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A neural algorithm for Drosophila 
linear and nonlinear 
decision‑making
Feifei Zhao1,9, Yi Zeng1,2,3,4,9*, Aike Guo2,4,5,6,7*, Haifeng Su2,5,8 & Bo Xu1,2,4

It has been evidenced that vision-based decision-making in Drosophila consists of both simple 
perceptual (linear) decision and value-based (non-linear) decision. This paper proposes a general 
computational spiking neural network (SNN) model to explore how different brain areas are 
connected contributing to Drosophila linear and nonlinear decision-making behavior. First, our SNN 
model could successfully describe all the experimental findings in fly visual reinforcement learning 
and action selection among multiple conflicting choices as well. Second, our computational modeling 
shows that dopaminergic neuron-GABAergic neuron-mushroom body (DA-GABA-MB) works in a 
recurrent loop providing a key circuit for gain and gating mechanism of nonlinear decision making. 
Compared with existing models, our model shows more biologically plausible on the network design 
and working mechanism, and could amplify the small differences between two conflicting cues more 
clearly. Finally, based on the proposed model, the UAV could quickly learn to make clear-cut decisions 
among multiple visual choices and flexible reversal learning resembling to real fly. Compared with 
linear and uniform decision-making methods, the DA-GABA-MB mechanism helps UAV complete the 
decision-making task with fewer steps.

When confronted with two visual patterns and one of them is related to punishment, Drosophila could make 
appropriate choices to avoid punishment1,2. For example, facing an inverted-blue T is always companied with 
heat punishment, while facing upright-green T is safe in a visual flight simulator. Then, Drosophila could learn the 
association between visual input and punishment, and fly towards the safe pattern (upright-green T) even if the 
heat punishment is shut down. This is the simple perceptual decision-making task. To verify whether Drosophila 
could make choice between two conflicting cues, individual flies were conditioned to choose a flight direction 
in accordance with consistent color and shape cues, and then the decision was tested with the color and shape 
cues reversed following the training3,4. For example, during the training phase, upright-green T is trained to be 
safe, and inverted-blue T is with punishment. While during the choice phase, fly needs make choice between 
inverted-green T and upright-blue T. Which pattern should be chosen to avoid potential danger? Apparently, 
only simple perceptual decision-making circuit is not enough to make clear choice when confronting this shape-
color dilemma. Neuroscientists found that with the help of the value-based circuit, Drosophila could make choice 
based on the saliency of two cues3. They measured the choice behavior of Drosophila by preference index (PI), 
which is defined by the ratio of the difference between times of Drosophila flying towards each pattern to total 
time3. Neuroscience experiments calculated the choice PI of both wild-type flies and mutant mushroom body 
miniature(mbm) flies with different saliency of color cues. Experimental results showed that the wild-type flies 
(with the value-based circuit) achieved a nonlinear (a sigmoid-fit) shape, while mbm flies (only simple perceptual 
circuit) achieved linear shape3–5. That is why the simple perceptual circuit is also called linear circuit, and the 
value-based circuit is also called non-linear circuit. Inspired by the neural mechanism of Drosophila linear and 
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nonlinear decision-making circuit, this paper proposes a multi-brain area coordinated decision-making spiking 
neural network, and verifies the effectiveness of the proposed model on Drosophila-like decision-making tasks.

Although the linear and nonlinear circuits of Drosophila vision-based decision-making have achieved some 
biological evidence in4,6, it still has large space to improve the computational model of Drosophila vision-based 
decision-making. Hui Wei et al. designed a SNN to simulate Drosophila simple non-conflicting visual cues learn-
ing in the flight simulator. The learning process depends on spike timing dependent plasticity (STDP) updating 
weights between input neuron and output neuron. This learning process was implemented by inhibiting input 
neurons and activating output neurons when heat punishment happened7. Nevertheless, the network architecture 
and learning process need to be refined to capture important biological details and it could not solve the con-
flicting cues learning. Based on the decision-making neural circuit and learning process in7, Wei et al.8 further 
added conflicting cues learning during the choice phase. With the same training network, different input cues 
were entered into a certain decision-making unit with a probability determined by color-shape selection ability 
(linear or sigmoid selection ability) and current color intensity, then the decision-making unit triggered an action 
according to the learned stimulus-action association. Experimental results showed that using the linear-shaped 
color-shape selection curve can produce the linear-shaped PI, while using the sigmoid-shaped color-shape selec-
tion curve can produce the nonlinear-shaped PI. The difference between linear and nonlinear decision-making 
is based on the corresponding input color-shape selection curve, which shows little biological basis of the neural 
circuit. Kuijie Cai et al. built up a network model to elucidate the computational mechanism of Drosophila when 
confronted with shape-color dilemma9. The computational model could successfully describe the experimental 
findings in3. However, the model was based on some hypothetical connections and lacked some new-found 
decision-making mechanism in Drosophila. Wu et al. modeled the linear and nonlinear circuits based on some 
biological hypotheses. They aimed to account for Drosophila decision-making phenomena from systems level10. 
The effort mainly focused on comparing the effect of linear and nonlinear circuits on the conflicting visual cues 
learning. In order to simulate the nonlinear circuit, a raised dopamine level is used to enhance the lateral inhibi-
tion between decision-making units. To sum up, the present existing computational models have not taken the 
DA-GABA-MB mechanism (which is observed in Drosophila decision-making circuit11,12) into consideration. 
In this paper, we aim to design a dynamic decision-making SNN model, named as DrosDecMa, which is mostly 
based on the linear and nonlinear mechanisms of the Drosophila Decision-Making circuits.

Other studies focus on the construction of biologically inspired decision-making neural circuit. Zarin et al.13 
generated a recurrent network model based on Drosophila larval muscle activity patterns and premotor/motor 
circuits to understand how the Drosophila generates forward and backward locomotion. Atiya et al.14 proposed 
a neural circuit model to monitor decision uncertainty, which was based on transient neural dynamics observed 
in animal and human studies. The proposed uncertainty-monitoring module can replicate several important 
observations found in experimental studies of change-of-mind. Inspired by the known anatomy and physiology 
of basal ganglia, which is the core brain area of the decision-making circuit in mammal, Héricé et al.15 developed 
a connectionist model from spiking neuron level based on a previous rate model approach. The model could pro-
vide predictions in accordance with observed experimental data on lesion tests, reversal learning, and extinction 
protocols tasks. Zhao et al.16 proposed a brain-inspired decision-making spiking neural network (BDM-SNN) 
to model the multi-brain areas coordinated decision-making circuit and applied it to decision-making tasks on 
intelligent agents. The proposed model has greater accuracy and is faster than traditional reinforcement learn-
ing method. Dezfouli et al.17 proposed a recurrent neural network to generate a flexible family of models that 
have sufficient capacity to represent the complex learning and decision-making strategies used by humans. On 
two-armed bandit task, the proposed method is better than baseline reinforcement-learning methods in terms 
of overall performance and its capacity to predict subjects’ choices. Kleinman et al.18 trained multi-area recurrent 
neural networks (RNNs) via gradient descent using backpropagation through time and Adam optimizer. Multi-
area RNNs reproduced the decision-related dynamics observed in dorsal premotor cortex of monkeys on the 
Checkerboard task. These methods simulated the structure and function of decision circuit to a certain extent. 
The models either reproduced several observations found in neuroscience experimental studies or inspired a 
more intelligent decision-making algorithm.

The main contributions of this paper are as the following: (1) We model Drosophila vision-based linear and 
nonlinear decision-making system from spiking point neuron-level to brain areas-level and finally with similar 
behavior level outputs. (2) We design a conflict monitor as a switching rule between linear and nonlinear path-
ways to decide which one should be chosen when confronted with specific visual cues. (3) The DrosDecMa model 
presents similar abilities as the Drosophila trained in flight simulator on both non-conflicting and conflicting 
visual cues learning, and it could be applied to UAV for reinforcement learning and online reversal learning tasks. 
(4) We further discuss the significance of the DA-GABA-MB mechanism of the nonlinear circuit and apply it 
to the UAV decision-making tasks, such as the autonomous flying through window task and the obstacle avoid-
ance task. Experimental results indicate that the DA-GABA-MB mechanism has good generalization on making 
clear-cut decisions among multiple conflicting choices.

Results
Simulation of Drosophila visual learning experiments.  This section verifies the DrosDecMa model 
on Drosophila visual learning experiments which are almost the same as the visual learning experiments in3. The 
experiments are divided into two phases: the training phase and the choice phase. Each phase takes 2 s. Every 
time the model receives a pair of visual patterns, one is the current input pattern and the other is the inhibited 
pattern. The model’s output represents the chosen behavior. Behavior 1 means approaching the current pattern, 
and behavior 2 means flying towards another visual pattern (avoiding current pattern). Punishment only occurs 
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in the training phase to modulate the network weight. We conduct several training-choice decision-making 
experiments to verify the effectiveness of our DrosDecMa model.

where t1 represents the total time of choosing behavior 1 and t2 represents the total time of choosing behavior 2.

Learning single visual cue.  For single visual cue learning tasks, the color and shape cues are trained 
respectively, and the same patterns are used for training and choice phases, which are shown in Fig. 1a. Firstly, 
facing upright-green T is trained to be a safe state, while facing upright-blue T will get punishment. Then choices 

(1)PI = (t1 − t2)
/

(t1 + t2)

Figure 1.   The simulation results of Drosophila visual learning experiments. (a) The training phase and the 
choice phase of single color or shape learning. The red fire mark represents heat punishment when facing a 
specific visual pattern. (b) The training phase and the choice phase of learning two visual cues. (c) After learning 
two visual cues, choice phase on shape learning over the range of CI from 0 to 1. (d) After learning two visual 
cues, choice phase on color learning over the range of CI from 0 to 1. X-axis represents the change of CI from 0 
to 1, and y-axis represents the change of PI. (e) The training phase of learning two visual cues with CI = 0.8, and 
during the choice phase, the reversed visual cues are tested with CI value from 0.1 to 2. (f) For two conflicting 
cues learning, the experimental results on nonlinear decision-making network, linear decision-making network 
and non-trained network. X-axis represents the change of CI from 0.1 to 2, and y-axis represents the change of 
PI.
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are made to evaluate the color learning ability. The numbers of choosing behavior 1 and 2 are counted during 2 s 
to calculate PI. PI is equal to 1 when facing upright-green T which means the model chooses approach behav-
ior all the time, while PI is equal to − 1 when facing upright-blue T which means the model chooses avoidance 
behavior all the time. PI shows that the model could correctly choose safe behavior. This process is also acted 
on the shape learning task (upright-white T and inverted-white T), and the model could learn to prefer the safe 
shape.

Learning two visual cues.  For two visual cues learning tasks, the color and shape cues are trained simul-
taneously, and choices are made on a single cue, which is shown in Fig. 1b. Firstly, upright-green T is trained to 
be safe, and inverted-blue T is with punishment. Then we test whether the model has learned every single cue 
by making choice between upright-green T and upright-blue T (test color cue), and between upright-white T 
and inverted-white T (test shape cue). PI shows that the model approaches green color and avoids blue color for 
single color test, while approaches upright shape and avoids inverted shape for single shape test. As a result, the 
model has learned safe visual cues.

The influence of color intensity (CI).  To test whether learning one cue is influenced by another cue, 
upright-green T and inverted-blue T (with heat punishment) are trained and choices are made on single color 
and shape patterns with the consideration of different color intensity (CI , with the range from 0 to 1). CI changes 
the value of color, such as [0, 10 ∗ CI , 0, 10, 0] represents the upright-green T with different color saliency (where 
CI ∈ [0, 0.1, 0.2 . . . 1] ). Then we test shape learning by choice making between upright T and inverted T. The 
result is shown in Fig. 1c, where PI is equal to 1 when facing upright shape, and equal to − 1 when facing inverted 
shape. Besides, the value of PI is constantly equal to 1 and − 1 over the range of CI from 0 to 1. This indicates that 
shape learning is not influenced by the change of CI.

In addition, we test the color learning ability through choice making between upright-green T and upright-
blue T. As shown in Fig. 1d, the visual input is upright-green T, and the color cue learning is influenced by CI. 
When CI < 0.1, PI is equal to 0. It indicates that the numbers of choosing behavior 1 and 2 are the same, and the 
model could not learn color cue. When CI ≥ 0.1, PI is constantly equal to 1. The turning point (CI = 0.1) indicates 
that only when the color cue is clear enough can the model learns color cue.

Learning two conflicting visual cues.  For two conflicting visual cues learning tasks, the nonlinear cir-
cuit is used to make clear-cut decisions. Here, we implement both linear and nonlinear circuits and analyze 
the decision-making ability of them, respectively. The training and choice phases are shown in Fig. 1e. Firstly, 
upright-green T is trained to be safe, and inverted-blue T is with punishment, with CI = 0.8. In the choice phase, 
we inverse the two cues by making choice between inverted-green T ( [0, 10 ∗ CI , 0, 0, 10] ) and upright-blue T 
( [0, 0, 10 ∗ CI , 10, 0] ), and the visual input is upright-blue T. We test this shape-color dilemma choice experiment 
over the range of CI from 0.1 to 2 ( CI ∈ [0.1, 0.2 . . . 2] ). Here, CI = 1 means the saliency of shape and color are 
the same, and CI > 1 means the color cue is more salient than shape cue, and CI < 1 means shape cue is more 
salient than color cue.

The experimental results on the nonlinear circuit and linear circuit are shown in Fig. 1f. The nonlinear circuit 
displays a sigmoid-shape curve, while the linear circuit displays a linear-shape curve. The blue line in Fig. 1f 
represents the PI value of the non-trained network, and PI is constantly equal to 0 because the non-trained 
network could not make choice between two conflicting cues. The black line represents the result of the linear 
decision-making network, where PI > 0 when CI < 1 and PI < 0 when CI > 1. PI > 0 indicates that the model almost 
approaches upright-blue T, while PI < 0 indicates that the model almost avoids upright-blue T, and the closer that 
the absolute value to 1, the more clear choice the model can make. Linear decision-making is ambiguous when 
the difference between saliency of two cues is slight, thus the curve is linear and the absolute value of PI is closer 
to 0. The red sigmoid-shape line in Fig. 1f is the result of nonlinear decision-making network. When CI < 1, PI > 0 
indicates the model follows shape cue to approach upright-blue T. When CI > 1, the color cue is more salient than 
shape cue, then PI < 0 indicates that the model follows color cue to avoid upright-blue T. The result is consistent 
with the prediction. Comparing nonlinear curve with linear curve, it is obvious that nonlinear decision-making 
network could make clear-cut choice even if two cues have similar saliency. The reason is that the nonlinear 
circuit could amplify the slight difference between the two choices and then quickly make clear choice.

Application of the DA‑GABA‑MB mechanism.  To further explore the clear-cut decision-making abil-
ity of nonlinear circuit, we apply the DA-GABA-MB mechanism to the UAV multiple choices tasks in the natural 
scene. We conduct two types of UAV decision-making tasks: the UAV flying through the window and the UAV 
obstacle avoidance.

Application on the UAV flying through window task.  The UAV is first situated in the corner of the window, then 
it learns the rules to fly close to the window’s center by the interaction with environment. The detailed reinforce-
ment learning process is introduced in19. When the UAV is situated in the upper-left, upper-right, lower-left and 
lower-right corners of the window, there are two choices with reward. For example, when the UAV is situated in 
the upper-left corner as Fig. 2a shown, flying down and right are both able to reach the goal. Note that the 
required steps are different for different choices. How can the UAV make clear-cut decision between two choices? 
Here, we introduce the nonlinear decision-making mechanism to help the UAV make clear-cut decisions 
between two choices. The image of UAV’s vision is depicted in Fig. 2b, where the window’s width in the UAV’s 
vision is d1, and the window’s height in the UAV’s vision is d2. d1 and d2 represent the two conflicting cues, and 
the corresponding actions are flying along horizontal direction and vertical direction, respectively. Here, we test 
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the required steps from initial states to goal state by nonlinear, linear, and uniform decision-making manners. 
For uniform decision-making manner, the probabilities of following horizontal cue and vertical cue are equal: 
p1 = p2 = 0.5. For linear and nonlinear circuits, the probability of following horizontal cue and vertical cue is 
pi = ti

/

∑n
j tj

 , where ti denotes the number of spikes of cue i in kenyon cells (KC) layer for nonlinear circuit (or 
input layer of central complex (CC) for linear circuit), n is the number of cues. We note that the steps from the 
same states to goal are similar for nonlinear, linear and uniform decision-making. The inputs d1 and d2 are nor-
malized to suit the network’s input (from 1 to 20) of nonlinear and linear circuits.

Figure 2c shows the required steps from different initial states to goal by different decision-making manners. 
The required steps are the average of 16 trials for each manner. The nonlinear decision-making is the fastest man-
ner, and the linear decision-making is slower than nonlinear decision-making, and the slowest one is uniform 
decision-making. Some key image sequences with the same initial state and the similar input saliency under 
different manners are shown in Fig. 2d. For nonlinear decision-making, the UAV always follows the more salient 
cue and quickly reaches the goal. For linear decision-making, there are also some steps following the shorter edge, 
so that the needed steps from initial state to another state is more than nonlinear decision-making. For uniform 
decision-making, the UAV is so indecisive between two choices that it needs more steps to reach another state. 
The experimental results support that nonlinear decision-making is superior to linear decision-making and 
uniform decision-making. And it further indicates that the DA-GABA-MB mechanism is effective to amplify 
the conflicting cues and helps UAV complete decision-making task with fewer steps.

Application on the UAV obstacle avoidance task.  For the UAV obstacle avoidance task, choosing appropriate 
avoidance behavior is important in order to quickly avoid the danger. In this scenario, the action space contains 
flying left, up, right and down. The corresponding cues are four distances (left d1, up d2, right d3, down d4) 
between the centers of the obstacle and the borders of UAV’s vision respectively, as Fig. 3a shown. The required 
steps of avoiding obstacle are different for different choices. For example, when the obstacle is on the right side 
of the UAV, then flying left can quickly bypass obstacle, while flying right is more time-consuming and may lead 
to potential danger. The four conflicting cues as the input neurons are transmitted to the visual input layer. Then 
the visual input neurons project to KC layer and the input layer of CC by one-to-one correspondence. We test 
the effects of linear decision-making, only anterior posterior lateral neurons (APL) decision-making (reciprocal 
full connections between KC and APL neuron) and nonlinear decision-making manners. The probability of fol-
lowing each cue is pi = ti

/

∑n
j tj

 , where ti denotes the number of spikes of cue i in KC layer (or input layer of CC 

Figure 2.   The experimental process and results on the UAV flying through window task. (a) The multiple 
choice problem of the UAV flying through window task. (b) Two conflicting cues of the UAV flying through 
window task. (c) The required steps from different initial states to goal by nonlinear, linear and uniform 
decision-making manners respectively. The X-axis represents the four initial states with two conflicting choices. 
(d) Some key image sequences with the same initial state and the similar input saliency by nonlinear, linear and 
uniform decision-making manners respectively. The red arrows represent the UAV’s flying direction.
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for linear circuit), n is the number of cues. The inputs are normalized to suit the network’s input (from 1 to 20) 
of different circuits.

Figure 3b shows an example of the detected obstacle in UAV’s vision, and the obstacle detection algorithm 
is a stereo vision model, semi-global block matching (SGBM)20. After locating the obstacle, four distances d1, 
d2, d3, d4 are calculated as the saliency of four cues. It is obvious that the differences among the saliency of four 
cues are slight. The probabilities of following four cues by different methods are shown in Fig. 3c. For the linear 
circuit, the probabilities of choosing four choices are similar. By contrast, both the nonlinear circuit and only 
APL circuit could highlight the most salient cue d3, then the UAV will fly towards right with a great probability. 
Compared with only the APL circuit, the nonlinear circuit could maximize the difference of four probability 
and highlight the most salient cue. To sum up, the DA-GABA-MB mechanism can amplify the difference among 
the four cues, and make clear-cut decision (with the biggest probability on d3). While the linear circuit and only 
APL mechanism perform worse than the DA-GABA-MB mechanism.

Decision of flying robot UAV.  We further apply the DrosDecMa model to the UAV two visual cues learn-
ing and the online reversal learning experiments. A DJI MATRIX 100 UAV is used as a test platform. A 2.4 GHz 
wireless digital video camera (1/4 CCD) is used to acquire visual inputs. We discriminate different visual pat-
terns based on color and shape features. The detailed experimental processes are as follows:

Learning two visual cues.  The visual input contains upright-green T and inverted-blue T. During the training 
phase, the output neuron id with the first emitting spike is the chosen behavior. If the model outputs neuron 1, 
then the UAV keeps still, otherwise, the UAV flies towards another visual pattern. The image sequence of the 
training phase is shown in Fig. 4a. In the first step, the UAV is situated in front of the inverted-blue T (image 
1), and it chooses behavior 1 which means staying here (image 2). Then, it suffers a punishment by projecting a 
red fist (image 3). The UAV learns the incorrect behavior 1 when confronted with inverted-blue T, and chooses 
behavior 2 to fly towards upright-green T (image 4). There is no punishment when confronted with upright-
green T (image 5) and the UAV has made a correct choice. When situated in upright-green T which the UAV has 
not learned, it randomly chooses the behavior 2 and flies towards inverted-blue T (image 6). After flying towards 
inverted-blue T, the UAV suffers fist projection punishment again (image 7) and learns the incorrect choice 2 in 
upright-green T. Because the UAV has learned the correct behavior 2 in inverted-blue T, it could quickly make 
choice 2 to fly towards upright-green T (image 8). The UAV has also learned the incorrect behavior 2 in upright-
green T, and it chooses behavior 1 to continuously situate in front of the upright-green T (images 9 and 10). As 
we can see, for each pattern, the UAV can learn the correct choice within one incorrect decision, thus for the 
whole task of two patterns, at most two incorrect decisions are made before the UVA learns the correct choice.

After training on upright-green T and inverted-blue T, we test the decision-making ability on single cue, 
which is shown in Fig. 4b–e. Here the behavior 1 represents approaching (flying forward) and behavior 2 repre-
sents avoidance (flying backward). We first test the decision-making ability on color learning, and the UAV makes 

Figure 3.   The experimental process and results on the UAV obstacle avoidance task. (a) Four conflicting cues 
learning of the UAV obstacle avoidance task. (b) The pink rectangle represents the area of the detected obstacle. 
The red arrow represents the chosen avoidance action. (c) The probabilities of following four cues by linear, only 
APL and nonlinear manners.
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choice between upright-green T and upright-blue T. Figure 4b shows that the UAV approaches upright-green 
T, while Fig. 4c shows that the UAV avoids upright-blue T. Then, we test the shape learning ability by making 
choice between upright-white T and inverted-white T. Figure 4d shows that the UAV approaches upright-white 
T, and Fig. 4e shows that the UAV avoids inverted-white T. These results indicate that the UAV has learned to 
prefer the upright shape and green color.

Online reversal learning.  In reversal learning, the UAV first learns to make choice between two patterns with 
one of them related to punishment. In some cases, the environmental constraints may change, the former 
rewarded one may become punished, and the former punished one becomes rewarded. The model must be 
with the ability to capture these changes. Reversal learning is an advanced cognitive ability and we use it to test 
the adaptability of the model21. We design the reversal learning experiments as the following: The DrosDecMa 
model first learns making choice between upright-green T and inverted-blue T (with punishment). Then after 
learning the correct choice, we reverse the punishment to upright-green T and inverted-blue T is safe. We try 

Figure 4.   The experimental results of the UAV reinforcement learning and reversal learning. (a) The training 
phase of the UAV two visual cues learning. A red fist is used to simulate heat punishment when the UAV is 
situated in front of inverted-blue T (image 3 and 7). (b–e) The test phase of the UAV two visual cues learning. 
We test the color learning ability by making choice on upright-green T (b) and upright-blue T (c). We test the 
shape learning ability by making choice on upright-white T (d) and inverted-white T (e). A blue rectangle is 
used as the reference object which is stable in different images. (f) The experimental results of reversal learning. 
The learning process contains two times of reverse and the y-axis is the chosen behavior. The blue bars denote 
the reversal learning process and red bars denote the learning ability on single cue. The red crosses represent 
incorrect choice and the red check marks represent the correct choice.
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two reversal experiments and summarize the experimental results in Fig.  4f. In the online reversal learning 
experiment, behavior 1 represents staying in front of the current pattern, and behavior 2 represents avoiding the 
current pattern and moving towards another pattern.

Firstly, the UAV is situated in front of invert-blue T and chooses behavior 1 to stay, and punishment occurs. 
Then it flies towards upright-green T and this choice is correct. For the upright-green T, it first tries behavior 
1 and it is safe, so the UAV keeps situating in front of the upright-green T. Then we reverse upright-green T to 
be punished while inverted-blue T is safe. Because the UAV has learned that behavior 1 is correct when facing 
upright-green T, it will continue choosing behavior 1. In this reversal case, heat punishment happens, and the 
UAV reduces the probability on choosing behavior 1 in upright-green T. Then, after two punishments, the UAV 
learns the new rule and chooses behavior 2 to avoid upright-green T and fly towards inverted-blue T. However, 
because inverted-blue T has been learned to be punished before reversing, the UAV chooses behavior 2. Then 
the UAV learns the new rule in inverted-blue T and keeps staying in front of it after two punishments. In most 
cases, the reversal learning ability happens after the UAV makes two incorrect behaviors. As a result, we can 
conclude that the DrosDecMa model could learn correct choice within one incorrect choice for reinforcement 
learning, and within two incorrect choices for online reversal learning.

During online reversal learning, it is important to think whether the model still has the ability to learn two 
cues respectively. Namely, after reversing several times, whether the model could still make the new correct 
choice? The red bars in Fig. 4f denote the single cue learning ability. After two times of online reversal learning, 
the UAV has learned the newest rule that upright-green T is safe while inverted-blue T is punished. Then we 
test color learning by making choice between upright-green T and upright-blue T. The UAV chooses behavior 
1 for upright-green T and behavior 2 for upright-blue T, which indicates that the UAV has the ability on color 
learning after several times of online reversal learning. Experimental results show that shape learning supports 
the same conclusion.

Discussion
In this paper, we proposed the DrosDecMa model which simulated the Drosophila vision-based linear and 
nonlinear decision-making circuits from spiking point neuron-level to brain areas-level and behavior level. 
The decision-making process can freely switch between two distinct neural circuits based on the demand for 
visual learning tasks. For the linear pathway, we simulated the memory function in CC to make a fast decision. 
For the nonlinear pathway, we modeled the DA-GABA-MB circuit to implement a gain-gating amplification 
mechanism. We verified our model on Drosophila visual cues learning experiments, the results showed that with 
the brain-inspired structures and mechanisms, the DrosDecMa model produced similar outputs compared to 
Drosophila behavior experiments in3,4. Besides, the application on UAV decision-making tasks showed that the 
DA-GABA-MB works in a recurrent loop providing a general principle to amplify the difference among multiple 
conflicting choices and is helpful to make clear-cut decisions quickly.

Specifically, for the influence of CI task, the shape cue learning is not influenced by the change of color’s 
value, while color cue learning depends on the CI. The turning point of CI is 0.4 in3, and 0.1 in our case. For two 
conflicting cues choice, the tendencies of linear and nonlinear circuits in our model are the same as the Dros-
ophila behavior experiments3, while the CI intersections with PI = 0 is different from the Drosophila experiment 
which is 0.8 in3, and 1 in our case. The reason is that in our DrosDecMa model, the visual cues are represented 
as a numeric value, while for biological experiments, the input is not a numeric value, hence leading to some 
differences.

For Drosophila visual learning experiments, with the DA-GABA-MB mechanism, the nonlinear circuit is 
significantly superior to the linear circuit on learning two conflicting visual cues. Now we consider two ques-
tions: (1) Why both linear and nonlinear circuits (not just nonlinear circuit) are needed in Drosophila brain? 
When confronted with non-conflicting cues, the linear circuit with simple connection structure is enough to 
solve vision-based learning. Only when there exist conflicting cues, the linear circuit could not perform the 
clear-cut decision, then the nonlinear circuit with DA-GABA-MB mechanism will be opened to solve this situ-
ation. Adaptively switching between linear and nonlinear circuits is the embodiment of brain economics. For 
the UAV reinforcement learning tasks introduced in the Results section, the linear circuit is enough to achieve 
vision-based learning, and for this kind of task, the nonlinear circuit will not be opened. While in the case of 
multiple conflicting choices, the nonlinear circuit outperforms the linear circuit and we apply it to the UAV 
multiple conflicting decision-making tasks. As a result, the switching between linear and nonlinear circuits 
depends on the demand of the task. (2) Why the nonlinear circuit performs better than linear circuit when con-
fronted with multiple conflicting options? The training phase of nonlinear and linear circuits are the same, and 
the choice phase does not change the connection weights between input and output neurons at all. The major 
difference between nonlinear and linear circuits is the DA-GABA-MB mechanism. It is the core reason why the 
nonlinear circuit could perform the ambiguous decision-making task well, while the linear circuit could not. 
We eliminate the effects of DA or APL in our model to test the result of decision-making respectively, as shown 
in Fig. 5a. When we eliminate both the effects of DA and APL on MB, the result is shown as the blue line in 
Fig. 5a, which is the same as the curve of the linear circuit. When eliminating the effect of DA, then only APL 
continuously inhibits KC, the result is shown in the red line in Fig. 5a, which is unstable for decision-making. 
The experimental results indicate that DA and APL collectively and interactively play important gain-gating 
roles in nonlinear decision-making4,6.

In the proposed model, the duration time of DA activity is 100 ms. It is essential to analyze and discuss 
how the duration time of DA activity influences the result of nonlinear decision-making. We test the results of 
different duration times on nonlinear decision-making as shown in Fig. 5b. All results with duration time are 
1000 ms, 300 ms and 10 ms are worse than 100 ms and 70 ms, which indicates that the decision would be failed 
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when the duration time of DA activity is too long or too short. The difference between the results of 100 ms and 
70 ms is relatively not obvious, which indicates the good generalization for different DA duration time given an 
appropriate time slot.

We further analyze the effect of DA-GABA-MB mechanism on nonlinear circuit. For nonlinear circuit, the 
DA-GABA-MB mechanism can amplify the slight difference between two conflicting cues. We take two con-
flicting cues (cue 1 is equal to 9, and cue 2 is equal to 10) as an example, the spikes of the visual input layer are 
shown in Fig. 5c. Then, we compare the spikes of the input layer of CC for linear circuit, the KC layer for only 
APL circuit, and nonlinear circuit. Here we only show the spikes during the first 500 ms. For the linear circuit, 
there is only a slight difference between the spikes of the two cues of the CC’s input layer. For the circuit only 
with APL’s inhibition, two cues are both inhibited by APL and the numbers of two cues’ spikes are reduced but 
the difference between them is not amplified. For nonlinear circuit, during the first 100 ms, where DA is acti-
vated, the number of spikes for the more salient cue is bigger than the weaker one. After that, APL continuously 
inhibits the weaker cue. In this way, DA facilitates the salient cue pass and APL suppresses the weaker cue pass.

Previous related studies on the construction of Drosophila decision-making neural circuits can be divided 
into two categories. Wei et al.7 and 8 mainly focused on the connections and interactions among excitatory and 
inhibitory spiking neurons during the training phase. The network circuit is shown in Fig. 6a. Punishment 
regulates learning by inhibiting input neurons and activating output neurons. Wei et al.8 considered conflicting 
cues learning compared with7, but the network structure of nonlinear decision-making has no change. For con-
flicting cues learning, the input cues are encoded by a linear or nonlinear probability form, and then transmit 
to the decision-making network. The decision-making network is the integration of multiple simple circuits, 
when confronted with the unseen condition, the network needs to be expanded. Besides, the nonlinear shape 
is based on the nonlinear input pattern, not the effect of neural circuit. This paper makes sure that the visual 
input is the same both in the linear and nonlinear decision-making circuit, and only the different neural circuit 
leads to different results. Thus, the nonlinear decision-making ability is attributed to the DA-GABA-MB circuit, 
which is shown in Fig. 6c.

Figure 5.   The comparative analysis of DA-GABA-MB mechanism, only APL and non-DA-APL (linear) 
decision-making manners. (a) The experimental results of using both DA and APL, only APL, and non-DA-
APL nonlinear decision-making. (b) The experimental results on different duration times of DA activity. (c) The 
spike trains of the two cues of the visual input layer, input layer of CC and KC layer under different circuits.
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Cai et al.9 and Wu and Guo10 mainly focus on the decision-making process on conflicting cues. Cai et al.9 
considered that nonlinear decision-making is related to the dopamine modulations on MB. Here, dopaminergic 
neurons send tonic inhibitory inputs to MB, suppressing its connection to the decision-making layer in normal 
situations. When conflicting cues are observed, conflict monitor inhibits dopaminergic neurons and consequently 
the gate for the MB output to the decision-making layer is opened. MB receives the input from decision-making 
layer and in return lateral inhibits the other choice in the decision-making layer. The network architecture is 
shown in Fig. 6b. This method considers partial decision-making mechanism in Drosophila, but lacks the com-
plex MB related decision-making circuit. Wu and Guo10 simulated the nonlinear circuit by a raised dopamine 
level to enhance the lateral inhibition between decision-making units. Cai et al.9 and Wu and Guo10 are focus on 
mathematical calculations, which have no spike information transmission. To sum up, the existing models do 
not reflect the actual working mechanism of Drosophila decision-making system. This paper simulates the CC for 
linear circuit and DA-GABA-MB loop for nonlinear circuit respectively, which shows more biologically plausible.

For conflicting cues learning experiments, we do a deep comparison and analysis of our proposed model and 
the existing models (including8–10). To make sure that the comparison is feasible, we unify the curve of nonlin-
ear decision-making results of different models in the same dimension space and mainly observe the change 
trend of PI. By changing the color intensity of cues, a Boltzmann fit of PI produced when using sigmoid-shaped 
color-shape selection curve as input, and the changing of PI is depicted in Fig. 7 (black line)8. In the presence of 
conflicting cues, Cai et al.9 provides two biased inputs I1b and I2b as the input cues of decision-making layer. The 
two bias inputs represent the two competitive choices induced by two conflicting cues. Then, one bias is fixed 
while the other is changed, and simulations are repeated under different distances between two bias I1b − I2b . The 
blue line in Fig. 7 shows the change of PI with different I1b − I2b . The conflicting cues learning experiments in Wu 
and Guo10 focus on the color-position dilemma. Δ is used to represent the position saliency of visual targets. 

Figure 6.   The network architecture in7 (a)9, (b) and our method (c). The red circle represents inhibited 
neurons. The orange circle represents excited neurons. The red line represents inhibited connections. The blue 
line represents excited connections. The CM is the conflict monitor.

Figure 7.   The comparative results of our model with other biologically inspired models on conflicting cues 
learning tasks.
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By changing Δ and repeating the choice task, the change of PI is obtained and shown in the green line of Fig. 7. 
Actually, different CI, I1b − I2b , and Δ indicate the relative saliency of two visual cues. For different models, PI 
exhibits a sigmoid shape consistently, which indicates the nonlinear decision-making ability of these models. 
Comparing our method (the red line in Fig. 7) with other models, our method can amplify the small difference 
more clearly and contributes to clearer winner-takes-all decision.

Thus, the DrosDecMa model captures the necessary biological characteristics of Drosophila vision-based 
linear and nonlinear decision-making circuits and mechanisms. It can successfully describe and predict the 
experimental findings in Drosophila. Furthermore, the UAV can quickly make clear-cut decisions among multiple 
conflicting choices by introducing the DA-GABA-MB mechanism. It is our first preliminary attempt to bring 
Brain Science data and Brain-inspired neural network design together. People will ask, will such a study help 
us understand how high-level brain works as a whole? From Darwinian evolution-selection point of view, the 
MB in insect brains may represent an evolutionary primitive brain structure homologous in form and function 
to structures in the high-level brains22–24. It is worth mentioning that it has been revealed surprising common 
circuit design in fly and mammalian motion vision systems only recently while at first glance, the eyes of mam-
mals and compound eyes of insects do not seem to have much in common25. It is well known that in human 
vision are multi-stable percepts such as the Necker cube or Rubin’s vase. It has been demonstrated recently that 
also Drosophila may experience sensory ambiguity and multi-stable perception26.

Primate decision-making can also be divided into linear (perceptual decisions) and nonlinear decision-
making (value-based decision-making)27. Dopamine, as a prediction error in reinforcement learning, and as well 
as GABAergic system also plays a crucial role in value-based decision-making in primate28. So, we believe that 
the elucidation of the fly’s decision-making algorithm may provide some insight into complex decision making 
in the high-level brains. Thus, it encourages us to further explore the relationship and differences between Dros-
ophila’s and primate’s brain for their decision-making mechanisms, and in this way to build-up a brain-inspired 
intelligence model.

Methods
The neuroanatomy of Drosophila decision‑making system.  Linear circuit and non-linear circuit 
work together contributing to the Drosophila decision-making system. The linear circuit is the fast circuit for 
simple perceptual decision-making. When Drosophila confronts a shape-color dilemma, the nonlinear circuit 
exhibits clear-cut decision by amplifying the difference between the slight saliency of two conflicting cues4,6. The 
Drosophila can adaptively switch between the two neural circuits based on the demand of vision-based learning 
tasks. Here, we simplify the process of visual information processing and action execution. A series of behavior 
experiments have evidenced that five visual features including color, shape, size, vertical position, and elevation 
can be recognized by Drosophila29. The color and shape information are firstly extracted by the compound eye of 
Drosophila6,30. The inhibitory connections among the fly’s visual system are useful for visual selective attention 
and filtering specific cue to the central nervous system (e.g. CC and MB)31.

Linear decision-making circuit. The main brain area of the visual linear decision-making circuit in Drosophila 
brain is CC. Short-term memory is localized in fanshaped body of CC9. Pan et al. evidenced that ellipsoid body of 
CC is also involved in visual memory32. CC is also in charge of flying because it is the area where decision is made 
first. After the decision is made there, it will be projected to the motor area1. The linear circuit is almost enough 
to make choice when the visual input is simple and non-conflicting. When confronted with conflicting cues, 
the linear circuit could not make clear choice, and nonlinear circuit will be opened to make clear-cut decisions9.

Nonlinear decision-making circuit. This circuit mainly depends on MB and DA system3,4,10. MB is the most 
important structure in Drosophila, which is constituted mainly by about 2000 KC33,34. When confronted with con-
flicting visual cues, DA-MB circuit could provide a gain-gating mechanism to enhance the relative salient cue and 
suppress the less salient cue, thereby modulates the decision-making4,6. Conflicting visual cues induce a phasic 
response of dopaminergic neurons and then result in an increase of dopamine levels in MB, and such an increase 
may sustain 70–100 ms35. On the other hand, there is a pair of APL GABAergic interneurons, which innervate the 
peduncle, whole lobes (output area) and calyx (input area) of MB, have been found both pre synapses and post 
synapses at all areas. It has been demonstrated in locusts the existence of a normalizing negative-feedback loop 
connection between the MB and a "giant" non-spiking GABAergic inhibitory interneuron (equivalent to APL 
in fly)36. Using the single cell RNA-sequencing technology, we discovered the reciprocal connections between 
KC and APL neurons that KC could activate the APL neurons, and in turn the APL neurons release the GABA 
transmitter to inhibit the activity of KC11. Further, we identified a new synaptic connection from the DA neurons 
to the APL neurons and characterized an inhibitory dopamine signal in this DA-to-APL synapse12. Thus, the 
increase of dopamine inhibits APL’s activity which is mediated by the Dopamine 2-like receptor (DD2R). In 
this way, DA facilitates the relatively salient cue pass until the DA’s level falls, and after that, APL continuously 
inhibits visual inputs37. Together the DA-GABA-MB circuit mechanism provides a gain-gating mechanism for 
decisive and sharp winner-takes-all decision-making6.

The DrosDecMa model.  The proposed DrosDecMa model simulates the linear and nonlinear decision-
making circuits in Drosophila from spiking point neuron-level to brain areas-level, and is with similar behavior 
outputs compared to Drosophila. In this section, we will introduce the detailed model implementation process. 
SNN is considered as the third generation of Artificial Neural Networks38. It encodes the information in spike 
trains instead of spike rates as in the Artificial Neural Networks39. That makes SNN more biologically plausible, 
and more computationally feasible for modeling cognitive functions40,41. We use Brian simulator42,43 to model 
the DrosDecMa Spiking Neural Network. Because the leaky integrate-and-fire (LIF) neuron model44 is simple 
and computationally efficient, this paper uses LIF neuron model to build SNN and the calculation formula is 
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shown in Eq. (2), where v(t) represents the membrane potential at time t, τm is the membrane time constant and 
R is the membrane resistance. When the membrane potential v(t) reaches a certain threshold vth, it is instantane-
ously reset to a lower value vr. Here, we set vth = 0.1, vr = 0, τm = 20.

In Drosophila visual learning experiment, two visual patterns are provided at the same time, and Drosophila 
needs to make a decision on one of the two patterns, which is called current visual input. Each visual pattern has 
two cues, namely shape and color cues, such as upright-green T and inverted-blue T. Here, we use five neurons 
to represents the visual input. The first three neurons represent R, G, B color space respectively, and the last two 
neurons represent upright or inverted T. For example, [0, 10, 0, 10, 0] represents upright-green T and [0, 0, 10, 
0, 10] represents inverted-blue T. The value 10 represents the strength or the saliency of color and shape cues. 
The neurons in the visual system are used to convert external stimuli to spiking trains. When confronted with 
two candidate visual patterns, Drosophila needs to make choice to fly towards one of the two visual patterns. 
For two competitive visual patterns, Drosophila visual system can automatically filter out noise information and 
selectively pay attention to salient visual cue by simple subtraction of two input visual patterns. Every time the 
current visual input is directly projected to the visual system, and the other visual pattern subtracts this current 
visual input by one-to-one inhibition. In this way, when confronted with upright-white T and inverted-white 
T, the color cue (white) is the noise because the color is the same in two visual patterns, and the visual system 
could filter out the color cue and only allow shape cue to pass.

The Drosophila visual learning experiment contains two phases: namely, the training phase and the choice 
phase. The detailed network architecture, learning and working mechanism of the training phase and choice 
phase are introduced as follows:

Training phase.  The training phase learns the safe visual pattern between two visual patterns with heat punish-
ment on one specific visual pattern4. Then the model needs to learn the safe visual pattern and the corresponding 
shape and color cues. Visual input is projected to the linear circuit and nonlinear circuit at the same time, and 
the training phase of two circuits are the same. The basic architecture is shown in Fig. 8a. Here, the orange areas 
represent the main brain regions (CC) of the linear circuit, and the green areas represent the main brain regions 
(MB) of the nonlinear circuit. Every time we input one visual pattern and the other as the inhibitory input for 
filtering out the noise features. The visual information then projects to the input layer of CC and the KC layer 
of MB by one-to-one correspondence. As a result, the number of neurons in visual system is 5, and the number 
of neurons in KC and input layer of CC are 5. In the CC, we design the linear decision-making network with 
two layers which are corresponding to the input layer and output behavior layer respectively. The connections 
between the input layer and the output layer in CC are full connections. The output behavior contains behavior 
1 (approaching) and behavior 2 (avoidance). In MB, the KC receives visual cues from the visual system, and 
has full connections with mushroom body output neuron (MBON) to produce output behavior34,45. The output 
behavior also contains behavior 1 (approaching) and 2 (avoidance). The mutual inhibition exists between two 
output neurons of CC and MBONs of MB46.

For two visual patterns, one is safe and the other is punished. The training phase separately learns each visual 
pattern for 1 s. When given visual input, the output neuron id with the first emitting spike is the chosen behavior. 
The punishment occurs when choosing behavior 1 under punishment-related visual input and choosing behavior 
2 under safe visual input. Then dopamine neurons modulate the learning process of both linear and nonlinear 
circuits. This paper combines dopamine regulation and STDP mechanism to modulate the network’s training 
process, which shows more biologically plausible.

(2)τm
dv

dt
= −v(t)+ RI(t)

Figure 8.   The training phase (a) and the choice phase (b) of the DrosDecMa network architecture. The blue 
arrows represent excitatory connections, and the red ones represent inhibitory connections.
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Synaptic plasticity.  STDP is widely used as an unsupervised learning principle for SNN. It is used to learn 
connection weights according to the relative time between spikes of presynaptic and postsynaptic neurons. The 
modulation rule is: If the postsynaptic neuron fires a few milliseconds after the presynaptic neuron, the connec-
tion between the neurons will be strengthened, otherwise, the connection will be weakened47. The update func-
tion is shown in Eq. (3), where A+ and A− are learning rates, τ+ and τ− are time constant, and Δti is the delay time 
from presynaptic spike to postsynaptic spike. Here, we set A+ = 0.925,A− = 0.9, τ− = τ+ = 20.

Because STDP is triggered when the postsynaptic neuron sends out spike, it is considered as a local, instanta-
neous modulation mechanism. During the training phase, STDP happens in all the connections of the training 
network.

Dopamine regulation.  The training phase is a reinforcement learning process to learn correct behavior, and 
heat punishment is the reinforcement signal. Dopamine modulates the learning process because it is consid-
ered as carrying punishment signal29. Dopamine-induced synaptic plasticity contributes to the formation of 
aversive memories in insect. Experiments show that DA could perform different functions, such as saliency 
sensitive, reward sensitive and punishment sensitive48,49. Here, punishment-related DA performs as a global 
neuromodulator to regulate the specific connections. Compared with the local STDP mechanism, DA works 
when the punishment occurred, and DA only makes a difference in the specific connections which are leading to 
the punishment. Punishment-related DA increases transiently in the MBs in response to aversive stimulation50, 
and the phasic dopamine regulates the change of synaptic activity in MB. Two types of dopamine receptors, D1 
and D2, that are instrumental in responding to reward and punishment, respectively. The D2 receptors induce 
long term depression (LTD) on postsynaptic neurons, and D1 receptors induce long term potentiation (LTP) on 
postsynaptic neurons51. Thus, heat punishment triggers the increase of dopamine, and then inhibit the specific 
synapses between KC and MBON through inhibitory dopamine receptor. In this way, punishment-DA makes it 
harder for postsynaptic neurons to fire.

Phasic dopamine increases when punishment occurs, and then exponentially decays to 0. We assume that:

where DA(t) represents the dopamine concentration at the given time, t represents current time, tpun represents 
the moment dopamine increases, DApeak is the maximum concentration of phasic dopamine, and τt is the expo-
nential constant. Here, we set DApeak = 10, τt = 2.

Then the weight update formula is:

here w is the connection weights between visual pattern activated input neuron and chosen output neuron in 
CC, and between visual pattern activated KC and chosen MBON in MB).

Because the learning process is the same in CC and MB, the connection weights between the input layer and 
the output layer of CC and the connection weights between KC and MBON layer of MB which will be used in 
the choice phase are the same.

Choice phase.  After the training phase, the choice phase is used to test the decision-making ability. The choice 
phase directly makes preferred choice between two visual patterns. The visual system transmits the filtered cur-
rent visual input to decision-making circuit, and then output the chosen behavior. Drosophila visual learning 
experiment contains two behavior choices, staying or approaching current visual input and approaching the 
other visual pattern. To describe the behavior choice ability, the proposed SNN model is performed 2 s on one 
current visual pattern, and we count the chosen behavior which is the output neuron id with the first emitting 
spike to calculate PI. From the calculation formula of PI shown in Eq. (1), PI = 0 means the time of choosing 
two visual patterns is the same, which indicates that the model could not make clear decision between the two 
visual patterns. PI > 0 indicates that the model almost approaches current visual input, while PI < 0 indicates that 
the model almost avoids current visual input, and the closer that the absolute value to 1, the clearer choice the 
model can make. The network architecture of the choice phase is shown in Fig. 8b. The differences of network 
architecture between the choice phase and training phase are the conflict monitor in linear circuit and the DA-
APL-KC loop in nonlinear circuit.

The choice phase needs conflict monitor to determine which circuit (linear or nonlinear) should be followed. 
CC and MB function as action selection, and fast decision is made in CC first. Thus, a conflict monitor is designed 
as the output of the linear circuit, and also as a switch of the nonlinear circuit. If the linear circuit is enough to 
make clear decision, then there is no need to activate the nonlinear circuit. Only when the linear circuit could 
not make a clear choice, will the nonlinear circuit be activated. The conflict monitor rules can be summarized 
as the following: (1) Single visual cue only needs linear circuit. (2) Two non-conflicting cues need linear circuit. 
(3) Two conflicting cues need nonlinear circuit. Conflicting occurs when the two cues correspond to different 
correct behavior, such as one of two cues is safe while the other is punished. In this case, the output neurons of 
the linear circuit have similar spiking responses so that it could not make a clear choice on the visual input with 
conflicting cues. The memory of the correct choice has been saved in the connections weight in CC. And for 
correct choice neuron, the connect weight is large, while the connect weight is small for the incorrect choice. For 

(3)�wj =

{
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each choice (output neuron of the linear circuit), we sum the connection weights between input cue and output 
choice to judge whether a conflict exists. Here, we define s1 as the sum of connection weight between input layer 
and neuron 1 of output layer in CC, and s2 as the sum of connection weight between input layer and neuron 2 of 
output layer in CC. If the difference between s1 and s2 is large enough (beyond the threshold th), then the linear 
circuit could make clear choice. In this paper, th is set to 3. The conflict monitor function is shown in Eq. (6).

All the parameters used in the proposed model are summarized in Table 1.
When conflicting cues are detected, the nonlinear circuit is opened and the visual cues enter MB. The only 

difference between the nonlinear circuit and the linear circuit is the DA-GABA-MB mechanism, which contains 
the interactive suppression between DA and APL, and the disinhibition effect on KC. Here we provide one neu-
ron to represent the DA, and two neurons to represent APL. The APL neurons are activated by the KC and send 
negative feedback to the KC, and this feedback loop is essential for sparse coding in the MB52,53. GABAergic 
neurons (APL) also receive suppressive signals directly from DA through inhibitory dopamine receptor, DD2R. 
This implies that DA has a disinhibition effect on KC. Besides, DA receives the suppressive signals from APL, 
and has excitatory connections with MBON. STDP happens in visual system-KC, KC-MBON, APL-KC, APL-
DA, DA-MBON connections.

The DA-GABA-MB circuit contributes to gain-gating mechanism for quick winner-takes-all decision-mak-
ing4,6 and the basic process is as the following: When conflicting cues occurred, the DA neuron will be activated 
for 100 ms. The activation of DA raises the increase of GABA receptor in APL neurons12. The increase of DA 
inhibits APL’s activity and then has a disinhibition effect on KC46. In this way, DA first facilitates the activation 
of relatively salient cue and the corresponding behavior choice until the DA level falls, and then APL continu-
ously inhibits the KC12,37. Finally, valence encoded by MBON ensemble biases memory–based action selection. 
Because of the activation of DA, the relatively salient cue passes more in KC layer, and also the corresponding 
choice in MBON layer is more. Then the more salient cue related connection weights between the visual system 
and KC (and between KC and MBON) will be strengthened based on STDP, while the weights for the less salient 
cue are smaller. Then, after the DA activation, APL inhibits KC and the less salient cue will be inhibited more 
than the salient cues. As a result, the DA-GABA-MB mechanism contributes a quick discrimination of a slight 
difference between two cues’ saliency.

Conclusion
This paper proposed a DrosDecMa spiking neural network model which mainly simulated the Drosophila vision-
based linear and nonlinear decision-making circuits. A conflict monitor is used to freely switch between two dis-
tinct neural circuits based on the demand of visual learning tasks. For the linear circuit, we simulated the memory 
function in CC to make a fast decision. For the nonlinear circuit, we modeled the DA-GABA-MB mechanism 
from both connectome and functional perspectives. With the brain-inspired structures and mechanisms, the 
DrosDecMa model could produce similar outputs compared to Drosophila visual cues learning experiments. 

(6)f =

{

linear |s1 − s2| > th
non− linear |s1 − s2| ≤ th

Table 1.   The description of all the parameters in the proposed model.

Neuron model

v Membrane potential

τm Membrane time constant

R Membrane resistance

vth Threshold value

vr Reset value

STDP mechanism

A+ Learning rates of LTP

A− Learning rates of LTD

τ+ Time constant of LTP

τ− Time constant of LTD

Δti Delay time from presynaptic spike to postsynaptic spike

DA regulation

DA The concentration of dopamine

DApeak The maximum concentration of phasic dopamine

τt Exponential constant

tpun The moment dopamine Increases

Conflict monitor

s1 The sum of connection weight of behavior 1

s2 The sum of connection weight of behavior 2

th The threshold of conflict monitor
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Besides, the application on UAV decision-making tasks showed that the DA-GABA-MB works in a recurrent 
loop providing a simple but general principle to amplify the difference among multiple conflicting choices and 
help the UAV complete the task faster.
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