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ABSTRACT: Benchmarking DFT functionals is complicated
since the results highly depend on which properties and materials
were used in the process. Unwanted biases can be introduced if a
data set contains too many examples of very similar materials. We
show that a clustering based on the distribution of density gradient
and kinetic energy density is able to identify groups of chemically
distinct solids. We then propose a method to create smaller data
sets or rebalance existing data sets in a way that no region of the
meta-GGA descriptor space is overrepresented, yet the new data
set reproduces average errors of the original set as closely as
possible. We apply the method to an existing set of 44 inorganic
solids and suggest a representative set of seven solids. The representative sets generated with this method can be used to make more
general benchmarks or to train new functionals.

1. INTRODUCTION

Currently, the most widely used theoretical method to predict
the different properties of materials is Kohn−Sham-density
functional theory (KS-DFT).1 The accuracy of this approach
mainly depends on the underlying functional for the exchange-
correlation energy, Exc. To compare and rank these functionals,
various benchmarks were done on different data sets and
properties. Notable data sets for molecules are the G2/972 and
G3/993 containing 302 and 376 energies (atomization- and
ionization energies, proton- and electron affinities, and reaction
barrier heights), respectively. Similar databases are used to
benchmark functionals for solids as well, like a set4 of 18 solids
of different types (main group metals, ionic solids, semi-
conductors, and transition metals), an extension of this set
containing 44 strongly bound solids5 or a set of more than 300
materials used to benchmark the SCAN functional.6 Yet these
benchmark data sets are often based on “what is available”.
This can potentially introduce biases for types of materials
which are either over- or underrepresented. Unbalanced data
sets are problematic and test results can depend on the chosen
set in a way that is not transparent. Furthermore, compounds
which are very similar and provide little new information lead
to unnecessary computational effort.
To avoid or make bias more transparent and for computa-

tional efficiency, it would be appealing to create smaller
representative benchmark data sets. Still, the literature on this
is surprisingly scarce. One approach created two data sets for
molecules containing six representative atomization energies
and barrier heights, respectively.7 The results are quite
appealing. Obviously from the point of view of computational

effort but also because the representative molecules are both
diverse and make sense as representatives of the much larger
original data sets. As such, finding representative molecules is
also interesting as a data-driven approach to developing a
chemical intuition. On the other hand, the representative
molecules were chosen to best possibly reproduce the average
errors obtained for the complete data sets.7 Thereby bias in the
original data set will tend to be reflected in the representative
set. A group of compounds that are strongly represented in the
original data set will also tend to be in the representative set.
Furthermore, small, but unique, groups of compounds could
be left out, thereby potentially covering up problems of a given
functional. In this respect, we recently analyzed how the SCAN
functional, which generally performs well for lattice parameter
calculations, fails for alkali metals.8 As there are only a limited
number of alkali metals, large errors for this small group are
not punished in the benchmarks.
In the present study, we aim to find materials which are both

representative in terms of the electron density distributions
sampled and in terms of the errors. Our approach is based on
clustering materials according to their density distribution. The
idea being that the materials are clustered according to what
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part of parameter space, in this case density gradients and
kinetic energy densities, they occupy. Then representative
materials are chosen according to their errors.

2. METHODOLOGY
2.1. Density Representation and Metric. To achieve the

clustering, we need a descriptor for the materials on which we
can define a similarity function. Since the differences between
the functionals arise from the different functional forms for Exc
energy, it seems natural to base our descriptors on the
quantities which enter these. The most common functionals
for solids are semilocal, where Exc is given as a functional of the
density, n, the magnitude of the density gradient, |∇n|, and
sometimes the Laplacian of the density and the kinetic energy
density (KED) τ defined as

∑τ ψ ψ= ∇ * ·∇r r r( )
1
2

( ) ( )
i

i i
(1)

The different levels of approximations use different arguments.
The local density approximation (LDA) uses only the density,
the generalized gradient approximations (GGAs) use the
gradients as well, and meta-GGAs (mGGAs) can use all four
parameters. In the present study, we focus on functionals and
descriptors based on n, |∇n|, and τ. We also tested including
the Laplacian in our descriptors, but in agreement with our
earlier findings,9 we did not find important differences in the
results and it is left out in the following discussion.
Semilocal functions are typically written in terms of the LDA

and an enhancement factor which depends on normalized
dimensionless, or reduced, values of the mentioned quantities.
It is in this enhancement factor that the functionals typically
differ. We use the reduced quantities

π
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as the descriptors. Here τTF = (3/10)(3π2)2/3n5/3 is the
Thomas−Fermi KED.
We consider the 44 solids in a previously published data

set.5 We use the all-electron KS-DFT code WIEN2k10,11 and
the PBE functional to calculate the density values. Based on
these data, p−t maps for each material are created by binning
the densities in a mesh of p−t combinations with a bin width
of 0.02 in both directions. The core regions of the atoms
contain a large number of points with large values of electron
density and low values of the reduced quantities, eqs 2 and 3.
To avoid that these chemically inactive regions dominate the
descriptors, the mesh was subsequently turned into an
indicator function being 1 if there was at least one point at
the given p,t value and 0 otherwise. After this, a Gaussian
smearing was applied to the map with a standard deviation of
0.06.
The choice of the similarity/distance metric is essential to

achieve a good clustering. Since our goal is to find materials
which cover the same region of the p−t space, if two materials
cover overlapping regions their distance should be close to
zero. The more specific requirement when defining the
distance is that it should have a maximum of one, when the
materials have no overlap and should not diverge based on the
exact shapes of the occupied regions. Therefore, simple

Euclidean distances between the matrices are not usable in
this case. A choice for similarity which obeys the mentioned
requirements is the normalized dot product of the maps,
defined the following way:

=
∑ [ ] [ ]

S A B
A i j B i j

N A N B
( , )

, ,
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i j,

(4)

where A and B represent the p−t maps of two given materials
and i,j are the index bins of p and t. The N normalization
function is

∑= [ ]N A A i j( ) ,
i j,

2

(5)

The values of S are always between 0 and 1, being 0 when
there is no overlap in the density maps, and 1 when the maps
match exactly. Using this, we can define a distance function
simply as 1 − S(A,B).

2.2. Clustering Method. The clustering is done using k-
means clustering, more specifically Lloyd’s algorithm.12 Given
N samples, every sample being a d dimensional vector, and the
desired number of clusters, C, the algorithm chooses C samples
randomly as cluster centers. Then two steps are iterated until
convergence. First, every sample is assigned to the cluster
which has the closest centroid. Second, the positions of the
centroids are updated to the mean of the samples of the given
cluster. With this setup, the algorithm is guaranteed to
converge to a minimum sum of squared distances between
the samples and their cluster centers.
Since the basic k-means algorithm works in Euclidean

spaces, our distance matrix has to be embedded in a d-
dimensional Euclidean space. For this, the multidimensional
scaling (MDS)13 technique is used, which places the materials
in a d-dimensional space based on the distance matrix in a way
that the Euclidean distances between their locations fit the
distance matrix as well as possible. The dimensionality of the
embedding space limits the achievable accuracy of the MDS, so
we opted to use the maximum number of dimensions to
represent our data. For our 44 data points, there are 43
dimensions, since any higher dimensional embedding can be
reduced to 43 dimensions. This embedding method resulted in
a 0.02 average absolute error between the distance matrix
based on the similarity defined in eq 4 and the Euclidean
distance matrix of the embedded materials.
Because both the MDS and the k-means algorithm involves

some randomness, we evaluated multiple different embedding
and ran the k-means algorithm 10 000 times with random
starting centroids for every embedding. We will later focus on
seven clusters (C = 7). These clusters and especially the
representative sets based on these were very stable across
multiple runs. The small differences in the loosely connected
clusters are discussed later. These clusters were also compared
to results from affinity propagation or k-means clusterings on
the L1 distances of normalized density maps and the resulting
clusters are not only consistent with respect to the random
seeds but also across different clustering methods.

2.3. Error Based Representative Sets. We also apply the
method that was used to generate the AE6 and BH6 sets.7 The
method aims to choose a smaller subset of the original data,
which reproduces the mean signed error (MSE), mean
unsigned error (MUE), and root mean squared error
(RMSE) as well as possible. If we denote the difference
between, e.g., the MSE of the entire database and the
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representative set when using functional i as ΔMSE(i), then the
aim is the minimization of the root mean squared deviation
(RMSD), defined as

=
∑ Δ + Δ + Δi i i

M
RMSD

( ) ( ) ( )

3
i MSE

2
MUE

2
RMSE

2

(6)

where M represents the number of different functionals. To
evaluate how good a representative set is, the percent error in
representation (PEIR) was used:

=PEIR 100%
RMSD

ME (7)

where ME is the mean error:

=
∑ | | + | | + | |i i i
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3
i
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with the errors calculated on the whole data set. When the
whole database is used as representative set, then the PEIR
value is zero.
In our case, the database consists of 44 materials and we

have 24 different GGA and mGGA functionals for three
different properties (lattice parameter, bulk modulus, and
cohesive energy). To find a representative set with N materials,

the PEIRs for the three properties are calculated for all ( )N
44

combinations, and the one with the lowest average PEIR is
chosen. A direct minimization of the PEIR by choosing 7
compounds from the entire 44 compounds results in the group
of

[ ]Rb, Nb, Sn, Rh, BP, AlP, GaN (setPEIR)

with a PEIR of 15%. This set inherently carries the imbalances
of the full set. Six of the seven compounds belong to the
transition metals and diamond-lattice semiconductors. It only
contains one representative of the alkali metals and none of the
ionic materials nor the alkaline earth metals, which are
chemically distinct groups and should be present in a small set.
As will be discussed later, setPEIR fails to sample a variety of
densities and can, even if it reproduces average errors well,
somewhat misrepresent the error for a specific functional.

3. RESULTS AND DISCUSSION
Considering first the p−t maps as descriptors on which the
clustering should be based, they are shown for seven different
compounds in Figure 1. It can be seen that these chemically
distinct compounds also sample different regions of the p−t

maps. Changing, e.g., the dependence of the Exc functional on
the high p−high t region would mainly influence the results
obtained for Na, NaF, and similar materials, whereas it would
hardly influence the results obtained for the close-packed metal
Rh or the semiconductor GaAs. This difference between alkali
metals and d-metals or semiconductors falls in line with earlier
studies. It has previously been noticed for the atomic electron
densities where the maximum value of p (not counting the
diverging tail far from the nuclei) decreases along the rows and
also along the columns of the periodic table.14 Furthermore, in
the case of solid Si and LiF, regions around the outer shell of Li
were found to have twice as large p values as in Si.15 The
empty space of the bottom right part of Figure 1 illustrates the
von Weizsac̈ker limit (t > 5p/3). The distance on the y axis
from this limit is called α = t − 5p/3 and has been shown to
carry important information about the bonding properties. In
regions occupied by a single orbital α = 0,16 while in regions
with slowly varying density α ≈ 1.17 α has been also shown to
take low values in the covalent bonds of graphite, while being
much larger in the interlayer region.18

The similarity matrix, eq 4, of the 44 materials considered
here is shown in Figure 2. The materials are in an ad-hoc order
based on intuition. However, we can still identify multiple
groups of similar compounds. These are the close-packed
metals, top left, and the semiconductors, bottom right. Some
similarity can also be seen between some of the ionic bound
materials.
To find the optimal number of clusters, we ran the k-means

clustering for up to 10 clusters. The derivative of the average
squared intracluster distances are shown in Figure 3. It can be
seen that making more than seven clusters does not improve
the grouping significantly. The seven clusters formed this way
are [V, Ni, Cu, Nb, Mo, Rh, Pd, Ag, Ta, W, Ir, Pt, Au], [C, Si,
SiC, BN, BP, AlN, AlP], [Ge, Sn, AlAs, GaN, GaP, GaAs, InP,
InAs, InSb], [LiH, MgO, Al, Rb, Cs], [LiF, LiCl, NaF, NaCl],
[Ca, Sr, Ba], and [Li, Na, K]. The intuitive groups that could
be recognized by visual inspection of Figure 2 can be found in
this clustering as well. It is pleasing that the transition metals
form one large cluster. The diamond-lattice semiconductors
are split into two relatively large clusters. Figure 3 shows how
the semiconductors would be grouped into one cluster if only
five clusters should be made. The improvement in mean-
squared distance between five and seven clusters is however
substantial, and the splitting is also systematic in the sense that
one diamond-lattice cluster tends to contain the atoms from
the early periods of the periodic table and the other cluster the
atoms from the later periods. There are further smaller clusters
of ionic, alkali-, and alkaline earth metals. One cluster contains
a mixture of ionic compounds and metals, which is also the
most unstable cluster, splitting in [LiH, MgO, Al] and [Rb, Cs]
groups when eight instead of seven clusters are formed.
The right panel of Figure 4 shows the 2D representation of

the distance matrix generated by the MDS algorithm. The
materials are colored according to the clustering in the 43D
space. Each cluster is labeled by one solid, which will later be
identified as its first representative. The illustration highlights
the strong similarity inside the metal (pink) and semi-
conductor (purple, brown) clusters and the lower similarity
of the clusters containing ionic compounds and alkali and
alkaline earth metals. Using only the 2D representation
introduces some artifacts mostly around the Na and Rb
clusters which results in some of their elements to be
seemingly assigned to the wrong cluster. This is only caused

Figure 1. p−t maps of seven representative solids. The clear difference
between the different colored regions show that chemically different
materials sample distinct regions of the p−t space.
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by the mismatch of the 2D and 43D representations. The left
part of Figure 4 shows the p−t map obtained by averaging over
the solids in each of the seven groups thereby illustrating the
most significant regions of p−t values for every cluster. These
“average materials” highlight different regions of mGGA
functionals sampled by the materials. If one would use the
representative set predicted by the naive PEIR minimization
method, setPEIR, the blue, orange, and red regions would be
unsampled, and six of the seven materials would come from the
pink, brown, and purple areas. These three areas include only
the semiconductor and metal clusters and are constrained to
the relatively low p−t regions.
Having the seven clusters, we tested two approaches to find

representative sets. The first approach was to calculate the
PEIR for every possible combination of seven materials where
each material must be from a separate cluster and choose the

set with lowest PEIR. This constrained optimization results in
the set

[ ]Rh, InP, BN, Al, NaCl, Ba, Li (setA)

with a PEIR of 21%. While this PEIR value is obviously higher
than the value of 15% obtained for setPEIR, setA seems more
representative. Not only in terms of the p−t maps but also
intuitively, in that it is much more diverse in terms of
chemistry.
The second approach avoids optimizing the PEIR with

respect to the entire data set and instead chooses from each
cluster the material which represents its own cluster best, i.e.,
the material from each cluster which gives the smallest PEIR
with respect to its own cluster. The set formed this way is

[ ]Rh, GaAs, SiC, Rb, Na, NaF, Sr (set1)

Again this set is representative in terms of p−t and chemical
intuition. This set has not been chosen to minimize the PEIR,
and the resulting PEIR of 38% is substantially higher than for
the sets setPEIR and setA formed by minimizing the total
PEIR. However, our goal is not to reproduce the average errors
of the full set exactly but to sample as vast regions of the phase
space as possible without unreasonably deviating from the
average errors. In the end, set1 is preferred since the
optimization minimizes the impact of the inbalances of the
original data set. These seven materials are the ones used to
label the clusters in Figure 4, and they were used to exemplify
p−t maps in Figure 1. The strong similarity between Figure 1
and Figure 4 shows that the representatives indeed sample the
same region as the “average materials” of the given clusters.
Even with representative sets optimized to with the best

possibility to reproduce an error averaged over functionals and
properties according to eq 6, it is an open question how well
the error for a given property and for a given functional is

Figure 2. Similarity matrix between materials, with the metal cluster on the top left, the semiconductor cluster on the bottom right, and the less
similar groups of ionic materials and alkali- and alkaline earth metals in the middle.

Figure 3. Derivative of the average squared intracluster distances with
respect to number of clusters. The colors correspond to the cluster
colors of Figures 1 and 4.
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represented. In Figure 6, we have chosen the three functionals
SCAN,19 TPSS,20 and mBEEF21 and show the specific RMSE
of setPEIR, setA, and set1 for the three properties. As expected,
none of the representative sets exactly reproduces the average
errors of the entire set. It is worth noting that setPEIR, which
was optimized to minimize PEIR without constraints, can
result in errors which differ substantially from the full set, e.g.,
for the cohesive energies obtained with mBEEF or SCAN. It is
also noticeable that both sets based on p−t clustering almost
always give a lower RMSE than the full set. This is partially
caused by the balancing of the data set. The cohesive energy
errors of the seven clusters with the three functionals are
shown in Figure 5. The cluster of close packed metals has the

highest RMSE for the SCAN and mBEEF functionals, while for
TPSS the two semiconductor clusters also show comparable
errors. In the representative sets, these three clusters are down-
weighted, since they contain many compounds sampling the
same regions of the p−t space, and therefore the overall errors
in the representative sets are reduced.
These results also illustrate that picking one representative

material for each cluster may not always be adequate. For both
setA and set1, Rh was picked to represent the metal cluster.

However, Rh has an error in Ecoh of 0.3 eV/atom when using
the SCAN functional, whereas the RMSE for cohesive energies
of the transition metal cluster is 0.54 eV/atom for SCAN. So
while Rh is the best material to represent the average error of
multiple different functionals, in the sense of eq 6, it is
somewhat misleading for the Ecoh error of SCAN. Con-
sequently both set1 and setA give to some degree artificially
low error for the SCAN cohesive energy, see Figure 6. The sets
formed by choosing from the representative clustering can,
however, be systematically improved by extending the groups
of representative materials with additional elements of the
clusters. If we choose one additional solid from each cluster by
minimizing the RMSD with respect to that cluster, we obtain

[ ]Nb, Ge, BP, MgO, Li, LiCl, Ca (set2)

Using set1 and set2 as representative materials, a systematic
improvement can be observed, see Figure 6. This can be
continued by extending with a third set

[ ]Cu, InAs, Si, LiH, K, NaCl, Ba (set3)

The three clusters containing just three compounds, Figure 3,
are then fully present. If the computational cost of the
functional evaluation is not a concern, our approach can be still
useful to balance the data set, simply by weighting the different
materials based on their cluster size. As an example, the error
bar on Ecoh using TPSS seems to be overestimated due to the
strong weight of the transition metal cluster which only
samples a rather small part of the p−t space.
Irrespective of the average errors of the original set and a

representative set, the ranking of the functionals in terms of
accuracy is also important. Figure 7 shows the RMSE of 24
GGA and mGGA functionals for the lattice parameter and
cohesive energy. The functionals are ordered according to the
RMSE of the original full set. The ranking of the functionals
with two other sets (setPEIR and the set including three
materials from every cluster) shows similarities with the
original set. By splitting the functionals into three groups, the
most accurate, the least accurate, and the middle ones, the
groups remain more or less the same independent of the set.
There can be inversions within a group of functionals
compared to the original database. As discussed above, the
error on the cohesive energy seems overestimated for mBEEF
and SCAN when using the setPEIR. The representative sets on
the other hand give a lower average error for the lattice

Figure 4. (left) p−t maps of the “average materials” of the seven clusters. The colors are chosen such that they agree with the clusters in Figure 3
and their representative materials in Figure 1. (right) The 2D representation generated by placing the materials in such a way that the Euclidean
distances between their locations fit the distance matrix as well as possible according to the multidimensional scaling algorithm.13 The points are
colored according to the clusters formed by the k-means clustering in the 43D space and marked by the representative material.

Figure 5. Cohesive energy RMSE of the seven clusters using the three
analyzed functionals. The largest errors for the SCAN and mBEEF
functionals can always be found in the transition metal cluster, while
for TPSS the semiconductor clusters also show large errors.
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constants with SCAN and MS2 functionals, mainly due to the
down weighting of the transition metals.

4. SUMMARY AND CONCLUSIONS
In the current study, we presented a way to group different
inorganic solids based on their electron density, allowing us to
identify solids which are sampling the same regions of p−t
descriptor space. To achieve the grouping, we defined a
distance metric, which is bound between 0 and 1, and
represents the dissimilarities of the previously mentioned
descriptors of different materials. Using multidimensional
scaling and k-means clustering, we formed clusters of similar
materials. These are not a pure mathematical construction but
also reflect basic chemical properties. Based on the clustering, a
small representative set of bulk solid materials is constructed,
which not only samples as big regions of the p−t space as
possible but also aims to reproduce the average errors of the
original data set for multiple GGA and mGGA functionals.
The smaller representative sets of the original database allow

for faster evaluation of GGA and mGGA functionals. As the
method is able to identify materials which occupy similar
regions of the p−t space, thus down weighting highly
populated areas can lead to a more general evaluation or
functional training.

More recently it has become possible to create test databases
based on higher level ab initio methods.22 An important
advantage of the clustering is that it allows for a screening of
compounds based just on the DFT descriptors before
computationally heavy calculations are performed.
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Figure 7. RMSE of 24 GGAs and mGGAs for the lattice parameter (upper panel) and cohesive energy (lower panel) calculated on the original full
database, the seven materials set minimizing the PEIR, and the larger representative set that includes three materials from every cluster. The
functionals are ordered according to the RMSE obtained with the original full database. The references for all of the functionals can be found in ref
5.
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