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Introduction

Pathogenic microorganisms constantly adapt to evade host immune responses, pos-

ing a challenge to the development of effective vaccines [1]. Structural vaccinology, an 

interdisciplinary field encompassing structural biology, immunology, and bioinfor-

matics, has emerged as a promising approach for comprehending immune responses 

and designing vaccines [2-4]. This field originated from the groundbreaking work of 

scientists in the late 20th century who recognized the significance of elucidating the 

three-dimensional (3D) structures of immune-related proteins. By leveraging struc-

tural information, scientists aim to engineer more stable, homogeneous, and efficient-

ly produced vaccine antigens. Significant progress has been made in this regard, in-

cluding the development of the respiratory syncytial virus F subunit antigen [5], and 

the design of a group B Streptococcus pilus-based fusion protein [2] and an improved 
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Structural vaccinology is pivotal in expediting vaccine design through high-throughput screen-
ing of immunogenic antigens. Leveraging the structural and functional characteristics of 
antigens and immune cell receptors, this approach employs protein structural comparison to 
identify conserved patterns in key pathogenic components. Molecular modeling techniques, 
including homology modeling and molecular docking, analyze specific three-dimensional (3D) 
structures and protein interactions and offer valuable insights into the 3D interactions and 
binding affinity between vaccine candidates and target proteins. In this review, we delve into 
the utilization of various immunoinformatics and molecular modeling tools to streamline the 
development of broad-protective vaccines against coronavirus disease 2019 variants. Struc-
tural vaccinology significantly enhances our understanding of molecular interactions between 
hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, 
particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 
and other prevalent infectious diseases, this approach stands at the forefront of advancing 
immunization strategies. The combination of computational techniques and structural insights 
not only facilitates the identification of potential vaccine candidates but also contributes to the 
rational design of vaccines, fostering a more efficient and targeted approach to combatting 
infectious diseases.

Keywords: Immunoinformatics, Human coronaviruses, Vaccinology, Molecular structure, 
Universal coronavirus vaccine
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Neisseria meningitidis serogroup B single-domain fHbp anti-

gen, both capable of eliciting immunity against a broader 

range of antigenic variants compared to their wild-type coun-

terparts [6-8]. These advancements pave the way for a deeper 

understanding of the structural basis of immunogenicity and 

immunodominance, ultimately enhancing vaccine efficacy 

in the long run.

  With the advancement in next-generation sequencing 

technology, there have been rapid technological advances in 

the field of molecular sciences that have led to a substantial 

increase in the number of nucleotide and protein sequences 

derived from genome sequencing projects. These sequences 

are now carefully curated in extensive databases so that sci-

entists around the world with internet access and appropri-

ate software can easily access and use this wealth of data. The 

availability of advanced informatics tools has greatly improved 

the efficiency and time required for species and variant iden-

tification, particularly in the context of the severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. In 

this context, structural vaccinology has emerged as an indis-

pensable approach that uses sequence alignment techniques 

to reveal similarities between both homogeneous and hetero-

geneous proteins. In this way, it facilitates the discovery and 

analysis of critical protein features and contributes to the de-

velopment of effective vaccines [9]. When scientists at Fudan 

University and their collaborators made public the genome 

sequence of SARS-CoV-2 responsible for the coronavirus dis-

ease 2019 (COVID-19) pandemic in January 2020, laborato-

ries worldwide were prepared for the challenge [10,11].

  The concept of structural vaccinology is about optimizing 

the antigens selected for vaccine development [12]. Massive 

amounts of high-throughput structural information generat-

ed by structure determination technologies such as nuclear 

magnetic resonance spectroscopy, X-ray crystallography, and 

cryogenic electron microscopy are readily available in online 

databases, especially protein structures [4]. In view of this, 

the designed vaccine antigens or candidates can be improved 

in terms of immunogenicity, stability, homogeneity, and pro-

duction efficiency by taking into account the findings of 

structural biology and immunology [4,12,13]. Table 1 illus-

trates some applications of the structural vaccinology ap-

proach in the study of human coronaviruses [14-18].

  Structural modeling is usually preceded by standard align-

ment methods such as BLAST [19] or FASTA method [20]. In 

principle, protein sequence analysis offers several aspects, 

including identification of conserved patterns of functional 

domains in related proteins, prediction of secondary struc-

tures and 3D structure, and prediction of protein functions 

[21]. Subsequently, this leads to understanding and deter-

mining the evolutionary background of the species under 

study, based on the analyzed sequences [22]. In multiple se-

quence alignment, the sequences of selected proteins are ar-

ranged in a rectangular array to determine whether specific 

regions are homologous, superimposable, or perform com-

mon functions [23]. The resulting sequence similarities are 

important for generating high-quality models with consider-

able accuracy when it comes to molecular modeling, espe-

cially homology modeling.

  Molecular modeling provides a detailed understanding of 

the specific 3D structures and interactions between macro-

molecules such as proteins [24]. In homology modeling, a 3D 

structure is constructed from a protein sequence of interest 

Table 1. Applications of structural vaccinology approach in human coronavirus research

Virus Target protein Outcome Reference

MERS-CoV S protein ectodomain S ectodomain in complex with G4 showed optimal prefusion conformation and enhanced expression 
while generating high NAb titers.

[14]

SARS-CoV-2 S protein Four substitutions with low surface exposure (D614N, A892P, A942P, and V987P) were introduced, 
resulting in a 6.4-fold higher yield, no heterologous trimerization domain, improved stability and 
properly folded conformation.

[15]

SARS-CoV-2 Full length S protein SARS-CoV-2-3Q-2P-FL immunogen contained some modifications, including RRAR to QQAQ at S1/S2 
polybasic cleavage site, as well as two proline substitutions at residues K986 and V987. As a result, 
this immunogen was stable, homogeneous, and predominantly in perfusion conformation.

[16]

SARS-CoV-2 S protein HexaPro acquired higher expression yield than S-2P by a factor of 9.8, heat stress resistance and ability 
to preserve the prefusion conformation. It also displayed notable responses to human convalescent 
sera and receptor-binding domain–specific monoclonal antibody CR3022.

[17]

SARS-CoV-2 S protein HR2-deleted glycine-capped spike (S2GΔHR2) induced higher NAb titers than S2P by 2-fold and 
exhibited augmented thermostability.

[18]

MERS, Middle East respiratory syndrome; S, spike; Nab, neutralizing antibody; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; HR2, heptad repeat 2. 
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with reference to the existing crystal structure of a homologous 

protein as a template. Molecular docking, including analysis of 

receptor-ligand interactions, can then be performed using 

the homology model [25]. A sequence identity of at least 35% 

is considered a rule of thumb for reliable homology modeling 

[26,27]. The quality of the template structure is generally deter-

mined by the prediction accuracy. A resolution of more than 

3.5 Å indicates that the template structure is less “accurate” 

and more perturbations have formed in the crystal structure 

during the prediction process [25]. To identify the position of 

conserved domains within a protein, 3D modeling is essential. 

The conserved domains of antigens are selectively exposed as 

epitopes via the structural vaccinology approach [28]. Unlike T 

cell epitopes, which lack a defined 3D structure, it is extremely 

important for epitopes recognized by neutralizing antibodies 

[29]. Most neutralizing epitopes derive from residues consist-

ing of noncontiguous primary structure, resulting in 3D elec-

trostatic landscapes that can be targeted in vaccination strat-

egies. By using high-quality 3D structures, antigens can be 

engineered to outperform native molecules in terms of pro-

duction efficiency and storage, thereby reducing distribution 

costs [12].

  In molecular docking, the interaction between a small 

molecule and a protein is modeled at the atomic level, which 

in turn provides insight into how small molecules approach 

and bind to target proteins in a 3D manner and the biochem-

ical processes that take place during the interaction. Docking 

basically comprises two elements: the search of conforma-

tional space for ligand binding, including the respective ori-

entation and the position and scoring assessment of the 

binding affinity [25]. There is a compromise between docking 

accuracy and time to find the lowest energy conformation, 

which is assumed to suggest a biologically relevant orienta-

tion. Under this assumption, more search time will raise the 

possibility of finding the lowest energy conformation. How-

ever, it comes with two drawbacks: entropies are overlooked, 

and it is not always applicable for transition state models [25]. 

Prior knowledge of the location of the binding site indeed en-

hances docking efficiency and accuracy. Otherwise, the sites 

can be reviewed by comparing of the target protein with sim-

ilar proteins in terms of function or bound ligands [30]. In this 

paper, we will review and explain in silico tools for sequence 

alignment, structure prediction, modeling, and refinement, 

as well as model interaction prediction and molecular dock-

ing, for the development of coronavirus peptide vaccines. We 

used keywords such as “immunoinformatics,” “coronavirus,” 

and “vaccine” and all existing human coronaviruses were in-

cluded in the scope.

Sequence Alignment

As informatics has advanced, sequence alignment tools have 

evolved and improved greatly [31-50] (Table 2). Clustal Ome-

ga (Clustal O) was developed for rapid and accurate multiple 

sequence alignments of a large number of protein, DNA, and 

RNA sequences [51]. Like the older versions, Clustal X and 

Clustal W, Clustal O performs the basic progressive alignment 

in which sequences are arranged in growing subalignments. 

The order of the alignments is then determined using guide 

trees. A guide-tree is a clustering of sequences created accord-

ing to the pairwise distances between sequences, with closely 

related sequences aligned, followed by the less related se-

quences [52]. It outperforms most widely used rapid methods 

in terms of alignment accuracy [51]. Waqas et al. [31] analyzed 

the genomic sequences of all structural proteins with the help 

of Clustal O to identify the conserved regions. Sequences of pro-

teins of interest were studied for the conservation among all 

pathogenic human coronaviruses in akin manner, for example, 

nsp1 [32].

  The European Molecular Biology Open Software Suite, or 

EMBOSS, is a free, open-source analysis software that is par-

ticularly useful in the field of molecular biology. This software 

automatically handles data in many formats. It also allows 

transparent retrieval of sequence data from the Internet. EM-

Table 2. List of servers and software for sequence alignment and comparison

Tool Web address Reference Articles reviewed

Clustal omega (Clustal O) https://www.ebi.ac.uk/Tools/msa/clustalo/ [35] [31,32,36-40]
Clustal X/W http://www.clustal.org/clustal2/ [41] [33,37,42,43]
Constraint-based multiple alignment tool (COBALT) https://www.ncbi.nlm.nih.gov/tools/cobalt/re_cobalt.cgi [44] [45]
EMBOSS Water pairwise sequence aligner https://www.ebi.ac.uk/Tools/psa/emboss_water/ [35] [33,46]
MAFFT https://mafft.cbrc.jp/alignment/server/ [47] [34,48]
MAST http://meme-suite.org/tools/mast [49] [37,50]
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BOSS has integrated a variety of programs and tools for pur-

poses such as sequence alignment, database searching with 

sequence patterns, protein motif identification, and domain 

analysis [53]. Alignment of nucleotide sequences of spike (S) 

protein as well as antigenicity determination were performed 

using EMBOSS for accessible SARS-CoV-2 isolates [33].

Structure Prediction, Modeling, and  
Refinement

In addition to commonly used tools such as GalaxyRefine, 

Protein Structure Analysis (ProSA), and RaptorX, other tools 

were also used for peptide vaccine development [31,32,34,36-

40,42,43,46,51-147] (Table 3). GalaxyRefine is a web server that 

deals with model structure refinement to improve the global 

and local structure quality of the model. The models generat-

ed by structure prediction servers, e.g., I-TASSER and ROSET-

TA, are uploaded to the server in Protein Data Bank (PDB) 

format for refinement. Essentially, the server reconstructs the 

side-chain conformations and continuously relaxes the struc-

ture using molecular dynamics simulations after side-chain 

repacking perturbations. It then generates four additional 

models that most closely resemble the initial model in terms 

of structural elements and loops [54]. In general, notable im-

provement in the quality of predicted structures generated by 

different tools, such as I-TASSER and Phyre2, based on struc-

tural proteins or even whole viral proteome, was reported after 

the refinement by GalaxyRefine [55-57].

  ProSA is generally used to verify 3D models of protein 

structures. The range of applications includes the detection 

of errors in experimentally determined structures and theo-

retical models, as well as the determination of the stability of 

engineered proteins. The overall quality score for an input 

structure is displayed in a graph that includes the scores of all 

experimentally determined protein chains currently avail-

able in the PDB, and then displays the relationship between 

the input structure and experimental protein structures. 

Problematic parts of a model are identified by calculating lo-

cal quality scores and displayed in a 3D structure with color 

codes. The goal of developing ProSA is to promote the use of 

the analysis tool in the early stages of structure determination 

and refinement to validate structures prior to submission to 

the PDB [58]. Based on the studies by Bhattacharya et al. [59] 

and Sanami et al. [60], S protein-based vaccine constructs 

displayed great quality, determined by their respective Z-

scores.

  In the RaptorX server, a new threading scoring function is 

applied through statistical learning to measure the compati-

bility between a target sequence and a template structure. To 

increase alignment accuracy, RaptorX considers the correla-

tion between protein features and structural information for 

proteins with sparse sequence profiles [148]. In addition, the 

server evaluates the quality of information content in the se-

quence profiles based on the number of non-redundant ho-

mologs available for the target sequence and a template 

structure to further optimize the appropriate modeling strat-

egy for the target. In short, the secondary and tertiary struc-

ture generated by RaptorX can be used for further analyses 

such as epitope prediction, protein docking and protein–pro-

tein interaction studies [149]. The prediction of 3D structures 

was conducted using RaptorX, either to locate epitopes of in-

terest or binding residues in structural point of view [61,62] or 

to prepare for the docking against immune receptors like hu-

man leukocyte antigen (HLA) alleles [63].

Model Interaction Prediction and Molecular 
Docking

Numerous tools are available for interaction model predic-

tion (Table 4) [32,36,39,42,46,60,64,67,70,71,73,74,87,88, 

91,93,101,150-155] and molecular docking (Table 5) [32,34, 

36-40,42,43,46,55-57,59,60,63-65,69-71,73,77,85,86,88,91-

93,97,101-103,108,111-113,116,126,128,156-189]. ClusPro is a 

server that uses automated rigid-body docking and discrimi-

nation algorithms to filter and group docked conformations 

by cluster properties. Filtering means selecting the centers of 

the high-occupancy clusters of low-energy structures by ana-

lyzing the empirical free energy [190]. In general, the server 

performs three steps: (1) collection of billions of conforma-

tions as samples for rigid-body docking, (2) determination of 

the largest cluster representing the most likely models of the 

complex based on root mean square deviation (RMSD)-

based clustering of 1,000 lowest-energy structures, and (3) 

refinement of the selected structures by energy minimiza-

tion. The rigid-body docking step uses PIPER16, a docking 

program based on the Fast Fourier Transform correlation ap-

proach that does not require information about the structure 

of the complex [156]. ClusPro is capable of predicting near-

native complexes for a variety of proteins, including enzyme–

inhibitor, antibody–antigen, and signal transduction com-

plexes [191]. The docked complex of vaccine construct and 

Toll-like receptor (TLR)-3 generated via ClusPro displayed 
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Table 3. List of servers and software for structure prediction, modeling, and refinement

Tool Web address Reference Articles reviewed

3Dpro http://scratch.proteomics.ics.uci.edu/ [66] [60,67]
3Drefne http://sysbio.rnet.missouri.edu/3Drefine/ [68] [55,60,69-71]
CABSflex http://biocomp.chem.uw.edu.pl/CABSflex2/submit [72] [73,74]
CABSfold http://biocomp.chem.uw.edu.pl/CABSfold/ [75,76] [77]
CASTp http://sts.bioe.uic.edu/castp/index.html [78] [70]
CFSSP https://www.biogem.org/tool/chou-fasman/ [79] [36]
ChimeraX https://www.cgl.ucsf.edu/chimerax/ [80-83] [31,32,38,42,43,46,63,77,84-88]
DeepTMHMM https://dtu.biolib.com/DeepTMHMM [89,90] [34,84,87,91-93]
DISOPRED http://bioinf.cs.ucl.ac.uk/disopred/ [94] [95]
Disulfide by Design http://cptweb.cpt.wayne.edu/DbD2/index.php [96] [34,69,70,93,97]
Espript http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi [98] [34]
FG-MD https://zhanglab.ccmb.med.umich.edu/FG-MD/ [99] [34]
GalaxyLoop http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=LOOP [100] [91,101]
GalaxyRefine http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE [54] [36,39,40,43,55-57,67,

74,77,88,91,93,101-103]
GalaxyRefineComplex https://seoklab.github.io/GalaxyRefineComplex/ [104] [103]
GalaxyTBM http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=TBM [105] [88,103]
GlobPlot http://globplot.embl.de/ [106] [103]
GOR4 https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/

npsa_gor4.html
[107] [34,60,88,93,103,108]

GROMOS96 http://www.gromos.net/ [109] [36,46]
I-TASSER https://zhanglab.ccmb.med.umich.edu/I-TASSER/ [110] [32,34,40,56,70,101,102,111-113]
LigPlot+ https://www.ebi.ac.uk/thornton-srv/software/LigPlus/ [114,115] [31,40,116]
LOMETS https://zhanglab.ccmb.med.umich.edu/LOMETS/ [117] [32,40]
MEGA X https://www.megasoftware.net/ [118] [38,61,63,84,87,92,95]
ModRefiner https://zhanglab.ccmb.med.umich.edu/ModRefiner/ [119] [34,36,39,77]
NetNGlyc https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0 [120] [111]
NetOGlyc https://services.healthtech.dtu.dk/service.php?NetOGlyc-4.0 [121] [97,111]
NetPhos https://services.healthtech.dtu.dk/service.php?NetPhos-3.1 [122,123] [111]
NetTurnP https://services.healthtech.dtu.dk/service.php?NetTurnP-1.0 [124] [69]
PDBsum http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.

pl?pdbcode=index.html
[125] [67,74,77,126]

PEP-FOLD https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD3 [127] [31,38,46,65,69,74,84,87,92,
102,116,126,128]

PEPstrMOD http://osddlinux.osdd.net/raghava/pepstrmod/nat_ss.php [129,130] [39]
Phyre2 http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index [131] [36,37,57,86,97,111]
ProFunc https://www.ebi.ac.uk/thornton-srv/databases/profunc/index.html [132] [37]
ProQ https://proq.bioinfo.se/cgi-bin/ProQ/ProQ.cgi [133] [32]
ProSA https://prosa.services.came.sbg.ac.at/prosa.php [58] [32,36,38,40,42,59,60,70,74,

77,88,91,93,97,101,102]
PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/ [134,135] [40,42,64,69,74,77,87,91-93,95,

101,102,108,113]
PyMOL https://pymol.org/2/ - [31,32,34,36,37,40,42,57,59,74,77,

84,87,91,92,101-103,116]
Qualitative model energy 

aNalysis (QMEAN)
https://swissmodel.expasy.org/qmean/ [136] [39]

RaptorX http://raptorx6.uchicago.edu/ [137] [36,39,61-63,69,70,77,91,93,97,
101,111,112]

Robetta https://robetta.bakerlab.org/ [138] [38,64,111]
SAVES https://servicesn.mbi.ucla.edu/SAVES/ [139] [32,36,38,40,42,56,57,59,64,69-71,

74,91,93,101,103,111,113]

(Continued on next page)

https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl%3Fpage%3D/NPSA/%0Dnpsa_gor4.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl%3Fpage%3D/NPSA/%0Dnpsa_gor4.html
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.%0Dpl%3Fpdbcode%3Dindex.html
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.%0Dpl%3Fpdbcode%3Dindex.html
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Table 3. Continued

Tool Web address Reference Articles reviewed

SignalP https://services.healthtech.dtu.dk/services/SignalP-5.0/ [140] [95]
SIMPA96 https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_

simpa96.html
[141] [93]

SOPMA https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_
sopma.html

[142] [38,62,74,93,97,102]

SPARKS‐X https://sparks-lab.org/server/sparks-x/ [143] [59]
SWISS-MODEL https://swissmodel.expasy.org/ [144] [36,37,39,43,67,71,73,74,86,97,126]
Swiss-PdbViewer https://spdbv.vital-it.ch/ [145] [38,43,63,70]
UbPred http://www.ubpred.org/ [146] [111]
YASARA http://www.yasara.org/minimizationserver.htm [147] [67,102]

Table 4. List of servers and software for model interaction prediction

Tool Web address Reference Articles reviewed

COACH https://zhanglab.ccmb.med.umich.edu/COACH/ [150] [32]
GROMACS http://www.gromacs.org/ [151] [32,36,39,46,60,64,70,71,74,87,

88,91,93,101,108,111]
Haddock (guru interface) https://alcazar.science.uu.nl/services/HADDOCK2.2/haddockserver-guru.html [152] [32,36,67,73,74]
Originlab https://www.originlab.com/ [153] [87]
PAComplex http://pacomplex.life.nctu.edu.tw/ [154] [42,111]
PIC (Protein interactions calculator) http://pic.mbu.iisc.ernet.in/ [155] [101]

Table 5. List of servers and software for molecular docking

Tool Web address Reference Articles reviewed

AMBER20 https://ambermd.org/ [158,159] [102,112]
Autodock https://autodock.scripps.edu/ [160] [39,63,85]
AutoDock Vina http://vina.scripps.edu/ [161] [38,39,46,85,102]
CABSdock http://biocomp.chem.uw.edu.pl/CABSdock [162,163] [71]
ClusPro https://cluspro.bu.edu/home.php [156,164] [42,46,55-57,60,64,69,70,91,93,97,101-103,108,111,112,126]
Cresset Flare https://www.cresset-group.com/software/flare/ [165-167] [86]
DINC http://dinc.kavrakilab.org/ [168] [65]
FireDock http://bioinfo3d.cs.tau.ac.il/FireDock/ [169] [40,69,73,88,93,112,116]
GalaxyPepDock http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=PEPDOCK [170] [36,56,103]
Glide https://www.schrodinger.com/glide [171,172] [111]
GRAMM https://gramm.compbio.ku.edu/gramm [173-175] [77]
HawkDock http://cadd.zju.edu.cn/hawkdock/ [176] [37,69,93]
HDOCK http://hdock.phys.hust.edu.cn/ [177] [70]
HEX http://hexserver.loria.fr/ [178] [43,108]
HPEPDOCK http://huanglab.phys.hust.edu.cn/hpepdock/ [179] [86,92]
MDockPeP http://zougrouptoolkit.missouri.edu/mdockpep/ [180] [86]
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PIPER https://www.schrodinger.com/products/piper [186] [113]
PRODIGY https://bianca.science.uu.nl/prodigy/ [187] [32,36,69,103]
VMD https://www.ks.uiuc.edu/Research/vmd/ [188] [32,88,126]
ZDOCK http://zdock.umassmed.edu/ [189] [37,128]
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high binding affinity, indicated by the presence of multiple 

hydrogen bonds between interacting residues [64].

  PatchDock is a geometry-based molecular docking algo-

rithm. The main task is to find docking transformations that 

have good molecular shape complementarity with large in-

terface regions and fewer steric clashes. The Connolly dot 

surface representation of the molecules is divided into con-

cave, convex, and flat patches [192], and complementary 

fields are paired to generate transformation candidates. The 

quality of the transformations is then determined by geomet-

ric fit and atomic desolvation energy. Redundant solutions 

are eliminated by RMSD clustering [157]. For instance, one of 

the designed vaccine constructs exhibited lower binding en-

ergy with receptors including angiotensin converting enzyme 

2 and TLR-8 as well as HLA alleles, implying its relevance 

from the immunological perspective [34]. Also, short epitope 

(ITLCFTLKR) was tested for docking against HLA class I al-

leles (HLA-A*11:01, HLA-A*68:01), in which significant bind-

ing was present in the docked complexes as a result [65]. The 

general workflow of coronavirus genomic analysis for vaccine 

development via structural vaccinology approach is shown in 

Figs. 1 and 2.

Fig. 2. Structural vaccinology: basic concept for coronavirus vaccine design.

Fig. 1. Schematic workflow of universal coronavirus vaccine development based on structural vaccinology approach.
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Future Prospects of Coronavirus Vaccine 
Development

Given the rapid emergence of new variants of SARS-CoV-2, 

there is an urgent need to accelerate scientific research to de-

velop effective treatment and therapy without delay [193,194]. 

Since May 17, 2023, the original Omicron variant has been re-

placed by circulating subvariants, including XBB.1.5, XBB.1.16, 

and XBB.1.9.1 [195]. Therefore, the process of screening and 

analyzing coronaviruses for pathogenicity and evolution needs 

to be accelerated. Genomic changes essentially result in se-

quence and structural changes in translated proteins. Substi-

tutions or deletions affecting critical amino acids lead to 

changes in protein conformation and thus to different anti-

genic properties. These properties are then manifested in dif-

ferent immunogenic responses in patients [196,197]. In addi-

tion, the high mutation rate of coronaviruses has significant 

implications that render existing COVID-19 vaccines less ef-

fective or even ineffective. Indeed, a significant decline in 

neutralizing antibody titers against the Beta and Delta vari-

ants was observed shortly after the appearance of Omicron 

[198,199]. This calls for rational design of a universal vaccine 

that targets conserved regions and provides long-lasting and 

broad protection against multiple coronavirus strains. Some 

studies have suggested that structural proteins are ideal can-

didates for universal vaccines because potential T- and B-cell 

epitopes are mostly found in these proteins [200-202]. More-

over, the proteins are exposed to the host environment dur-

ing infection. Therefore, stimulation of protective immunity 

largely depends on these proteins. In response to frequent vi-

ral mutations, information on the potential sites of nucleotide 

alterations and conserved regions should be updated and 

shared to eliminate mutation-prone regions in the proteins of 

coronavirus vaccine candidates [203].

  The relatively rapid development and availability of COV-

ID-19 vaccines compared with earlier vaccines is a clear indi-

cation of the significant advances in contemporary biomedi-

cal and engineering technology. In this context, immunoin-

formatics and structural modeling using supercomputing 

and machine learning play a critical role in the rapid identifi-

cation of common antigenic targets in coronaviruses. Data-

bases that contain continuously updated genetic sequences 

of coronaviruses from human and animal isolates are advan-

tageous for mapping the evolution of the virus. As it is cur-

rently the greatest public health threat, it is undoubtedly criti-

cal to develop universal vaccines that are highly effective and 

cross-protective against SARS-CoV-2 variants. Conserved T- 

and B-cell epitopes serve as a key element in the develop-

ment of a universal vaccine [204]. Moreover, it is shocking to 

learn that this pandemic is estimated to cost between $8 and 

$16 trillion worldwide, and this figure is approximately 500 

times higher than that required to prevent the next pandemic 

[198]. Global efforts and collaboration are indeed a must to 

make this large project scientifically feasible. In fact, the scope 

of a universal vaccine should include all known human coro-

naviruses, including potential ones that could cross the “spe-

cies barrier” and threaten human health in the future [205].

Conclusion

Structural vaccinology harnesses its strength in exploring and 

predicting functional domains and features within the 3D 

structure of proteins, offering a potent avenue for generating 

novel antigens that elicit optimal and broad immune respons-

es. By identifying common features between different types of 

proteins, conserved patterns can be revealed, leading to the 

creation of accurate and reliable molecular models in molec-

ular modeling studies. This in turn enables comprehensive 

analysis of specific 3D structures and protein interactions. A 

prominent technique within molecular modeling is homolo-

gy modeling, which enables the construction of accurate 3D 

structures based on the known crystal structure of a related 

protein. Homology modeling allows researchers to effectively 

predict the structure and behavior of proteins of interest. 

Subsequently, molecular docking techniques can be applied 

using the homology model. Molecular docking allows de-

tailed study of atomic-level interactions between small mole-

cules and proteins, providing valuable insights into how 

these molecules approach and contact target proteins in a 3D 

manner, thereby influencing biochemical processes. Molecu-

lar docking involves two critical aspects: exploration of con-

formational space and orientation for ligand binding, and as-

sessment of binding affinity through positional alignment 

and scoring evaluation. This comprehensive approach helps 

to understand the complex interplay between molecules and 

proteins, paving the way for the development of new thera-

peutics and vaccines. By harnessing the power of structural 

vaccinology and molecular modeling techniques, significant 

advances have been made in the field of COVID-19 vaccine 

research. These advances have not only accelerated the iden-

tification of potential vaccine candidates, but also improved 

our understanding of the intricate mechanisms underlying 
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viral protein interactions. Further integration of structural 

vaccinology and molecular modeling holds great promise in 

addressing new viral threats and developing effective inter-

ventions to combat infectious diseases.
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