution
models identified in more detail. Finally, we present a critical overall
analysis, discussing the major limitations of current methods and re-
vealing new avenues for exploration.

2. Material and methods

2.1. Medical imaging in ischemic stroke

2.1.1. MR and CT imaging as commonly used imaging techniques in
stroke: key facts

During the acute phase of ischemic stroke, MR and CT images are
commonly used for stroke diagnosis and clinical-decision making.
Change in the water content of ischemic tissue occurs rapidly and
can be detected as increased signal (restricted diffusivity) on MR dif-
fusion imaging or as reduced attenuation on CT scanning (Moseley et

image of Fig.�1
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al., 1990). These are conventionally used, despite limitations that
have been discussed extensively before, to indicate permanently
damaged tissue. They are not perfect but are the best we have at pres-
ent. Changes in blood flow can be detected as changes in signal or at-
tenuation as a bolus of intravenously injected contrast agent passes
through the brain (perfusion weighted imaging, PWI) (Wardlaw,
2010). To determine the final infarct extent, many studies use con-
ventional T1-weighted or T2-weighted MR images at 1 or 3 months
post-stroke as a reference standard for the final infarcted tissue.
While exploring this variety of MR based diffusion, perfusion and
structural imaging tools, it is worth noting that assessing the dynamic
visible ischemic tissue changes during the acute/subacute stages re-
quires at least two parameters, with contrast based upon either the
diffusion or perfusion physiological phenomenon (Jacobs et al.,
2001a; Soltanian-Zadeh et al., 2003; Yuh et al., 1991). Extracting
relevant information from these images obtained over the acute/
subacute time window, from a medical image analysis perspective,
is challenging due primarily to the following imaging-dependent
and biology-dependent factors that affect image processing of stroke
lesions.

2.1.2. Imaging-dependent issues

2.1.2.1. Frequency and detail of image acquisition. Stroke patients are
often very unwell at first presentation. Time is brain, so acute treat-
ments must be initiated as quickly as possible: the imaging must be
rapid and not unduly affect patient care or delay treatment. It is not
easy to obtain high quality volumetric MR imaging data from some
stroke patients, as they are restless, and may not comply even with
a 10 minute examination. Hence image acquisition parameters tend
to emphasize speed, with as few sequences and slices as possible.
Also, it is not possible to perform serial imaging at short time intervals
(e.g. every few hours) as this would interfere so much with acute care
and would be unethical. Even scanning on alternate days in the first
week may be difficult. The net effect is that stroke imaging tends to
use sequences that are not optimal for complex image processing in
either the spatial or the temporal domains. Although this is listed
under imaging-dependent issues, it is actually a simple consequence
of the stroke itself, the restraints imposed by treatment delivery, the
fact that scanning itself may not be good for the patient, and the char-
acteristics of the older population that stroke tends to affect.

2.1.2.2. Perfusion/diffusion mismatch and the definition of the core and
penumbra. At acute/subacute stages, the ability of both DWI (diffusion
weighted imaging) and PWI to detect early temporal dynamic tissue
changes in either animal or human stroke (Moseley et al., 1990; Le
Bihan et al., 1986; Sorensen et al., 1996; Warach et al., 1992) led to
the concept of “perfusion–diffusion mismatch” –hypothetically–
reflecting salvageable tissue. Several studies (Arenillas et al., 2002;
Barber et al., 1998; Coutts et al., 2003; Oppenheim et al., 2001;
Rivers et al., 2007; Tong et al., 1998) explored the prognostic poten-
tial of the DWI–PWI mismatch, although questions surrounding its
validation remained (Wardlaw, 2010; Kane et al., 2007; Ma et al.,
2011). The spatial boundaries of the mismatch and its measurement
strictly depend on how the penumbra and the core are defined. How-
ever, the assumption that the diffusion lesion represents the core
whereas abnormalities visible in certain perfusion weighted images
include both the core and the penumbra is still applied in many stud-
ies (Ford et al., 2012; James et al., 2006; Petrella and Provenzale,
2000). Nevertheless, there is still an ambiguity surrounding the
definition of the penumbra using thresholds (Ford et al., 2012). In
Fig. 1, we can clearly see how the choice of the perfusion parameters
(e.g.: mean transit time (MTT) or cerebral blood flow (CBF)) might
alter considerably the spatial boundaries of the detected mismatch.
It is also possible to have “reverse mismatch” (Coutts et al., 2003)
where the volume of the DW lesion exceeds that of the PWI lesion.
This was explained by patients being scanned after spontaneous re-
perfusion (Coutts et al., 2003; James et al., 2006). Similar variation
is found on CT perfusion imaging. It is still unclear which PWI param-
eter best defines the true limit of salvageable tissue; and will need to
be clarified before the mismatch concept can be used reliably.

2.1.2.3. Invisibility at acute stage. Acute ischemic change on CT is subtle
and often does not show infarct until 12–24 h after stroke onset
(James et al., 2006). Reading an acute CT scan may not be difficult
however it is not self-evident as pointed out by Józwiak and Ostrek
(2011). Even DWI may not show the acute lesion in all cases
(Wardlaw et al., 2007). Expert interpretation is required to identify
some acute lesions on CT, but may not be able to accurately define
the lesion boundaries.

2.1.2.4. Slice thickness. Most PW and DW images use slice thickness of
between 4 mm and 14 mm (Gupta et al., 2008), and often with a gap
between slices. Most plain CT is acquired as a thin section (1–2 mm)
contiguous volume image, however the signal to noise ratio in such
images is too low for diagnostic use in stroke with 3–6 mm recon-
structions being more commonly used in stroke diagnosis. Many of
the more sophisticated image processing algorithms require volumet-
ric scans with thin contiguous slices otherwise the out of plain image
resolution can increase partial volume effects and be misleading
when interpreting the image-processing-driven results especially in
3D and 4D models.

2.1.2.5. Choice of perfusion–diffusion parameters. To interpret perfusion
data, different parameter maps are estimated. These include, imaged
cerebral blood flow (CBF), mean transit time (MTT), time-to-peak
(TTP) map and cerebral blood volume (CBV) map (Kane et al.,
2007). Each of these produces a different-sized lesion from the
same data, with the processing algorithm also influencing the lesion
size, even when the same parameter is estimated. Identifying which
perfusion parameter should be used remains a key question
(Grandin et al., 2002). Similarly, raw diffusion weighted acquisitions
can be post-processed in different ways to provide traditional diffu-
sion weighted images, apparent diffusion coefficient (ADC) maps
(Na et al., 2004; Moseley et al., 1990), fractional anisotropy (FA) or
the diffusion tensors (DT) (Agam et al., 2007).

2.1.2.6. T2-shine through and fogging. The “fogging” effect refers to the
tendency of tissue in the initially hyperintense DWI lesion to appear
normal between 7 and 14 days (Choi et al., 2011; O'Brien et al.,
2004). This makes some lesions almost completely disappear be-
tween 7 and 21 days so that the assessment of the final infarct in
this time window will underestimate final tissue damage. As fogging
is probably associated with reperfusion, this will distort any associa-
tion between reperfusion treatment and lesion size. T2-shine through
may also distort lesion size at subacute stages (Burdette et al., 1999).

2.1.3. Biology-dependent issues

2.1.3.1. Lesion swelling and shrinking. Lesion swelling is commonly ob-
served soon after ischemic stroke, peaking at 3–5 days. Over time, the
stroke lesion shrinks as the swelling reduces and tissue damaged by
the injury is lost, replaced by cerebrospinal fluid (CSF) leaving an
area of cerebromalacea with ex vacuo effect on adjacent structures.
From an imaging-based perspective, the swelling can be observed as
a “mass effect” where the infarct distorts the adjacent tissues (brain
anatomical deformation) e.g. by compressing the ventricles and
other CSF spaces (sulcal effacement) or causing midline shift
(Fig. 1). Swelling increases the volume of the ischemic tissue even
though the anatomical extent remains unchanged. The later ex
vacuo effect can result in an underestimation of the actual extent of
the final injury (Wardlaw, 2010).
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2.1.3.2. Spontaneous reperfusion. Spontaneous reperfusion occurs in
about 20% of patients by 24 h and 80% by 5 days and alters tissue out-
come (Bang et al., 2008; Rha and Saver, 2007; Zanette et al., 1989).
This would alter the dynamic evolution pattern of the ischemic tissue
core and the penumbra as shown in Figs. 1 and 2. The lesion fate is
also influenced by collateral blood supplywhich varies considerably be-
tween individuals, making the prediction of stroke evolution and tissue
fate more complex (Fig. 1). In fact, if the collateral arteries are poor
within a specific blood territory, a proximal occlusion of the artery sup-
plying this territory will produce a larger ischemic core and penumbra
than a similar occlusion in a patient with good collateral arteries.

2.1.3.3. No re-flow phenomenon. No re-flow phenomenon occurs when
recanalization of the blocked artery fails to reperfuse the tissue capil-
laries and is likely to be associated with a worse tissue outcome than
if blood flow was fully restored (Ames et al., 1968; Majno et al., 1967;
Soares et al., 2009; Wardlaw, 2010). This may occur in up to 50% of
patients with large middle cerebral artery (MCA) infarcts (Rivers et
al., 2006). Its causes and risk factors remain “unknown” though a pu-
tative explanation would be the narrowing of the vessels by the swol-
len perivascular tissue preventing ischemic tissue reperfusion even if
the proximal artery reopens.

2.1.3.4. Scattered lesions. Stroke lesions are rarely seen as single large le-
sions on acute DWI or final T2 images, but are more often multifocal
scattered lesions with more than one topologically connected compo-
nent (Fig. 1), even though these components may all lie in the same ar-
terial territory. Different biological scenarios have been supposed to
explain this phenomenon: one being that a clot has blocked a proximal
artery but because there is good collateral supply from adjacent arterial
territories, some of the blocked artery territory has not infarcted while
some has; another is that a shower of emboli went into one artery
and affected different smaller branches within the same territory.
Other possibilities are that one single clot entered a proximal artery
Fig. 2. Overall view of the search strateg
and stuck for a short time but then the clot broke up and fragments
went into distal branches, or that this appearance is possibly due to
imaging not showing the true extent of the tissue at any one acute/
sub-acute timepoint. It is likely that although similar in appearance
on imaging, this phenomenon has different explanations in different
patients. No previous studies of mismatch, that we have found, have
mentioned this before (Arenillas et al., 2002; Barber et al., 1998;
Coutts et al., 2003; Oppenheim et al., 2001; Rivers et al., 2007; Tong
et al., 1998; Petrella and Provenzale, 2000), but the practical implica-
tion in image processing terms is that most algorithms were designed
to cope with one lesion only, not with multiple fragments.

2.2. Literature search and methods

2.2.1. Literature search
We searched the literature using Medline and GoogleScholar from

the 1st of January 1986 to the 1st of June 2012 for publications using
human, animal and synthetic stroke data in the following areas
(Fig. 2):

– Segmentation of acute/sub-acute ischemic penumbra and/or core;
– Prediction of ischemic tissue fate outcome;
– Dynamic acute ischemic lesion evolution modeling and simulation

methods.

We used the following key headings, separately or in combination,
to identify relevant papers in these three main research areas: “ische-
mic stroke”, “middle cerebral artery”, “prediction”, “segmentation”,
“tissue identification”, “lesion detection”, “dynamic model”, “dynamic
evolution”, “penumbra”, “infarct”, “magnetic resonance imaging (vs.
MRI)”, “rats/rodents”, “computed tomography (vs. CT)”, and “perfu-
sion and diffusion”. To expand the search and check for all relevant
papers, two additional research layers were performed through
reviewing the sub-references of each initially identified paper and
then also scanning the references of the sub-references.
y and paper categorization method.

image of Fig.�2
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2.2.2. Exclusion–inclusion criteria
We excluded studies that only used standard thresholding tech-

niques and/or basic statistical-correlation tools in their analysis of
acute/subacute ischemic stroke lesions. We also excluded any studies
that definitely only considered chronic lesions. Identified studies that
proposed dynamic models simulating the effect of collateral phenom-
ena contributing to the stroke evolution process and not directly ad-
dressing the global dynamic evolution of ischemic stroke were also
excluded (e.g.: studying the effect of inflammation in ischemic stroke
(Lelekov-Boissard et al., 2009)).

We included all research papers using or defining a new image
analysis approach or dynamic evolution simulation models that
were applied to ischemic acute/sub-acute stroke using human, ani-
mal, phantoms or simulated data. We used an inclusive approach so
as not to overlook any promising new methods and therefore also in-
cluded papers with little or no detailed information about the test
data such as the acquisition stage (acute, sub-acute, chronic as long
as it was not solely chronic) or the number of the recruited patients
or simulated data.

2.2.3. Included studies categorization and key features
To help us assess the practicality and reliability of any identified

promising methods, we highlighted whether the applied method:

i. required user interaction,
ii. required a training dataset (supervised approach),
iii. required single or multiple acquisition timepoints,
iv. addressed the problem of swelling,
v. addressed reperfusion phenomenon,
vi. (in segmentation) segmented the ischemic area with or with-

out a distinction between the penumbra and the core,
vii. (in prediction and dynamic simulation) was assessed using

imaging-based outcome, clinical-based outcome or both.

Furthermore, both segmentation and prediction methods can be
approached as a classification/clustering problem so we applied a
common categorization pattern to the identified ischemic lesion
penumbra/core segmentation and ischemic tissue final outcome pre-
diction methods composed from the following categories as intro-
duced by Dawant and Zijdenbos (2000) and Pham et al. (2000) and
shown in (Fig. 2):

– image-based;
– pixel-based classification;
– atlas-guided-approaches;
– deformable models.

In every included paper, we determined whether the applied
method used solely or in combination human, animal and/or synthet-
ic data and the number of the recruited patients, animals or simula-
tions. We also extracted the MR and CT imaging modalities used to
build and evaluate the described model.

3. Results

3.1. Paper identification

The initial search identified 159 papers, however, eventually only
included 47 papers met the inclusion criteria. These were published
between 1998 and 2012. We categorized them into 3 main research
fields: segmentation (n=25, Table 1), prediction (n=14, Table 2)
and dynamic evolution modeling (n=8, Table 3). Tables 1, 2 and 3
summarize the data extracted from each paper. In both segmentation
and prediction methods we found: image-based (n=9) and pixel-
based classification (n=14), atlas-guided approaches (n=1) and de-
formable models (n=2).

The papers that evaluated the segmentation, prediction and dy-
namic simulation approaches at the acute/subacute stages of stroke
used human (30 papers, 563 subjects) and/or animal (10 papers,
158 rats/rodents) data and/or synthetic data (11 papers, 11 simula-
tions). Among the 11 identified papers using synthetic data, only
two mentioned the number of performed simulations (Dastidar et
al., 2000; Martel et al., 1999). The number of patients ranged from 1
to 63 (median 15) for segmentation and 8 to 74 (median 19) for pre-
diction. For evaluations using animal data the sample size ranged
from 9 to 51 (median 20) for segmentation and 6 to 36 (median 7)
for prediction.

We found 8 phenomenological (i.e. inspired from biological phe-
nomena) microscopic dynamic models simulating a biology-based
evolution of ischemic stroke (Chapuisat et al., 2008, 2010; Dronne
et al., 2004, 2006; Dumont et al., 2010; Duval et al., 2002; Grenier et
al., 2010; Anon., 2011) (Table 3). We found no papers that addressed
imaging-based macroscopic dynamic models simulating a 4D evolu-
tion of acute ischemic stroke using MR or CT data and/or synthetic
images. However, we were very keen to include the identified micro-
scopic approaches since they provide clues about what drives the
evolution of stroke lesion that can potentially initiate medical image
analysis in macroscopic acute ischemic stroke MR/CT imaging-based
dynamic modeling. Furthermore, tapping into the potentials of in
silico research in medicine relying on accurate and realistic mathe-
matical and computational models would help overcome the need
for expensive clinical trials.

3.2. Segmentation methods

We have identified 25 papers addressing the problem of acute/
subacute ischemic stroke segmentation: 21 (84%) of these methods
were evaluated using patient data and 5 (20%) used animal data
(rats or rodents). Synthetic data were also used in 6 (24%) of the
reviewed papers. Eighteen (72%) of the segmentation methods were
applied to MR structural and/or perfusion/diffusion data and 7
(28%) used CT datasets. One paper (Weinman et al., 2003) did not
provide sufficient information about which MR images were used.
Only three papers (James et al., 2006; Contin et al., 2010; Jacobs et
al., 2000) tackled the problem of segmentation of the penumbra and
the infarct core in a distinct way, whereas the remaining papers
aimed at segmenting the whole ischemic area or only the infarct core.

3.2.1. Image-based segmentation (36%)
Image-based techniques include thresholding-derived, region-based

and edge-based methods (Pham et al., 2000). Two papers (Dastidar et
al., 2000; Matesin et al., 2001) used a region-growing approach. Region
growing techniques aim to extract a connected region based on intensity
information and/or edges, requiring a user to manually select a seed
point within the target region. In Dastidar et al. (2000), a previously de-
veloped segmentation approach relying on a region-growing technique
in Heinonen et al. (1998)was used to evaluate the volumetric measure-
ment of brain infarctions in structural T1W and T2W MRI. For the
segmentation of stroke lesions in CT scans, Matesin et al. (2001) pro-
posed an automatic segmentation method also based on a seeded
region-growing and using a rule-based expert system yielding a fast la-
beling of the background, skull, gray, white matter, cerebrospinal fluid,
and stroke lesions. Usinskas et al. (2002) and Meilunas et al. (2003)
presented unsupervised learning methods based onmean and standard
deviation computations to segment ischemic stroke regions in CT im-
ages. This approach was extended in Usinskas et al. (2004) by adding
more intensity-based analysis tools such as histograms and gray-level
co-occurrence matrices.

All of the segmentation methods mentioned above focus on
segmenting either the ischemic region or the infarct without
highlighting the distinction between the penumbra and the core.
This problem was raised by Contin et al. (2010) where a new
semi-automatic method based on computation of regional mean
and standard deviation and local statistics was developed to identify



Table 1
Overview of the segmentation methods presented in 25 papers. In the “data” column, two acronyms are used: C(n,h/a): clinical data, n: number of patients, h: human data, and a:
animal data. S(n,h/a): synthetic data, n: number of simulations if known, h: human data, and a: animal data. The fifth column “C” denotes the category of the reviewed method:
(I) image-based, (P) pixel-classification based, (A) atlas-based, (D) deformable based segmentation category. The sixth column “U” pinpoints whether a user interaction is needed
(Y) or (N) not. The next column “TD” highlights whether a training data is required (Y) or (N) not. T: (S) single acquisition timepoint is required or (M) multiple. Sw: (Y) swelling or
(N) no swelling accounted for in the identified method. R: reperfusion process is considered (Y) or (N) not. S: segmented area included ischemic lesion or infarct core (I) and the
penumbra (P).

Paper Basic method principle Data Medical modalities C U TD T Sw R S

Braun et al. (2002) – Automated, multidimensional 3D
histogram-based classification method

C(5,h) S(–) MR(T2, DWI, ADC) I N N S N N I

Chawla et al. (2009) – Automatic histogram and wavelet-based
2-level classification algorithm

C(15,h) CT P N N S N N I

Contin et al. (2010) – Local statistics C(1,h) CT(CBF, CBV, MTT) I Y N S N N P I
Dastidar et al. (2000) – Semi-automatic thresholding-derived region

growing, and decision trees based algorithm
C(40,h) S(5) MR(T1, T2) I Y N S N N I

Dwyer et al. (2008) – Semi-automatic hidden Markov random
fields

C(3,h) S(–) MR(T2, FLAIR, DWI, ADC, MTT) P Y N S N N P

Ghosh et al. (2011) – Hierarchical recursive region splitting using
rescaling, histogram and distributionmeasures

C(51,a) MR(T2) I Y N S N N I

Hevia-Montiel et al. (2007) – Nonparametric density estimation
approach using edge confidence map

C(15,h) MR(T2, DWI, ADC) P N N S N N I

Jacobs et al. (2000) – Multiparameter unsupervised
K-means-derived clustering approach

C(22,a) MR(T1, T2, DWI, ADC) P N N M N N P I

Jacobs et al. (2001a) – An unsupervised vector tissue model with
a K-means-derived clustering technique

C(20,a) MR(T1, T2, DWI) P N N M N N I

Jacobs et al. (2001b) – An unsupervised vector tissue model with
a K-means-derived clustering technique

C(10,h) MR(T1, T2, DWI) P N N M N N I

James et al. (2006) – Thresholding-based approach C(6,h) S(−) MR(T2, DWI, CBF, CBV, MTT) I Y N S N N P I
Kabir et al. (2007) – Multimodal Markov random field (MRF) C(56,h) MR(T2, FLAIR, DWI) P N N S N N I
Li et al. (2004) – Unsupervised adaptive multiscale

statistical Bayesian classification and partial
volume voxel reclassification

C(20,h) S(−) MR(DTI) P N N S N N I

Li et al. (2009) – Unsupervised Mean-shift algorithm C(19,h) MR(T2, DWI, ADC) P N N S N N I
Maldjian et al. (2001) – Anatomical-atlas based segmentation C(35,h) CT A N N S N N I
Martel et al. (1999) – Adaptive thresholding algorithm using

Markov random fields and iterative
conditional modes (ICM)

C(63,h) S(6) MR(DWI) P Y Y S N N I

Matesin et al. (2001) – Symmetry-detection and seeded
region-growing algorithm

C(–,h) CT I Y N S N N I

Meilunas et al. (2003) – Local means and standard deviations
intensity-based segmentation

C(–,h) CT I Y N S N N I

Prakash et al. (2006) – Probabilistic neural network for an adaptive
(two-level) and Gaussian mixture model

C(13,h) MR(DWI) P N Y S N N I

Soltanian-Zadeh et al. (2003) – Unsupervised clustering-based tissue
scoring method

C(15,a) MR(T1, T2, DWI, PDWI) P N N S N N I

Soltanian-Zadeh et al. (2007) – Improved unsupervised clustering-based
tissue scoring method

C(9,a) C(15,h) MR(T1, T2, DWI, PDWI) P N N S N Y I

Stein et al. (2001) – 3D statistical and deformable snake-based
model

C(6,h) MR(T2, FLAIR) D Y N S N N I

Usinskas et al. (2002) – Mean and standard-deviation based
segmentation

C(–,h) CT I N N S N N I

Usinskas et al. (2004) – Unsupervised thresholding-derived joint
features extraction based segmentation

C(–,h) CT I Y N S N N I

Weinman et al. (2003) – Nonlinear diffusion scale-space and
geometric deformable model with fast
marching level sets

C(5,h) MR(−) D Y N S N N I
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both the core and the penumbra on acute perfusion CT maps (CBF,
CBV, MTT). The algorithm required user interaction to select a seed
that was grown according to acceptance criteria. In James et al.
(2006), a semi-automated histogram-based segmentation technique
was developed to identify both the core and the penumbra and com-
pute the perfusion/diffusion mismatch volume using DWI and PWI
maps (CBF, CBV, MTT). In a recent paper (Ghosh et al., 2011), a hier-
archical recursive region splitting (HRS) approach addressed ische-
mic lesion segmentation in animal data with mild, moderate and
severe strokes using T2-w images. Using the MR-based signal spec-
trum, adaptive thresholds were automatically selected leading to
promising results when compared with manual segmentations.

Most of the proceeding papers (Table 1) provided little informa-
tion about the number of patients or stroke severity (Matesin et al.,
2001; Meilunas et al., 2003; Usinskas et al., 2002, 2004), and one
paper (Contin et al., 2010) used a single patient without reporting
any clinical information. All methods used images acquired at one
single timepoint and did not address the effect that swelling might
have on lesion distortion or volume measurement.

3.2.2. Pixel and voxel-based classification (52%)
Segmentation problems can be addressed using conventional classi-

fication methods, by applying supervised approaches requiring ma-
chine learning or unsupervised clustering methods to partition the
image into separate classes composed of pixels which have similar
pre-defined feature values. The commonly used unsupervised tech-
niques are K-means and iterative self-organizing data analysis tech-
nique (ISODATA), which is K-means derived with additional splitting
and merging steps (Pham et al., 2000). In Braun et al. (2002), another
feature-based method was implemented to generate 3D histograms
from a representative T2W, DWI and ADC data set leading to an auto-
matic segmentation of cerebral ischemia. We identified three studies
(Jacobs et al., 2000, 2001a,b) that applied the ISODATA technique. In
Jacobs et al. (2000), multiparametric ISODATA was applied to MR data



Table 2
Overview of ischemic tissue state prediction methods presented in 14 papers. In the “data” column, two acronyms are used: C(n,h/a): clinical data, n: number of patients, h: human
data, a: animal data. S(n, h/a): synthetic data, n: number of simulations if known, h: human data, a: animal data. The fifth column “C” denotes the category if the reviewed method:
(I) image-based, and (P) pixel-classification based. The sixth column “U” pinpoints whether a user interaction is needed (Y) or (N) not. The next column “TD” highlights whether a
training data is required (Y) or (N) not. T: (S) single acquisition timepoint is required or (M) multiple timepoints are required. Sw: (Y) swelling or (N) no swelling accounted for in
the identified method. R: reperfusion process is considered (Y) or (N) not. E: (evaluation tools used in the method) (C) clinical-based outcome assessment, (I) image-based out-
come assessment; (B) both clinical-based and image-based outcome assessments; (N) none.

Paper Basic method principle Data Medical modalities C U TD T Sw R E

Bagher-Ebadian et al. (2011) – Probabilistic neural network for and an adaptive
(two-level) Gaussian mixture model

C(13,h) MR(DWI) P N Y S N N I

Carano et al. (1998) – Multispectral analysis using 2 unsupervised
(K-mean, fuzzy C-mean) and supervised (multivariate
Gaussian, k-nearest neighbor) clustering techniques.

C(15,a) MR(T2, ADC, CBF) P N Y M N Y I

Hevia-Montiel et al. (2008) – 3D region-growing technique C(40,h) MR(ADC, DWI) I Y Y S N N I
Huang et al. (2010) – Artificial neural network C(36,a) MR(T2, ADC, CBF) P N Y S N Y I
Nguyen et al. (2008) – A generalized linear model (GLM) C(74,h) MR(T2, DWI, ADC, CBF, CBV, MTT) P N Y S N N I
Rose et al. (2001) – Parametric normal classifier algorithm C(29,h) MR(T2, DTI, ADC, CBF, CBV, MTT) P N Y S N Y I
Rose et al. (2004) – Expectation maximization and k-means clustering

algorithm
C(14,h) MR(T2, DWI, ADC, CBF, MTT) P N Y S N N I

Rosso et al. (2009) – Region-growing based model C(8,h) MR(DWI, ADC) I Y N S N Y I
Scalzo et al. (2012) – Kernel spectral regression model trained on a set of

locally extracted and normalized cuboids in MR images
with known outcome

C(25,h) MR(Tmax, ADC, FLAIR) I N Y M N N I

Shen et al. (2004) – Clustering technique related to k-means C(6,a) MR(T2, ADC, CBF) P N N M N N I
Shen et al. (2005) – Clustering technique related to k-means and

generation of probability risk maps
C(6,a) MR(T2, ADC, CBF) P N Y M N N I

Shen and Duong (2008) – Clustering technique related to k-means, generation
of probability risk maps and considering spatial
susceptibility of infarction

C(6,a) MR(T2, ADC, CBF) P N Y S N Y I

Wu et al. (2001) – Thresholding and generalized linear model (GLM)
algorithms and generating maps of risk of future
infarction

C(14,h) MR(T2, DWI, ADC, CBF, CBV, MTT) P N Y M N Y I

Wu et al. (2007) – Voxel-based generalized linear model (GLM) C(8,a) MR(ADC, CBF, CBV, MTT) P N Y S N Y I
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including T1W, T2W and DWI to discriminate between ischemia-
altered and morphologically intact tissue in rats and correlated with
histologically identified areas. An improved version proposed in
Jacobs et al. (2001b) was also applied to rats, then in Jacobs et al.
(2001a) to MR patient data and was correlated with the 3-month final
extent on imaging. The multiparametric ISODATAmap showed a better
localization of the infarcted areas than separately using DWI, ADC and
T2maps at different times after stroke. Based on a comparison between
ISODATA-derived damaged tissue volume and DWI-defined (vs.
T2WI-defined) volume correlation with the patients' functional out-
come after stroke, this method was shown to significantly outperform
the basic thresholding techniques which are mostly applied to a single
imaging parameter.

ISODATA was used to identify ischemic tissue in similar studies
(Soltanian-Zadeh et al., 2003, 2007): in Soltanian-Zadeh et al.
(2003) the identification process was extended to using an abnormal-
ity scoring system between 0 and 1 in rats, and in Soltanian-Zadeh et
al. (2007), an improved version was proposed, applied to rats and ex-
tended to human data including the role of reinforced reperfusion in
the recovery process. In Hevia-Montiel et al. (2007) a nonparametric
clustering strategy using mean-shift algorithm and edge confidence
map was developed to identify the lesion core in DW images. A
Table 3
Overview of dynamic evolution models presented in 8 papers. The acronym Sw denoted swe
identified method. R: reperfusion process is considered (Y) or (N) not. None of these studi

Paper Basic method principle

Chapuisat et al. (2008) – Global phenomenological microscopic dynamic model simu
Chapuisat et al. (2010) – Mathematical model simulating the influence of blood flow
Dronne et al. (2004) – Mathematical dynamic microscopic model simulating the p
Dronne et al. (2006) – Mathematical dynamic microscopic model simulating the m
Dumont et al. (2010) – Reaction–diffusion based model simulating the heterogeneo
Duval et al. (2002) – Physiological based model of ischemic stroke.
Grenier et al. (2010) – Phenomenological dynamic microscopic model simulating t
Louvet et al. (2011) – Multi-scale reaction–diffusion based numerical model simu
similar approach developed by Li et al. (2009) also a used
mean-shift algorithm to identify acute ischemic tissue in ADC maps.

As part of the pixel-based classification techniques, we identified
three papers applying Markov random fields (MRF), a statistically-
based segmentationmodelwhich incorporates information about neigh-
boring voxels (Martel et al., 1999; Kabir et al., 2007; Dwyer et al., 2008).
Martel et al. combined an adaptive thresholding algorithm with MRF
to model relationships between adjacent pixels. They obtained a
semi-automatic segmentation by maximizing the a posteriori (MAP)
probability using the iterated conditional modes (ICM) and applied to
DT-MRI to measure the infarct volume.

In Kabir et al. (2007) a multimodal MRF model including T2, FLAIR
and DWI modalities was used to automatically segment the infarct.
The method developed by Dwyer et al. (2008) is among the few
existing methods which aim to quantify the perfusion/diffusion
mismatch. Perfusion (MTT), diffusion (DWI, ADC) and (T2, FLAIR)
data were used in the hidden MRF model combined with an automat-
ed contralateral identification to discriminate normal tissue from
penumbral non-infarcted tissue leading to a quantification of the sal-
vageability of the hypoperfused tissue. It was also pointed out that
the use of hidden MRF showed considerable improvement over
basic thresholding techniques. Both the infarct core and contralateral
lling, combined with the acronyms: (Y) swelling or (N) no swelling accounted for in the
es used medical data or have been assessed using imaging or clinical outcome.

Sw R

lating ischemic stroke evolution. N Y
reduction in final infarct size. N N
enumbra evolution. N Y
ain mechanisms involved in the penumbra development. Y N
us 3D evolution is ischemia. Y N

Y N
he growth of the dead zone in ischemic stroke. N N
lating a 2D/3D human ischemic stroke evolution during the first hour. N N
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mirror tissue were used as seed regions to initialize the segmentation.
A new unsupervised approach, which accounted for the partial vol-
ume effect based on adaptive multiscale statistical Bayesian classifica-
tion and applied to DT-MRI data, was proposed by Li et al. (2004). A
different approach presented by Prakash et al. (2006), based on a
probabilistic neural network and an adaptive Gaussian mixture
model, segmented infarct in DW images. All the previous methods
were applied to MR images. For CT data, we only found one paper
(Chawla et al., 2009): Chawla et al. proposed an automatic histogram
and wavelet-based two-level classification scheme to depict acute
and chronic ischemic lesions separately.

Within this category, only one paper (Soltanian-Zadeh et al.,
2007) addressed the phenomenon of reperfusion, only one paper
(Martel et al., 1999) required a training data set and three papers
(Jacobs et al., 2000, 2001a,b) required more than one acquisition
timepoint. Although these methods applied more sophisticated tech-
niques, the phenomenon of swelling in acute/subacute ischemic
stroke was not addressed.

3.2.3. Atlas-based segmentation (4%)
We identified one paper (Maldjian et al., 2001) that used an atlas

as anatomical reference to specifically register the target vascular ter-
ritory during the segmentation process. This automatic method used
CT scans of 20 normal subjects and 15 patients to identify potential
areas of acute middle cerebral artery infarct. Although the quality of
registration to the anatomical atlas was evaluated as excellent, the
spatial identification of some infarcts' boundaries did not fit the
ground truth observations. The integration of an anatomical atlas in
the algorithm may be helpful in determining the anatomical extent
of the swollen ischemic area, however the swelling phenomenon
was not addressed.

3.2.4. Deformable model-based segmentation (8%)
Deformable models are formulated as an energy-minimization

problem using closed parametric curves or surfaces whose spatial de-
formation is guided by internal and external forces (Pham et al.,
2000). We found two publications that applied deformable models
to segmentation of stroke data. The first explored the intensity varia-
tions commonly observed within stroke lesions to define a new
confidence-based model targeting a robust segmentation of ischemic
lesions in MR images and an accurate estimation of the lesion volume
(Weinman et al., 2003). This model combined nonlinear diffusion
scale-space with a snake-based deformable model. Although the
method led to overall satisfactory results, it cannot be applied to
cases with scattered lesions (Fig. 1) since the segmented lesions are
meant to slowly blend together at a certain scale. In the cases
where the technique failed to identify the ischemic lesion, user inter-
action was required to adjust the confidence level. In a second paper,
Stein et al. (2001) introduced a 3D hybrid statistical snake-based de-
formable model to segment stroke lesions and estimate their vol-
umes. Similar to the previous paper, the results were promising
especially when some of the limitations of the snakes were addressed
by integrating additional statistical information. However the model
assumed that the lesion was a smooth one-connected spatial compo-
nent, which would not apply to many acute ischemic lesions which
are disconnected. The algorithm also required user interaction to ini-
tialize the snakes. The major limitations of these methods are derived
from the small sample of patients used for evaluation (5 in Weinman
et al. (2003) and 6 in Stein et al. (2001)), and the lack of information
about the severity and the variability of stroke in terms of its location,
topological connectivity and swelling.

3.3. Prediction methods

We found 14 papers (Table 2) describing methods to predict the
ultimate tissue fate at acute and/or subacute stages of ischemic
stroke: 8/14 (57%) of the identified papers used human ischemic
stroke data and 6/14 (43%) used animal data, and MR data were
used. In 12 papers (86%) a learning phase, using a training dataset
was required, and the techniques described in 5 (36%) papers were
based on the acquisition of observations at more than one timepoint.
Although the learning phase might impede the development of a fully
automatic approach, the reduction in the use of external interaction
was only achieved in two papers (Hevia-Montiel et al., 2008; Rosso
et al., 2009). Unlike the segmentation methods described in Section
3.2, the phenomenon of reperfusion was addressed in 7 (50%) of the
prediction-based papers. Nonetheless, the effect of lesion swelling
was constantly overlooked and only final infarct images were used
to evaluate the different predictive models (Table 2). For a more con-
sistent analysis of the prediction papers, we adopted the same catego-
rization previously used to classify the segmentation methods.

3.3.1. Image-based prediction (21%)
In this category, we identified only two papers (Hevia-Montiel et al.,

2008; Rosso et al., 2009) relying on region-growing approaches. In
Hevia-Montiel et al. (2008), a 3D nonparametric region-growing tech-
nique was applied to ADCmaps to extract brain areas more likely to in-
farct in human acute stroke. The algorithm output was assessed using
DW imaging-based final observed outcome and gave promising results.
Making the assumption that DW images represent the infarct core and
that ADC lesion represents the salvageable penumbra in Rosso et al.
(2009), a thresholding-driven region-growing algorithmwas initialized
using DW acute lesion boundary and “grown” into the ADC lesion,
yielding the final infarct volume. The growth of the initially smoothed
3D boundary was controlled by an energy-index minimization termi-
nated when reaching a pre-set cut-off ADC value. Both of these papers
used ADC and DW images, however, the effect of recanalization on the
prediction process was only investigated in Rosso et al. (2009). A differ-
ent non-linear learning approachwas recently presented by Scalzo et al.
(2012), which hypothesized that locally extracted cuboids (voxel in a
cube, surrounded by the regional distribution of image intensities) re-
veal the dynamic evolution of ischemic tissue and its ultimate fate. In
a framework where kernel spectral regression is as well-performing
as the support vector machines (SVM), adaptive boosting (AdaBoost)
and decision trees, the authors chose it to predict ischemic voxel fate
using time-to-maximum (Tmax) or ADC images as input and compared
to final FLAIR intensity outcome. Using a leave-one-out crossvalidation
as evaluation tool, the outcome was better predicted using Tmax
images.

3.3.2. Pixel and voxel-based prediction (79%)
Within this category, generalized linear models (GLM) were used

in three papers (Nguyen et al., 2008; Wu et al., 2001, 2007). In Wu et
al. (2001), a supervised learning model combining both diffusion and
perfusion data was developed to predict tissue outcome in human is-
chemic stroke determined by a pixel-by-pixel risk of infarction map
where both low risk and high risk of infarction areas were depicted
and compared according to pre-selected multimodal predictive pa-
rameters. The evaluation of this perfusion–diffusion based predictive
model using the two-month follow-up T2 image demonstrated vastly
better performance when compared to standard thresholding tech-
niques. In a subsequent paper (Wu et al., 2007), a GLM-predicted in-
farction risk map using four MR modalities (ADC, CBF, CBV, MTT) in
rat reperfused/nonreperfused stroke was generated. A recent exten-
sion of the GLM integrated additional spatial correlation information
in Nguyen et al. (2008), was applied to human structural, perfusion
and diffusion data and compared to a spatial autoregression model
(SAR) which individually outperformed GLM in the majority of cases.

For clustering K-means derived methods, we identified six papers
(Carano et al., 1998; Rose et al., 2001, 2004; Shen et al., 2004, 2005;
Shen and Duong, 2008). In Carano et al. (1998), a multiparametric anal-
ysis using two unsupervised (K-means, fuzzy C-means) and two
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supervised (multivariate Gaussian, k-nearest neighbor) clustering tech-
niques were used to classify ischemic tissue fate based on ADC maps,
CBF maps and T2 in a rat stroke model. An additional evaluation of the
outperformance of K-means, using correlation coefficient to postmor-
tem infarct size, was highlighted when compared to both multivariate
Gaussian and k-nearest neighbor supervised methods. In Rose et al.
(2001), a parametric normal classifier algorithm used quantitative and
relatives perfusion measures (CBF and CBV) and diffusion data (DWI)
to predict the spatial location and size of infarctedMTT tissue. Expecta-
tion maximization and K-means clustering algorithm to predict tissue
outcome were used in Rose et al. (2004), and investigated whether
bolus-delay-corrected dynamic susceptibility perfusion MRI measures
lead to a better estimation of the infarct volume in human ischemic
stroke. Both diffusion and perfusion maps were used to implement
the predictive model and the 30-day T2W final lesion was used to vali-
date its accuracy. In Shen et al. (2004) a K-means driven improved
ISODATA cluster analysis was used to track the dynamic change of
ischemic tissue within the core and the penumbra and predict its ulti-
mate outcome in rats. The ADC map when combined with the CBF
map was used to determine the “mismatch fate” with the T2W lesion
as the final infarcted region. This approach was improved in Shen
et al. (2005) by generating probability maps of risk of future infarction
using different combinations of input data (only ADC, only CBF or
both ADC and CBF). An alternative improvement of this model taking
into account vascular regional susceptibility to infarction was pro-
posed in Shen and Duong (2008) where an additional training-
based supervised learning stage was used in the model to draw
probability-of-infarction profiles based on ADC and CBF maps. Further-
more, both scenarios of spontaneous reperfusion and non-reperfusion
were considered to build a more robust and reliable predictive model.

We found two recent studies (Bagher-Ebadian et al., 2011; Huang et
al., 2010) based on artificial neural networks (ANN). In Bagher-Ebadian
et al. (2011), the final extent of the 3-month T2-lesion was predicted
using T1W, T2W, DW and PW training images at the acute timepoint.
In Huang et al. (2010), six different conditions to predict the final tissue
outcome by training an ANN and testing it using the leave-one-out ap-
proach were defined. Spatial infarction incidence map and nearest-
neighborhood information were fed into the model to guide the train-
ing process. The model prediction performance was also compared
with the previous animal models of Shen et al. (2005) and Shen and
Duong (2008) and gave a similar performance.

Almost half of themethodswere evaluated using animal stroke data
and using the same data as that in which the algorithm had been devel-
oped or trained. As shown in Table 2, the technique described in Shen et
al. (2004) (and its subsequent developments in Shen et al. (2005) and
Shen and Duong (2008)) all used data obtained from 6 rats not clarify-
ing if the same or different rats were used. Although the results were
promising, achieving a similar level of accuracy and precision in
human stroke is unlikely because of its increased complexity compared
to animal models. As in segmentation methods, the induced swelling
was not considered in any of the identified predictive approaches.

3.4. Dynamic evolution models

We found eight papers (Table 3) that providedmore insights into the
dynamic progressionof the infarct core and the spatio-temporal evolution
of the penumbral region in acute/subacute ischemic stroke (Chapuisat et
al., 2008, 2010; Dronne et al., 2004, 2006; Duval et al., 2002; Grenier et al.,
2010) and that addressed different key phenomena influencing the pat-
terns of dynamic evolution of both animal and human ischemic strokes.

A simplified mathematical dynamic model depending on a set of key
parameters involved in the hyperacute phase of ischemic stroke was de-
scribed in Duval et al. (2002). The key factors involved in initiating the
cascade of ischemic events were identified using MRI and PET quantita-
tive data and translated into equations simulating a voxel-per-voxel
early ischemic stroke episode and investigating the influence of the
edema on the penumbra evolution. Subsequently, through depicting the
relevant components in the process of stroke evolution observed in
human and animal strokes, a formal 2D microscopic dynamic model
was presented (Dronne et al., 2004). The globalmodelwas built by comb-
ing two ormore of ten sub-models, each denoting a key factor in evolving
stroke (tissue reactions, ionic movements, edema development, gluta-
mate excitotoxicity, spreading depression, NO synthesis, inflammation,
necrosis, apoptosis, and reperfusion). A dynamic model describing the
spatio-temporal evolution of the penumbra after a permanent occlusion
or reperfusionwas simulated bymerging three dynamic sub-models. An-
other microscopic dynamicmodel was developed in Dronne et al. (2006)
that focused on ionmovement in graymatter thatwas considered to trig-
ger cell swelling and shrinking. They ran different simulations for severe
and moderate ischemic strokes, analyzing the effect of some ion channel
blockers on the development of cytotoxic edema.

A dynamic phenomenological model, that simulated the propaga-
tion of spreading depression (SD) in a 2D brain following energy reduc-
tion caused by local ischemia and taking into account the recovery
mechanism through reperfusion, was presented in Chapuisat et al.
(2008). A set of mathematical multiparametric equations was defined
considering cell death by apoptosis or necrosis. Through solving these
equations, the model attempted to simulate the pattern of local ische-
mia using empirically set parameters.

The role of the duration and the intensity of CBF reduction on the
final size of the ischemic core and on cell death by necrosis or apopto-
sis was investigated in Chapuisat et al. (2010). Various ischemic con-
ditions were identified and translated into ordinary and partial
differential equations. The evaluation of the suggested mathematical
model was evaluated using in silico experiments. In Grenier et al.
(2010), the dynamic growth of the ischemic lesion core was modeled
using a set of ordinary differential equations and used to explore the
influence of the mode of cell death (by necrosis or apoptosis) on the
final infarct size. Unlike previous dynamic models, for the first time,
the mathematical reaction–diffusion equation extensively used to
model biological phenomena and brain diseases (Murray, 2002) was
newly adapted to simulate ischemic stroke evolution in realistic 3D
geometry of the human brain and differentiate ischemic evolution
in white and gray matter (Dumont et al., 2010), based on the model
of Dronne et al. (2006). The “realistic” tag associated to the approach
stems from differentiating the dynamic evolution of ischemia in gray
and white matter as the authors used 10 reaction–diffusion equations
in gray matter and 5 in white matter to simulate the propagation of
tissue-damaging waves. This new simulative model was built upon
an efficient numerical scheme to solve the partial differential equa-
tions (PDE) using a multithreaded reaction solver. Later on, going
back to hypothesizing a simple homogenous geometry of the brain
(made only of gray matter), the first hour of 2D/3D human ischemic
stroke evolution was simulated using a new numerical scheme to
solve multi-scale reaction–diffusion equations (Anon., 2011), where
the reaction term was also inspired from Dronne et al. (2006). The
multi-scale reaction diffusive waves were formulated based on the
main ionic mechanisms controlling cell death in stroke with 19 un-
knowns to estimate and solve on simplified brain geometry due to
the limitations of the used adaptive mesh refinement techniques.

All of these dynamicmodels were evaluated through launching a set
of simulations using different physiological values depicted from the lit-
erature (Table 3). None of the models were validated using imaging-
based or clinical-based assessment or simulated the evolution of syn-
thetic or real stroke lesions on MR or CT images. None of these papers
also included an MR or CT image of an ischemic stroke. In addition,
these models used simplified assumptions, such as hypothesizing a 1D
or 2D homogeneous brain (Chapuisat et al., 2008; Dronne et al., 2004)
and not considering the diffusion of the ionic species (Dronne et al.,
2006). Moreover, all of the reviewed dynamic models are based on hy-
potheses drawn from different publications without considering the
significant information that could be extracted from MR/CT images
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such as anatomical boundaries and lesion topological and shape proper-
ties. Unlike all the previously reviewed prediction and segmentation
methods, the phenomenon of swelling was addressed in three papers
(Dronne et al., 2006; Dumont et al., 2010; Duval et al., 2002) and two
papers (Chapuisat et al., 2008; Dronne et al., 2004) addressed the possi-
ble effects of reperfusion.

4. Discussion

We have performed an extensive search to identify image analysis
methods and mathematical models applied to acute/subacute ische-
mic lesions in human, animal and/or synthetic data. We identified
47 papers within 3 different objectives: segmentation of dead and/
or salvageable tissue, prediction of final ischemic tissue outcome
and dynamic modeling with simulation of ischemia evolution. Most
of the medical image analysis and computational models in acute/
subacute ischemic stroke firstly considered the penumbra and core
tissue segmentation problem and secondly the prediction of the
final irreversible damage. In this review paper, through identifying
studies that tackled both of these problems, we presented a common
categorization to provide an overview of the approaches that have
been proposed and their major drawbacks. Taking into account the
limitations of the thresholding approaches (Pham et al., 2000) as
being blind to spatial characteristics of an image, very sensitive to
image artifacts and difficult to apply to multi-channel images, we ex-
cluded all studies that only relied on basic thresholding techniques
and/or standard statistical-correlation-based data analysis. Tools
aimed at clinical practice such as the RAPID software (Straka et al.,
2010), which attempt to automatically segment both acute core and
penumbra to estimate their volumetric mismatch, were also excluded
because of the use of absolute or relative thresholds. Relying on PWI/
DWI threshold values has been demonstrated to be a misleading fac-
tor in measuring both perfusion and diffusion abnormalities (Dani et
al., 2012). Segmentation and prediction methods that do not incorpo-
rate a non-rigid or deformable registration to account for the induced
acute swelling, may be expected to yield somewhat erratic results,
due to the variation in the mass effect between patients.

Reviewing the 47 included papers, we noticed that these did not,
in general, consider the underlying biology and imaging-dependent
issues related to ischemic stroke evolution and the tissue fate. Indeed,
swelling and all other aspects of lesion and peri-lesion tissue distor-
tion were completely overlooked in all the prediction and segmenta-
tion methods, although it was integrated in the mathematical
equations in one dynamic model with simplistic assumptions
(Dronne et al., 2006) (Table 3). Another key phenomenon that can
alter the dynamic evolution process of acute ischemia is spontaneous
or therapeutic reperfusion. Since segmentation methods are used to
determine spatial boundaries of the core and/or penumbral regions
at a specific fixed timepoint, the reperfusion is not to be included as
a varying parameter in the method. The reperfusion problem was
only highlighted in 7 prediction methods (50%) and in one dynamic
model (Dronne et al., 2004).

Additionally none of the described segmentation, prediction and
dynamic evolution methods accounted for the number of connected
components comprising the overall lesion. In fact, one might need
to use different mathematical-driven approaches when tackling the
problem of segmenting or predicting outcome in lesions made up of
one-connected-component versus multiple connected-components.
In the majority of the prediction methods described, the visible lesion
on the T2W image at 3-months after stroke was considered as the
ground truth for determining outcome. The problems of T2-shine
through and fogging were not mentioned in any of the papers that
used DW weighted imaging. All of these are common MR/CT imaging
features of stroke and will distort the interpretation of lesion progres-
sion in the subacute phase using image analysis methods unless con-
sidered in the design of the method.
Looking at the performance of the included papers, most of the ap-
proaches described seemed to perform better than the basic
thresholding techniques, paving the way for more promising segmen-
tation and prediction methods. Most studies in segmentation and
prediction used the same models: K-means derived approaches
such as ISODATA 8 (32%), region growing based approaches 4 (16%)
and GLM 3 (12%). Many groups presented results in later papers
that built upon models described in earlier papers but with improve-
ments to overcome their main limitations and that seemed in some
cases to be more promising (e.g.: (Shen and Duong, 2008; Huang et
al., 2010) in prediction). However, it is difficult to assess the perfor-
mance of these approaches, or the superiority of one over another,
due to repeated use of the same dataset, the wide variety of evalua-
tion methods applied in animal, human and synthetic data, the wide
range of combinations of perfusion and diffusion measures and the
variation in the point at which the modeling builds up the ischemic
pattern and the assumptions on which the model depends.

Regarding the need for external user interaction, 11 (44%) of the
segmentation and 2 (14%) prediction methods required user interac-
tion promoting for fully automatic approaches. From a data-driven
perspective, 11 (79%) of the prediction approaches and 2 (8%) of
the segmentation methods required training data. These supervised
approaches can present a stumbling block to the wider clinical adop-
tion of such techniques.

Ideally, predicting and modeling the dynamic evolution of acute
stroke would be achieved relying on one single MR/CT image acquisi-
tion at the acute timepoint. Five (36%) of the predictive approaches
needed time series (longitudinal) data rather defeating the purpose
of trying to predict lesion change. Most segmentation and prediction
methods lacked validation datasets and some only used synthetic
data for validation. Another issue is the paucity of data available for
development and testing with 8 (32%) of the segmentation (vs. 4
(29%) of the prediction) methods used less than 15 patients or only
synthetic data. Five papers did not provide any information about
the number of patients. None of the dynamic models were assessed
using animal or human data. Only image-based outcome assessments
were used so it is unclear how these relate to the more clinically-
relevant functional outcomes. A better assessment would combine
both the image-based and clinical-based outcomes. Some papers pro-
vided no validation of their method (Kabir et al., 2007). Interestingly,
in the prediction imaging-based category, the kernel spectral regres-
sion technique presented in Scalzo et al. (2012) was demonstrated
to be more efficient when compared to the basic linear regression
model since with its nonlinearity it captures more the complexity of
intensity-based spatial evolution of stroke.

From a medical image analysis perspective, only three papers
(Weinman et al., 2003; Maldjian et al., 2001; Stein et al., 2001) out
of 25 dealing with segmentation did not rely on image-driven or
pixel classification based approaches. For prediction, all of the includ-
ed studies belong to one of these approaches. These image-driven and
pixel classification-based approaches offer a limited framework for
incorporating strong prior information to improve segmentation. Fur-
thermore, a major weakness of these classifiers is the partial volume
effects and intensity inhomogeneities in the images (Pham et al.,
2000). Out of all of the identified prediction and segmentation
methods, only one (Li et al., 2004) dealt with the partial volume ef-
fects. Also the performance of parametric classifiers is dictated by
the underlying statistical characteristics of the training data which in-
crease the probability of obtaining biased results especially when
using the same datasets in successive publications with incremental
improvements. Again this may reflect the small number of datasets
available to researchers because of the difficulty of collecting such
data, meaning that separate cases cannot be used for development
or training and validation.

Additional problems arising from the ISODATA technique
(Soltanian-Zadeh et al., 2003, 2007; Jacobs et al., 2000; Shen et al.,
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2004) include its instability when applied to noisy images, artifacts
and dependence on the assumption of normality for the distribution
of clustered data (Bagher-Ebadian et al., 2011). Perfusion data, for ex-
ample, are not normally distributed indicating a fundamental flaw in
this assumption. All these factors can be misleading during the
pixel-by-pixel based classification (vs. prediction). Interestingly,
Contin et al. pointed out the scarce literature regarding the segmenta-
tion of ischemia in perfusion CT images, reflecting that this imaging
facility is left out of consideration of medical image analyses.

Some of the included studies involved an empirical estimation of
various parameters such as the use of 19 ordinary differential equa-
tions with 30 parameters to estimate in Dronne et al. (2006) and 17
in Chapuisat et al. (2010). This is prohibitively time consuming and
increases the computational load. The problem of how to estimate au-
tomatically any initial or fixed parameter values is still unsolved in
many of the approaches. For example, when using artificial neural
networks (Huang et al., 2010) the optimal number of hidden nodes
and training epochs is not straightforward to determine.

Most of the dynamic models hypothesized a simple geometry
of the brain: 1D or a square brain (Chapuisat et al., 2008), 2D
matrix (Chapuisat et al., 2010) and that brain tissue was homogenous
(e.g.: only gray matter (Dronne et al., 2006; Anon., 2011)). In some
prediction papers, spherical lesion simulations were used to validate
the developed method (Shen and Duong, 2008). All these assump-
tions stray widely from the true characteristics of the brain, the ische-
mic stroke lesion and its evolution process. Finally, it is worth noting
that all the issues highlighted for prediction algorithms also apply to
imaging-based or microscopic-based dynamic models.

The latter discussion reveals that ischemic stroke lesions are com-
plex, with wide variation in, and relative unpredictability of their spa-
tiotemporal evolution. Many promising new drugs emerging from
Table 4
Recommendations for future research work addressing the segmentation of the dead and/or
ulation of an image-based dynamic evolution of ischemic stroke lesions.

Category Segmentation Prediction

Setting clear targets – Segmentation of the ischemic acute/subacute
lesion core (supposedly dead) and/or the
penumbra (supposedly salvageable), both
presumably predefined in an adequate way.

– Prediction
ischemic ac
tissue (pen

Datasets and imaging
modalities

– Variability of the ischemic lesions to
segment whether when choosing perfusion
or diffusion data.

– The segmentation algorithm can use perfusion
and/or diffusion data.

– The combi
and dynam

– Ideally, the
instead of

– Structural T
– The use of

predictive/s
– Provide information about the recruited patients (number, ag

was simulated.
– Better use both of the clinical and the simulated data.

Problematic issues
and key challenges
to consider

– Considering reperfusion phenomenon
might not be considered since segmentation
methods are used to determine spatial
boundaries of the core and/or penumbral
regions at a specific fixed timepoint.

– Distinguish
have differ

– Account fo
using colla
phenomen

– Explore mo
dynamic b

– Find a goo
model.

– Avoid overs
the brain a

– Take into account swelling and shrinking processes to avoid
evolution patterns.

– Consider the case of scattered ischemic lesions when develop
scenario.

– Use medical-image pre-processing tools to “remove” partial v
– Improve the computational speed of the developed approach
– Avoid user interaction and aim for a fully automatic approach

Evaluation criteria – Use various evaluation tools
(e.g.: dice formula) to assess the accuracy
and the precision of segmentation method.

– Use both c
both dynam
preclinical testing have failed in clinical trials (Duval et al., 2002).
There are many reasons for this, but one factor may be some miscon-
ceptions or perhaps oversimplification of our understanding of the
acute ischemic stroke lesion evolution process. It is important that
neuroimaging modalities and subsequent analysis techniques, like
MRI and CT, properly address the key imaging-derived or biology-
derived problems that are inherent to ischemic stroke, though few if
any do. It may be that the image analysis community has deliberately
avoided acute ischemic stroke, recognizing the difficulty of dealing
with thick section, non-contiguous image slices in a disease that
causes marked tissue distortion, appears and disappears over time,
and most often consists of disconnected parts rather than a single le-
sion. In this light, more integrated approaches that unite the image
processing and clinical communities are needed if any of these poten-
tially promising methods are to realize their potential. To our knowl-
edge, a book chapter, by Ghosh et al. (2012), was the first to touch on
previous computational noninvasive stroke analysis methods used to
segment penumbral and infarcted tissue and to address tissue fate
prediction. Others are starting to realize the importance of adopting
alternative approaches to the traditional volume measurement or
threshold delineated lesions studied so far. However, the majority of
the biology-dependent and imaging-dependent issues weren't
addressed in Ghosh et al. (2012).

In addition to including key biological phenomena like swelling, col-
lateral flow and reperfusion and addressing the previously described
imaging-derived problems, further difficulties lying ahead include, for
example, the ongoing debate concerning the use of perfusion/diffusion
mismatch (Rivers et al., 2006; Chemmanam et al., 2010). Although this
problem might seem to be on the periphery of the main focus of this
critical appraisal, it cannot be ignored when tackling prediction or dy-
namic simulation of image-based ischemic lesion evolution. Unlike
salvageable acute/subacute ischemic tissue, prediction of its final outcome and the sim-

Dynamic evolution simulation

of the final outcome of the
ute/subacute salvageable
umbra).

– Simulation of an imaging-based dynamic evolution of
acute/subacute ischemic stroke (with or without
distinction between spatio-temporal behavior of dead
and salvageable tissue boundaries).

nation of both perfusion and diffusion data is needed to develop realistic predictive
ic models.
developed approach would rely on one unique acquisition timepoint at acute stage

using time series (longitudinal) data.
1, T2 and FLAIR are commonly used to reveal the final imaging-based tissue outcome.
MR angiography (MRA) as efficient tool to include the location of the occlusion in the
imulating model.
e, stroke severity, “abnormal” blood territory, etc.) and about the how synthetic data

between the evolution of ischemic stroke in both white and gray matter as they
ent hemodynamic behaviors.
r reperfusion in its four possible states: (1) natural spontaneous reperfusion without
teral arteries, (2) spontaneous reperfusion using collateral arteries, (3) no reflow
on, (4) reinforced reperfusion through thrombolysis.
re the predictive power of the perfusion/diffusion mismatch and its influence on the
ehavior of ischemic strokes.
d combination of diffusion and perfusion maps to use in the predictive/dynamic

implified hypotheses about brain geometry (1D, 2D) and heterogeneity (e.g.: considering
s homogenous tissue).
drawing unrealistic conclusions about lesion spatial, temporal and volumetric

ing segmentation algorithms and when estimating or predicting an evolution

olume effect due to slice thickness in stroke data.
.
es.
linical-based and image-outcome based evaluation tools to assess the outcome of
ic and prediction models.
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other brain diseases which might succinctly rely on one unique modal-
ity to extract the required information on evolution, ischemic stroke le-
sions cannot be properly understood without a “good combination” of
both structural images and perfusion maps. The absence of any predic-
tion model using CT data (Table 2) indicates unresolved issues for the
future, like the subtle tissue attenuation changes during the hyperacute
stage (Brott et al., 1989; Kalafut et al., 2000; Muir et al., 2007;Wardlaw
et al., 1998). Lesion enhancement methods might help overcome this
major challenge (Takahashi et al., 2005; Tsai et al., 2005). Nevertheless,
a potential combination of both CT and CT-perfusion (CTP)might tweak
the results of the predictionmethods as amore acutely accessiblemeth-
od. Finally, valid lesion evolution or outcome prediction models would
have to take into account differences in the biological properties of
gray and white matter, which are overlooked by all methods so far.
Even in segmentation methods, Shen et al. pointed out that segmenta-
tion of ischemia and its progression quantification require segmenta-
tion of white and gray matter (Shen and Duong, 2008).

We also found a key untapped potential in that there was no image-
based macroscopic dynamic model simulating the evolution of acute/
subacute stroke.We tried to locatemicroscopic mathematical-driven dy-
namicmodels based on a set of partial and ordinary differential equations
focusing on the stroke evolution process. These microscopic dynamic
models can inform the development of macroscopic imaging-based dy-
namic models in acute ischemic stroke as has occurred previously in
other brain diseases (Duncan and Ayache, 2000). Setting the bridge be-
tween microscopic and macroscopic ischemic progress simulations
would need a translation of the phenomenological equations into
imaging-derived equations where the variables can be measured using
perfusion, diffusion or structural images. The great strides made in the
microscopic simulation field of ischemia spatio-temporal progress,
where more realistic models were developed reproducing the dynamics
observed on MRI images in stroke patients (Dumont et al., 2010), led to
more promising results. However, the fed information into the equations
is not directly related to visually-measurable (or imaging-derived) quan-
tities onmedical images (e.g.: lesion boundary, shape, intensity etc.), as it
uses the decrease of the ionic currents through the ionic pumps. Although
it was alsomentioned that the experimental resultswere consistentwith
observations on MRI images, no patient data evaluating this consistency
proved it right. Including the diffusion term into the phenomenological
models in Dumont et al. (2010) and Anon. (2011)) showed interesting
results. Nevertheless, the precision of the predictive power of the simula-
tions was doomed by the expensive integration numerical scheme of the
diffusion term as the spatial discretization increased.

The era of stratified medicine and stroke treatment targeted to the
individual is emerging. An ultimate goal of our review is to create new
patient-specific mathematical and medical image analysis methods
that account for the considerable individual variability between
stroke patients. We believe that spatio-temporal MR/CT imaging-
based dynamic models, that our paper shows do not currently exist
for ischemic stroke, will further a more complete understanding of
how the DWI core and the penumbra continuously and dynamically
evolve. In the long term, novel patient-specific dynamic models that
predict the evolution of the core and the penumbra from a single
timepoint are possible. Going back to the “ambiguity” that may be
surrounding the definition of the ischemic lesion core using DWI or
other measures, this may be resolved once a 4D dynamic model ade-
quate to capture the ischemic lesion optimally has been developed.
Such a 4D approach will theoretically overcome the major limitations
of current 2D or 3D approaches, if the lessons learned in the fields of
tumor modeling can be applied to stroke. Spatio-temporal imaging-
based dynamic modeling when applied to large representative
populations of stroke, will also help identify common patterns of le-
sion evolution which may in turn help to refine our understanding
and definitions of the core and penumbra.

Such lines of research should be drawn to allow development,
initial independent validation and then further wider evaluation in
clinically relevant populations of any new methods. This requires ac-
cess to large datasets and both clinical-based and imaging-based out-
come validation criteria. With this in mind and in a context where
“time is brain”, the computational time of any new method is also a
critical challenge requiring a more robust and efficient computational
framework. A brief summary of these key recommendations for any
future research work aimed at tackling any one of these three medical
image-analysis problems in ischemic stroke, and considering the key
problematic issues cited above, is highlighted in Table 4. The recom-
mendations link both of the fields of image processing and MR-CT
analysis in the hope of honing new innovative models that can tackle
the major challenges in acute/subacute ischemia and further a grow-
ing interest in a variety of possibilities, which are at present untapped
because of the complexity of ischemic stroke.

5. Conclusion

We present an overview of medical image analysis and mathemati-
cal models tackling problems of segmentation, prediction and dynamic
evolution simulation in acute ischemic stroke using animal, human and/
or synthetic data published to date. The field of ischemic stroke model-
ing is mined with difficulties for the image analyst like spontaneous
reperfusion, the “no re-flow phenomenon”, and early mass effect
followed by shrinkage induced by the stroke. None of the identified
methods addressed these issues, and several disregarded them all. As
further improvements, including anatomical spatial information and
tissue heterogeneity (e.g.: gray and white matter), and accounting for
partial volume effects induced by thick image slices may be considered.
Taking into account the site of the arterial occlusion using MR angio-
grams (MRA) will be important in determining the biology-dependent
factors driving the evolution of both infarct and penumbra and poten-
tially more accurately predicting their final outcome (Phan et al., 2009).

An automatic segmentation method that would also predict ische-
mic tissue fate, and simulate the probable further evolution of the in-
farct core and the surrounding penumbra is a major goal that could be
used to support stroke treatment. New levels of sophistication and
several alternative approaches are required in medical image analysis
to handle the complexity and the biological variability of acute ische-
mic stroke. Most of these issues have not even been considered or re-
solved. This lack of attention to acute ischemic stroke from an
image-processing and computational perspective is underlined by
the limited number of the studies on segmentation, prediction and
dynamic simulation. One major aim of this review paper was to
draw attention to challenges provided by stroke and the untapped
potential of dynamic imaging-based models. Some medical image
analysis methods developed to detect tissue abnormality in other dis-
eases appear promising for applying to acute ischemic stroke (Erus et
al., 2010; Seo et al., 2009; Studholme et al., 2006). This would pro-
mote better understanding of the different patterns of lesion evolu-
tion and provide insights into new treatment possibilities. Failure to
recognize and address the difficulties is likely to delay progress in
the field. Ultimately, image analysis applied to stroke may enable
the selection of patients who will more likely benefit from thrombo-
lytic treatment at a reduced risk of hemorrhage; thereby improving
the efficacy and safety of this treatment.
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