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ABSTRACT We examine whether modeling of the causal dynamic relationships between frontal and
occipital electroencephalogram (EEG) time-series recordings reveal reliable differentiating characteristics
of Alzheimer’s patients versus control subjects in a manner that may assist clinical diagnosis of Alzheimer’s
disease (AD). The proposed modeling approach utilizes the concept of principal dynamic modes (PDMs)
and their associated nonlinear functions (ANF) and hypothesizes that the ANFs of some PDMs for the AD
patients will be distinct from their counterparts in control subjects. To this purpose, global PDMs are extracted
from 1-min EEG signals of 17 AD patients and 24 control subjects at rest using Volterra models estimated via
Laguerre expansions, whereby the O1 or O2 recording is viewed as the input signal and the F3 or F4 recording
as the output signal. Subsequent singular value decomposition of the estimated Volterra kernels yields the
global PDMs that represent an efficient basis of functions for the representation of the EEG dynamics in all
subjects. The respective ANFs are computed for each subject and characterize the specific dynamics of each
subject. For comparison, signal features traditionally used in the analysis of EEG signals in AD are computed
as benchmark. The results indicate that the ANFs of two specific PDMs, corresponding to the delta–theta and
alpha bands, can delineate the two groups well.

INDEX TERMS Alzheimer’s disease, assistive diagnosis, EEG signal processing, nonlinear modeling.

I. INTRODUCTION
Alzheimer’s disease (AD) is the most common neurodegen-
erative disorder in the western world and the number of
patients is expected to double approximately every 20 years
because of the aging population [6]. AD is characterized
by the accumulation of amyloid plaques and neurofibrillary
tangles in the patient’s brain and loss of cortical neurons
and synapses [7]. These pathological changes cause memory
loss and other cognitive and behavioral impairments that
progressively affect the patient’s ability to live
independently [7].

The guidelines for clinical diagnosis of AD [8] are based
on the exclusion of other causes for the symptoms. However,
a definite diagnosis of AD can only be made by necropsy [7]
and AD pathology is hypothesized to start years before the
first symptoms appear. The patient’s quality of life already
affected by the time clinical diagnosis is made [7]. Thus, there
is a need for objective, non-invasive and affordable means

to support clinicians in the detection and monitoring of AD.
One of such potential means is the analysis of
electroencephalogram (EEG) recordings [9].

The analysis of EEG time series has been explored
previously for its diagnostic potential in AD, based on the
notion that the EEG signals represent fluctuations of aggre-
gate brain activity in the respective brain regions and, there-
fore, may be able to reveal differences in brain function
under different clinical conditions [10], [11]. Many previous
studies have explored this question through the computation
of diverse signal features from EEG recordings [10], [11].
Spectral features, including both spectral indices such as
median frequency and relative power values, have revealed
a spectral slowdown of the brain activity in AD [9]–[12].
Nonlinear features provide additional points of view in
the inspection of the EEG signals. Features such as
Sample Entropy have been applied to the EEG recordings
of patients [11]. The results indicate that AD affects the
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nonlinear characteristics of the EEG signals, making them
more regular and predictable [10], [11].

AD is hypothesized to be a disconnection
syndrome [10], [13]. Therefore, there is increasing interest
in the inspection of the connectivity of EEG recordings [10],
[13], [14], [16], [17]. This is often evaluated by measuring
the (linear or nonlinear) dependencies between two signals in
different spectral bands [10], [14], [17]. This is particularly
important in AD as the disease may cause opposing changes
in different frequency ranges [10], [13], [16].

Traditional approaches to measure the connectivity
between EEG signals are limited by a number of factors.
To start with, spurious results could appear due to the volume
conduction effects [13], [16], [17], because nearby channels
are likely to record activity from identical sources. Ideally,
the connectivity evaluation should also inform about the
causality of the interactions between signals [17].While some
techniques have been recently developed to address these
issues (e.g., phase lag index in [13]), their use is limited
perhaps due to a less straightforward interpretation than other
techniques.

As an alternative, the present study focuses on the
modeling and analysis of the possible causal relationship
between occipital recordings (viewed as the ‘‘input’’ signal)
and frontal recordings (viewed as the ‘‘output’’ signal) in
order to generate model-based indices to characterize the
EEGs of AD patients. To this purpose, we apply the Volterra
modeling approach using Laguerre expansions of the kernels
and employ the concept of Principal DynamicModes (PDM),
which our group has pioneered [4]. This reduces sig-
nificantly the required number of free parameters in the
model and enables estimation of reliable linear or nonlinear
dynamicmodels under conditions of low SNR. Thismodeling
methodology has been recently applied to many different
physiological domains, including the cerebral hemodynamics
in AD patients [5]. The results to date corroborate the poten-
tial and efficacy of this modeling approach. The proposed
diagnostic indices in this study are generated through the use
of the Associated Nonlinear Functions (ANFs) that corre-
spond to each PDM of each subject.

Our aim is to examine whether the estimated PDMs
exhibit spectral characteristics in line with the neural rhythms
naturally occurring in the brain (delta, theta, alpha, beta, and
gamma) and whether the ANFs obtained for each subject can
be used as descriptors of disease. It is posited that these ANFs
may constitute useful ‘‘features’’ for the classification and
differentiation of overall cognitive function in AD patients
versus controls.

II. METHODS
A. DATA COLLECTION AND PRE-PROCESSING
This study involves 24 control subjects (42% male; average
age: 69.4±11.5 years, mean±standard deviation, SD) and
17 AD patients (53% male; average age: 77.6±10.0 years)
who voluntarily participated and signed the Informed
Consent Form according to institutional guidelines.

The EEG recordings were obtained for patients at rest and
with their eyes closed using the traditional 10–20 system
in a Common Reference montage using a sampling rate
of 256 Hz. The signals were downsampled to 128Hz offline.

The data were obtained under a strict protocol from
Derriford Hospital, Plymouth, UK, and had been collected
using normal hospital practices. The patients were referred
to the hospital EEG department from a specialist memory
clinic where all patients undergo a battery of psychometric
tests before referral. The results from the psychometric tests
were scored and interpreted by a specialist psychologist.
Each patient was given a diagnosis at the memory clinic
on the basis of the clinical and psychometric findings and
discussions held by a multidisciplinary team. Each patient
was then referred to the hospital for EEG assessment.
All age-matched controls were healthy volunteers and had
normal EEGs (confirmed by a Consultant Clinical
Neurophysiologist).

For each subject, continuous epochs of 60 seconds were
simultaneously extracted from the left frontal (F3), right
frontal (F4), left occipital (O1) and right occipital (O2)
channels. The selection of these electrodes is supported
by the fact that AD is hypothesized to affect long-range
connectivity as a result of the loss of long cortico-cortical
association fibers, which may play an important role in
functional interactions [10]. Moreover, selecting nearby
channels would probably result in all of them picking up
identical sources, which may lead to spurious connectivity
levels reflecting simple volume conduction rather than true
functional connectivity [13]. The positions of the selected
electrodes minimize possible effects of ocular activity.

The epochs of 60s were selected for having a small
presence of artifacts. They were then band-pass filtered in
the range of 1 to 40 Hz with a band-pass Hamming window
FIR filter with order 200. The data were then demeaned
and scaled by a factor of 1/100 for computational/numerical
convenience. Fig. 1 shows illustrative pre-processed

FIGURE 1. Top panel: illustrative time-series data over 3 sec from the O1
EEG signal of AD patient #1. Bottom panel: the spectrogram over 60 sec
of the time-series data up to 40Hz for this patient.
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time-series data over 3 sec and the respective spectrogram for
the O1 EEG signal of an AD patient. The spectral properties
of this data segment seem stationary.

B. MODELING METHODOLOGY
The proposed modeling approach utilizes the concept of
Principal Dynamic Modes (PDM) that has been pioneered by
our group and applied successfully over the last 10 years to
various physiological systems [4]. In this approach, we seek
to determine from input-output data a set of basis functions
(the PDMs) that represent an efficient ‘‘coordinate system’’
for the representation of the Volterra kernels of a given
class of systems. Static nonlinear functions associated with
each PDM (termed ANF: Associated Nonlinear Functions)
describe the (possible) nonlinearities of the system. The PDM
modeling approach relies on an efficient methodology for the
estimation of Volterra kernels using Laguerre expansions [4].
To reduce the complexity of the obtained PDM-based
models and facilitate comparisons between different cohorts,
we seek to determine the ‘‘global’’ PDMs of a given system
from the estimated kernels of a cohort. This is accomplished
through singular value decomposition (SVD) of a rectangular
matrix containing all estimated Volterra kernels in the cohort.
We note that the computation of the global PDMs must be
based on all subjects because they represent a common frame
of reference for all subjects who are subsequently classi-
fied according to their respective ANFs. The global PDMs
correspond to the selected ‘‘significant’’ singular vectors
by applying a selection criterion on the respective singular
values.

In this study, we analyze the causal relationship between
two EEG signals, in which the frontal signal is taken as the
‘‘output’’ and the occipital signal is taken as the ‘‘input’’.
Using the Laguerre expansion technique, we start with linear
modeling (1st order Volterra kernel only) and proceed with
nonlinear modeling estimating the 2nd-order Volterra kernels
as well. These kernel estimates are used to compute the global
PDMs of these cohorts via SVD of a rectangular matrix
that contains either all the 1st order kernels (Method 1) or
the 1st and 2nd order kernels (Method 2) for all subjects
(patients and controls). The resulting PDMs are used to
obtain nonlinear models of 5th order. The key to the model
estimation problem is the use of the Laguerre expansion tech-
nique that keeps the number of free parameters manageable
for all models. A detailed description of this methodology
is given in the monograph [4]. We summarize below the
methodology of PDM-based modeling. The 1st order (linear)
Volterra model is:

y(n) = ko +
∑M−1

m=o
k1(m)x(n− m) (1)

where
- x(n) is the input (occipital) signal
- y(n) is the output (frontal) signal
- {k0, k1} are the zeroth order kernel (constant) and the
first order kernel respectively

- M is the system memory (M=70 here)

To limit the number of free parameters that must be
estimated, the kernels are expanded onto a basis of orthonor-
mal discrete Laguerre functions {b j} ( j = 1, 2 . . . L). In this
study, 7 discrete Laguerre functions with Laguerre
parameter 0.6 (L = 7, α = 0.6) are found to be adequate to
represent the input-output dynamic relations. The optimal
value of the Laguerre parameter α and L is determined
through a global search procedure that minimizes the nor-
malized mean square error (NMSE) of the model prediction
for all subjects. The selected values of alpha and L determine
the system memory (M=70 in this case). After Laguerre
expansion, the linear model is given by the expression:

y(n) = c0 +
∑L

j=1
c1(j)Vj(n) (2)

where

Vj(n) =
∑M=1

m=0
bj(m)x(n− m) (3)

The 8 expansion coefficients (c0, c1) are estimated by the
ordinary least-squares method and the 1st order kernel esti-
mate is given by the expression:

k1(m) =
∑L

j1=1
c1(j1)bj1 (m) (4)

This model has 8 free parameters, as compared to 71 free
parameters for the original linear Volterra model.

The second-order Volterra model is given by:

y(n) = k0 +
∑M−1

m=0
k1(m)x(n− m)

+

∑M−1

m1=0

∑m1

m2=0
k2(m1,m2)x(n− m1)x(n− m2)

(5)

where k2 denotes the 2nd order kernel. Following the
Laguerre expansion technique (L = 7), we have:

y(n) = c0 +
∑L

j=1
c1(j)Vj(n)

+

∑L

j1=1

∑j1

j2=1
c2(j1, j2)Vj1 (n)Vj2 (n) (6)

The number of free parameters in this model is 36, as
compared to 2556 free parameter for the original 2nd order
Volterra model. The 2nd order Volterra kernel is expressed in
terms of the expansion coefficients as:

k2(m1,m2) =
∑L

j1=1

∑j1

j2
c2(j1, j2)bj1 (m1)bj2 (m2) (7)

The PDM-based modeling approach seeks to find the
‘‘minimum set’’ of basis functions (the ‘‘global’’ PDMs) that
are able to represent the input-output dynamics adequately for
each particular system. This is achieved via SVD of a rectan-
gular matrix composed of the estimated Volterra kernels of
the respective cohort using either of two methods:
Method 1: The kernel-based matrix is composed of the

1st order kernel estimates for all subjects;
Method 2: The kernel-based matrix is composed of the

1st and 2nd order kernel estimates for all subjects.
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In both methods, the global PDMs are determined as the
significant singular vectors of the kernel-based matrix that
correspond to singular values satisfying a specified selec-
tion criterion (e.g. at least 10% of the maximum singular
value). In this study, 5 to 6 global PDMs were selected. The
physiological characteristics of these global PDMs will be
discussed in the following section. The global PDMs are used
to describe the dynamics of this system (via expansions of the
system kernels) for all subjects. The possible nonlinearities of
the system are described by the respective ANFs, which are
subject-specific and can be used for diagnostic purposes. The
case of linear models is included in this representation, when
the ANFs are linear functions. The output equation for the
PDM-based model is:

y(n) =
∑H

i=1
fi

{∑M−1

m=0
pi(m)x(n− m)

}
(8)

where
- pi is the ith global PDM
- H is the number of global PDMs
- fi is the ANF of the ith PDM

In general, the ANFs are taken to be polynomials (typically
of 3rd degree):

fi = a1, juj + a2., ju2j + a3, ju
3
j + · · · (9)

The polynomial ANF can be replaced by its best linear fit
(in a least-squares sense) if reduction of model complexity is
desirable. In that case, the linear coefficient is an ‘‘effective
gain constant’’ for the respective PDM and can be used as an
index for delineating AD patients from control subjects.

Fig. 2 shows a schematic block-diagram of the PDM-based
model.

FIGURE 2. Block-diagram of the PDM-based model of the O1-F3 system
with 5 global PDMs. The output uj of the jth PDM pj is the convolution of
the PDM with the input signal. In this study, the ANFs are taken to be the
5th degree polynomials: zj = a1,j uj + a2,j u2

j + a3,j u3
j + aj,4u4

j + aj,5u5
j

based on a search procedure that yields the best classification results
for the smallest number of free parameters.

C. SPECTRAL AND NONLINEAR SIGNAL FEATURES
As benchmark, we also compute a number of features
that have been reported to characterize the EEG signals in
AD [9]–[11]. For each EEG electrode, we compute its:

relative power (RP) in δ (1Hz–4Hz;RPδ), θ (4Hz–8Hz;RPθ ),
α (8Hz–13Hz; RPα), β (13Hz–30Hz; RPβ) and
γ (30Hz–40Hz; RPγ ) bands; median frequency (MF); and
Sample Entropy (SE). The RP features provide a holistic
view of the frequency spectrum of the signals [10], whereas
MF and SE are two indices that summarize the spectral
and nonlinear changes introduced in the brain activity by
AD [11], [15]. Finally, we also compute a classical metric of
connectivity between frontal and occipital channels: spectral
coherence: c( f ) [10], [17].

1) RELATIVE POWER (RP)
The assessment of spectral characteristics of the
EEG activity is based on the power spectral density (PSD) of
each EEG epoch, which is computed as the Fourier transform
of its autocorrelation function [11]. The PSDs obtained from
segments of 10s of each channel and subject are averaged
to compute the mean PSD corresponding to that channel and
subject. Then, the PSD is normalized by the total power in the
considered broadband (1Hz to 40Hz) to obtain a normalized
PSD (PSDn) [15]:

PSDn( f ) =
PSD( f )

40Hz∑
f=1Hz

PSD( f )

(10)

so that:
40Hz∑
f=1Hz

PSDn( f ) = 1 (11)

If flow and fhigh are the low and high cut-off frequencies
of each band (e.g., flow=1Hz and fhigh=4Hz for δ), the RP is
calculated from the PSDn using [15]:

RP =
fhigh∑
f=flow

PSDn( f ) (12)

2) MEDIAN FREQUENCY (MF)
MF is a simple index that quantifies the relative strength
of low- and high-frequency oscillations. It is defined as the
frequency value that separated the frequency range of the
PSDn in two bands so that each of them contained half
the PSDn power [15]:

MF∑
f=1Hz

PSDn( f ) =
1
2

(13)

3) SAMPLE ENTROPY (SE)
Approximate entropy is a commonly used metric to
quantify irregularity in biomedical recordings. It evaluates
the appearance of repetitive patterns in the data [9]. However,
this statistic is biased as it counts each sequence as matching
itself to avoid the occurrence of log(0) in the computations.
To reduce this bias, SE was introduced as a modification of
approximate entropy [11].
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SE is an irregularity metric that assigns higher values to
more irregular signals. SE has two input parameters: a run
length m and a tolerance window r . The time series are split
into segments of 10s and the SE is estimated with m = 1 and
r = 0.25 times the SD of the signal. Then, the SE is averaged
across all segments from the same electrode and subject [11].
A detailed description of the algorithm and additional details
are available elsewhere [11].

4) SPECTRAL COHERENCE
Additionally, c( f ) is used as a benchmark to measure
connectivity between pairs of EEG channels. c( f ) is a
function of frequency accounting for linear synchronization
between two signals and it is bounded between 0 and 1 [10],
[14], [17]. However, it does not discriminate the directionality
of the coupling [14], [17]. Decreased coherence indicates
reduced functional connections between EEG electrodes or
reduced common modulation of the two areas by a third
one [10].

Two EEG epochs of equal length—x(t) and y(t)—are
divided into B equal blocks of 1s each with 50% overlap on
the basis of previous analyses [14], [16]. c( f ) is computed
as [14], [16]:

c( f ) =
|〈X ( f )Y ∗( f )〉|2

|〈X ( f )〉||〈Y ( f )〉|
(14)

where X ( f ) and Y ( f ) are the Fourier transforms of
x(t) and y(t), respectively. ∗, |·|, and 〈 〉 denote complex
conjugate, magnitude and average over the B blocks,
respectively [14], [16].

5) PHASE SLOPE INDEX: (PSI)
The concept of phase synchrony may also be used to
measure dependencies between EEG signals by examin-
ing the interdependence between the corresponding phases,
which may be strongly synchronized even if the amplitudes
of the signals are statistically independent [14]. A causal rela-
tionship between two signals at a certain time lag appears as
a constant proportionality between cross-spectral phase and
frequency. We will use the PSI to estimate such direction of
information flow robustly even in the presence of independent
background activity [19].

III. RESULTS
A. MODELING
The predictive capability of the obtained PDM-based model
is assessed by the Normalized Mean Square Error (NMSE)
of the respective model prediction. The minimum NMSE
among the four combinations of occipital-to-frontal input-
output systems was obtained for the nonlinear model of the
O1-to-F3 system (NMSE=89.7%), only slightly better than
its linear counterpart (NMSE=91.2%). It is evident that the
model prediction only accounts for a small portion of the
output signal, but this should be expected in a system of such
low signal-to-noise ratio.

5 PDMs for the O1-to-F3 model were obtained using
Method 2. For the sake of clarity, only 4 PDMs are shown
in Fig. 3 and Fig. 4 for the frequency-domain and time-
domain respectively. In the frequency domain (Fig. 3), the
global PDMs exhibit spectral characteristics that correspond
to the following neural rhythm bands:

FIGURE 3. Frequency-domain representations of the global PDMs of the
input-output model for the O1-to-F3 system (four out of five PDMs are
plotted for the sake of clarity, see text).

FIGURE 4. Time-domain representations of the global PDMs of the
input-output model for the O1-to-F3 system (four out of five PDMs
are plotted for the sake of clarity, see text).

- 1st PDM (solid): beta band (∼20 Hz)
- 2nd PDM (dashed): alpha band (∼12 Hz)
- 3rd PDM (dash-dot): low delta band (∼1 Hz);
- 4th PDM (dotted): combination of theta (∼8 Hz) with
delta band (∼3 Hz);

- 5th PDM: high delta (∼4 Hz).

The 2nd and 4th PDMs were found to be the most differenti-
ating between AD patients and control subjects (see below).
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The average Associated Nonlinear Functions (ANFs) for
the nonlinear models of the O1-to-F3 system (defined
as 5th degree polynomials in this application) are shown
in Fig. 5 with dark line for the 17 AD patients (bottom row)
and the 24 control subjects (top row), along with the best
(in mean-square sense) linear fits shown in gray. It is evident
in Fig. 5 that the slope of the 4th ANF changes sign for the
patients (i.e. becomes positive for the AD patients from neg-
ative for the controls), and the negative slopes of the 3rd and
5th ANFs decrease (in absolute value) for the patients. This
suggests that these three PDMs are more likely to provide
the means for differentiation between patients and controls.
However, the difference between the average values of ANF
slopes may not portray correctly the separation between the
two groups which relies on the distribution of the individual
values.

FIGURE 5. Average ANFs (dark line) for the 5 PDMs of the 17 AD patients
(bottom row) and 24 control subjects (top row), along with the best
linear fits (gray line) for the O1-to-F3 system.

After examining the differentiating capability of all
pair combinations of PDMs/ANFs, it was found that the
2nd and 4th PDMs (Fig. 8, and their respective linear trends)
are the most differentiating between patients and controls
for O2-F3 system, as shown in the scatter-plot of Fig. 6.
They result in one false-positive (#40) and two false-negatives
(#3 and #17). The sensitivity of 88.2% and specificity
of 95.8% are marked on the corresponding ROC curve shown
in Fig. 7.

We note that satisfactory delineation between the two
groups is also achieved in the O1-F3 system (see scatter-
plot in Fig. 9) using the pair of 2nd and 4th PDMs/ANFs
that correspond to the alpha-delta and theta-delta bands
respectively, as shown in Fig. 3. Two false-negatives
(#13, #17. Sensitivity of 88.2%) and two false-positives

FIGURE 6. Scatter-plot of computed ANF linear trends (slopes) for 2nd
and 4th PDMs of the O2-to-F3 system, corresponding to the alpha-delta
and theta-delta bands. One false-positive and two false-negatives are
shown. The classification line has been obtained by nonlinear regression
algorithm (with 150 000 iterations).

FIGURE 7. ROC curve for the scatter-plot of Fig. 6 (2nd versus 4th
ANF/PDMs) of the O2-to-F3 system.

(#29, #40. Specificity of 91.7%) result in this case. This
suggests that the use of more than two PDMs/ANFs ought
to be explored for differentiation of patients from controls.

B. BENCHMARK FEATURES
A number of features were computed from the same EEG
signals, including the RPs in five spectral bands,MF and SE.
These features were calculated from single channels in con-
trast with the PDM modeling. However, they have been
reported to discriminate between the electromagnetic brain
activity of AD and control subjects [9]–[11]. Hence, they
are used here as benchmark for comparison purposes.
Fig. 10 shows the boxplots of the RPs for each EEG elec-
trode for AD patients and controls subjects. The bottom
and top of the boxplot show the first and third quartiles
respectively, with the middle band representing the median
(second quartile). Outliers are shown as crosses, with the
maximum and minimum values of the data after exclusion

1800110 VOLUME 3, 2015
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FIGURE 8. Frequency-domain representations of global PDMs of the
input-output model for the O2-to-F3 system (four out of six PDMs
are plotted for the sake of clarity, see text).

FIGURE 9. Scatter-plot of computed ANF linear trends (slopes) for 2nd
and 4th PDMs of the O1-to-F3 system, corresponding to the alpha-delta
and theta-delta bands. Two false-negatives and two false-positives are
shown.

of outliers shown as black bars above and below the boxplot.
Similarly, Fig. 11 and Fig. 12 depict the boxplots forMF and
SE, respectively.

Student’s t-tests indicated that there were significant
differences (p-value<0.01) between AD patients and con-
trol subjects at electrodes F3 for MF, SE, RPδ, RPθ , RPα,
and RPβ; at F4 for MF, SE, RPθ , and RPβ; at O1 for
RPδ, RPθ , and RPα; and at O2 for RPδ, RPθ , and RPα.
The c( f ) between the pairs of electrodes F3-O1 and F4-O2
was also computed. The distribution of the results appears
in Fig. 13 as boxplots. In this case, there were no significant
differences (all p-values >0.10) between AD patients and
control subjects for the average c( f ) in each spectral band.
Finally, the connectivity result computed with the phase slope
index yields statistically significant result between the pairs
of F3-O1 at PSIδ and PSIγ , with p-values equal to 0.02.
Among the features with significant differences, the high-

est areas under the ROC curve for the separation between AD

FIGURE 10. Boxplots with the distributions of RP in δ (‘‘d’’), θ (‘‘t’’), α (‘‘a’’),
β (‘‘b’’), and γ (‘‘g’’) bands for AD patients and control subjects (‘‘CN’’)
at F3, F4, O1, and O2.

FIGURE 11. Boxplots with the distributions of MF for AD patients and
control subjects (‘‘CN’’) at F3, F4, O1, and O2.

FIGURE 12. Boxplots with the distributions of SE for AD patients and
control subjects (‘‘CN’’) at F3, F4, O1, and O2.

and control subjects were achieved at O1 and O2 with the
feature RPα (areas of 0.983 and 0.990, respectively).
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FIGURE 13. Boxplots with the distributions of the average c(f) value for
the pairs of electrodes F3-O1 and F4-O2 in δ (‘‘d’’), θ (‘‘t’’), α (‘‘a’’), β (‘‘b’’),
and γ (‘‘g’’) bands for AD patients and control subjects (‘‘CN’’).

FIGURE 14. Scatter-plot of computed ANF linear trends (slopes) for 4th
PDMs of the O1-to-F3 system, corresponding to the theta-delta band,
versus the Relative Power in O1 corresponding to the alpha band. This
classification plot shows no false-negatives and no false-positives.

C. COMBINED FEATURE ANALYSIS
We explored combining the best classification features of the
two approaches (i.e. thosewithmost differentiating capability
from PDMmodeling and from Relative Power measurement)
and achieved complete separation of patients from controls
by using the 4th PDM of the O1-F3 system and the Relative
Power in the alpha band measured at O1 (Fig. 14), or the
4th PDM of the O2-F3 system and the Relative Power in the
alpha band measured at O2 (Fig. 15).

IV. DISCUSSION AND CONCLUSION
We have presented a methodology for input-output modeling
of the dynamic relationships between EEG recordings in
AD patients and control subjects that can be used for diagnos-
tic delineation of the two groups. The methodology is based
on the concept of Principal DynamicModes (PDMs) and their
associated nonlinear functions (ANFs) that has been recently
developed and applied successfully to various physiological
systems.

Preliminary results of the application of this methodology
to data collected from 17 AD patients and 24 control subjects
offer considerable promise. Specifically, when the effective
gain coefficients of the 2nd and 4th PDMs (i.e. the slopes
of the linear trends in their respective ANFs) are used as

FIGURE 15. Scatter-plot of computed ANF linear trends (slopes) for
4th PDMs of the O2-to-F3 system, corresponding to the theta-delta band,
versus the Relative Power in O2 corresponding to the alpha band. This
classification plot shows no false-negatives and no false-positives.

classifiers for the O2-F3 system, we have one false-positive
and two false-negatives (see Fig. 6) – i.e. 88.2% sensitivity
and 95.8% specificity. Likewise, when the effective gain
coefficients of the 2nd and 4th PDMs are used as clas-
sifiers for the O1-F3 system, we have two false-negatives
and two false-positves (see Fig. 9, i.e. 82.3% sensitivity and
91.7% specificity). This suggests that the use of more than
two PDMs/ANFs ought to be explored for differentiation
of patients from controls. The classification line is obtained
through nonlinear regression. The ROC curve also demon-
strates promising performance of these classifiers (see Fig. 7).
The best classifiers for both O1-F3 and O2-F3 systems
corresponded to the PDMs with theta-delta spectral charac-
teristics, consistent with previously reported observations of
increased theta and delta activity in the left hemispheric
frontal region in AD patients compared to control subjects,
as well as decreased alpha activity in AD patients [1]–[3].
If these results become confirmed in larger numbers of
subjects, then the proposed approach will offer a valuable
non-invasive diagnostic tool for AD. These initial results are
consistent with the current view that elevated theta activity
in the awake adult may indicate abnormal neurological con-
ditions, and reduced alpha activity may reflect (in part) a
state of heightened anxiety in AD patients. We note, however,
that our PDM-based analysis yields classification features
that concern the causal relation between two EEG signals
(e.g. O1 as a putative ‘‘input’’ and F3 as a putative ‘‘output’’),
while activity within a neural-rhythm band concerns simply
the spectral characteristics of the signals themselves.

Even though the coherence c( f ) only captures linear inter-
actions between signals, previous research has suggested that
it is strongly correlated with other commonly used synchro-
nization measures [14]. However, there have been differences
in the findings of previous studies about how AD affects
brain connectivity. This might be due to differences in the
analyzed populations, the heterogeneity of the disease and
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small differences in the connectivity metrics [15]. The use
of PDM-based connectivity models addresses some of these
issues by extending the analysis of the data into the nonlinear
domain and, more importantly, by focusing on the dynamic
relation between two EEG signals (measured at the frontal
and occipital lobes in this case) and not the temporal or
spectral structure of the signals themselves. This distinction
may prove useful because it removes part of the poten-
tial ambiguity in differentiating patients from controls by
virtue of the fact that the employed ‘‘classification feature’’
(i.e. the slope of the ANFs in this case) is independent of
the particular neural activity that defines the spectro-temporal
signal structure at the time of data collection. In other words,
the PDM-based approach focuses on the system between the
two signals and not on the signals themselves.
We examined the correlation between the PDM gain that

yielded the best classification result (PDM4 in the O2-to-F3)
and the Relative Power in O2 corresponding to theta
band (RPθ ) that is dominant in PDM4. This correlation is
statistically significant with correlation coefficient of 0.81
and p-value less than 0.0001. Similar result was obtained
between the PDM4 in the O1-to-F3 system (delta-theta band)
and the RPθ in O1 (correlation coefficient equal to 0.82 and
p-value < 0.0001). Similarly, the most delineating features
in the benchmark study: RPα in O1 and O2, also correlate
with their PDM counterparts (gain of PDM2 corresponding
to the alpha band) with correlation coefficient equal to 0.3
and p-value < 0.05. These findings suggest that the RP mea-
surements in theta and alpha band achieve similar delineation
between patients and controls as PDM analysis. It was shown
that perfect delineation between patients and controls was
achieved when the best PDM and RP features were combined
(see Fig. 14 and Fig. 15).

The findings of the PDM analysis imply that AD patients
may have slower neural connectivity than controls between
the occipital and the frontal cortical regions, as suggested
by the higher gains in theta band and lower gains in alpha
band. This is consistent with current views of the progres-
sive impairment of cortical connectivity in neurodegenerative
diseases.

Although our sample size is insufficient to prove the
clinical utility of the reported EEG analyses for ADdiagnosis,
it is beneficial to relate our research to the current framework
for AD diagnosis in clinical practice and research [8], [18].
Current criteria distinguish between the pathological pro-
cess of AD and the observable symptoms caused by that
process [8], [18]. Whereas the clinical diagnosis of AD
must be performed using only the patient’s cognitive and
behavioral symptoms [8], a few biomarkers (magnetic reso-
nance imaging, biochemical levels in the cerebrospinal fluid,
specific genetic factors and positron emission tomography)
can increase or decrease the certainty that clinical symptoms
are due to an underlying AD pathology [8], [18]. Although
EEG is not currently included in such list of biomarkers, it
provides a direct measure of the brain activity. Furthermore,
it is noninvasive and affordable. Therefore, it holds promise

to become, after suitable signal processing, a widely available
method to support clinicians in the diagnosis of the disease.

Our preliminary results are promising but they are
inevitably affected by various sources of errors, including
the variability in physiological mechanisms andmeasurement
instrumentation. Therefore, these potential errors must be
further examined in future studies. We must emphasize that
the sensitivity of parameter selection for model estimation is
a critical issue for the reproducibility of results in a clinical
context and, therefore, it should be examined in future studies
with larger sample size and different clinical settings.

Another limitation of this study is that the average ages
of the two subject groups were different. However, the
AD patients were recruited following standard clinical pro-
cedures and the dataset have been used in a number of
research studies [12]. Moreover, the probable AD subjects
had not previously been diagnosed (prior to the assessment
at the memory clinic that led to their referral to the EEG
department). Thus, they were in the early stages of exhibiting
clinical symptoms. Finally, the subjects did not perform any
task. Hence, the classification performance might improve
by analyzing signals acquired during specific experimental
settings [14].
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