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Abstract

Original Article

Introduction

Diffusion magnetic resonance imaging (dMRI) has become 
an increasingly important tool in medical imaging, allowing 
the study of microstructural changes in biological tissues.[1] 
The main component in dMRI analysis is the estimation 
of the apparent diffusion coefficient  (ADC). A  deeper 
understanding of tissue microstructure can be made by 
estimation of other parameters such as pseudo‑diffusion 
coefficient (D*) and perfusion fraction (f) from Intravoxel 
incoherent motion (IVIM) model,[2‑4] and kurtosis (K) from 
similar advanced models.[5‑7] However, estimating these 
parameters are challenging due to the complexity of the 

underlying physics and the limitations of standard analytical 
fitting.[8‑12]

Limitations of standard analytical fitting in dMRI models
MRI is a widely used technique for disease characterization. 
Since MRI signal comes mainly from water molecules 
hydrogen nuclei, self‑diffusion allows one to obtain internal 
structure information; the random water hydrogen movement 
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will be restricted depending on the tissue microstructure.[13] 
The simplest diffusion model was developed by Stejskal and 
Tanner[14] and is described by the following equation and 
considers unrestricted isotropic displacements:

( )0( ) /  S b S exp bD= − � (1)

where S is the signal intensity with diffusion weighting, S0 is 
the signal intensity without diffusion weighting (b = 0), b is a 
function of the gradient intensity and time during which the 
gradients are applied (also known as b‑value), and D is the 
self‑diffusion coefficient.

This model predicts a signal exponential decay, which depends 
on the gradient intensity and timing. These parameters are 
summarized in the b‑value, which is usually set up to 500, 
1000, or 1500 s/mm2, and constant during acquisition.[15]

The ADC reflects the modification of the free self‑diffusion 
coefficient due to the restricted movement within intra‑ and 
extracellular spaces due to specific tissue characteristics. By 
applying the Stejskal–Tanner equation (Equation 1) to each 
voxel, quantitative ADC maps can be generated by fitting 
to different b‑values.[16] In this text, D and ADC are used 
interchangeably for the sake of simplicity.

Intravoxel incoherent motion (IVIM)
The range of b‑values is crucial since it can provide significant 
insights into tissue microstructure.[2] Lower b‑values (usually 
below 100 s/mm2) will not allow observation of signal decay 
due to self‑diffusion, even restricted due to the “speed” of 
diffusivity and cell size. Though self‑diffusion and blood 
microcirculation occur at distinct scales and involve different 
physical processes, an observed apparent motion randomness 
arises from the arrangement of the vessel network through 
which blood flows. In essence, randomness emerges from the 
collective movement of water molecules within this network, 
transitioning between capillary segments. This collective 
motion resembles a pseudo‑diffusion process and can be 
detected for b‑values < 200 s/mm2.[2] The IVIM model was 
developed by Le Bihan et al.[3] It assumes two exponential 
decays for each diffusion regime; then the signal is split into 
two addends, one due to self‑diffusion restrictions and the other 
to vessel network movement, as follows:

( ) ( ) ( )*

0

 1S f exp bD f exp bD
S

= ⋅ − + − − � (2)

In human tissues, D is the previous ADC value, D* is the 
“microcirculation pseudo‑diffusion.”[3] The parameter f is the 
proportion of signal detected in both diffusion regimes and is 
known as perfusion fraction.[2]

Kurtosis
The models previously introduced (Equations 1 and 2) assume 
a normal distribution of diffusion magnitudes and their 
directions. This point is vital since it results in an exponential 
signal dependence.[16] However, this assumption is only the 

case in some tissues. A  non‑Gaussian distribution assumes 
“kurtosis behavior,”[4,5,16] which gives a quadratic‑exponential 
behavior of the signal, as follows:

( ) ( )* 2 2
0/  (1 ) / 6S S f exp bD f exp bD b D K= ⋅ − + − − + � (3)

where K accounts for the kurtosis factor when the Gaussian 
model is insufficient to fully characterize the complexity of 
the diffusion process in some biological tissues.[15]

Recent research has shown that diffusion kurtosis imaging 
can provide valuable information about the microstructural 
properties of tissues, such as cellular density, axon diameter, 
and myelin content, which are essential for a variety of clinical 
applications, including the diagnosis and monitoring of 
neurological disorders, cancer, and inflammatory diseases.[4‑7]

Standard analytical fitting in dMRI models
Fitting ADC mono‑exponential signal decay is usually based 
on a robust linear least square fitting, revealing consistency in 
almost all cases.[8,17] However, it lacks higher microstructural 
details and possible extra diagnostic information. Then, IVIM 
or kurtosis models may reveal a higher order of internal 
structure.[12,18]

One of the parameters to take into consideration to identify 
which diffusion model suits best is the robustness of the 
fitting.[8] Evaluating the goodness of fit is a useful method for 
model discrimination. A comprehensive analysis of the image 
set may be necessary to determine the appropriate goodness 
of fit and the corresponding value to be considered. Other 
limitations arise from the D and D* limit of the b‑value in the 
case of the IVIM model[9,10] or even for kurtosis models,[11] 
where an agreement between noise and scan time is decisive.[12]

Machine learning in dMRI
The field of machine learning  (ML), particularly automatic 
learning, has seen rapid growth in recent years, demonstrating 
considerable potential in medical physics applications.[19,20] In 
the imaging field, ML algorithms have gained practical uses 
due to their capability to perform tasks that are challenging or 
impractical with conventional algorithms.[21]

ML‑based dMRI analysis is an emerging field that employs 
artificial neural networks (ANNs) to estimate ADC values.[22‑24] 
ML can also help to address these challenges by providing 
more accurate and efficient methods for estimating IVIM and 
kurtosis in dMRI.[25‑31] ML algorithms can be trained using large 
datasets to understand the underlying relationships between 
dMRI signals and the parameters of interest. Furthermore, 
ANNs have the capability to discern complex relationships 
within dMRI signals and the ADC values  (among other 
models). Studies[22‑24] have demonstrated that ANNs yield more 
precise estimates than traditional fitting methods; this aligns 
with the central objectives of the current work.

ML algorithms have been trained to estimate the parameters of 
the IVIM model from dMRI signals and have provided more 
accurate results than traditional fitting methods.[25‑27]
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ML algorithms have been employed to estimate kurtosis from 
dMRI signals, providing accurate and efficient results.[28‑31]

ML can then perform both model fitting and classification 
tasks in diffusion MRI. In model fitting, ML algorithms can 
be used to estimate the parameters of a model that best fits the 
diffusion MRI signal, such as the IVIM model. This estimation 
can be achieved using supervised learning algorithms, where 
the model’s parameters as the target variable and the diffusion 
MRI signal as the input variable.

Due to these achievements, ML algorithms are also able to 
differentiate between healthy and diseased tissue with higher 
accuracy  (ACC) or distinguish between different types of 
tissues based on the diffusion MRI signal.[30,31] This is achieved 
using supervised or unsupervised learning algorithms for 
pixel or ROI classification applying ML to dMRI, IVIM, and 
kurtosis model fitting and classification. The studies outlined in 
Theaud et al.[31] and Li et al.[32] show how deep learning (DL) 
techniques, such as convolutional neural networks and 
recurrent neural networks, can improve the ACC and efficiency 
of dMRI model fitting.

The use of these techniques, however, also presents challenges 
that need to be addressed. Recent advancements in artificial 
intelligence have leveraged DL methods to enhance the quality 
of diffusion MRI (dMRI) data for clinical applications. These 
methods are often tailored to the study of specific pathologies.[32] 
While promising, they have been associated with an increased 
incidence of false positives and notable biases. Another study 
by Ahmad et al.[33] proposed an automated DL pipeline for 
automatic artifact detection in dMRI scans, demonstrating 
positive results in artifact detection across a variety of datasets.

This study focuses on exploring the potential of various ML 
algorithms for estimating dMRI parameters in ADC and IVIM 
models, including kurtosis. In addition, this research aims to 
demonstrate the effectiveness of ML techniques in enhancing 
the efficiency and ACC of parameter estimation in different 
dMRI data sets by comparing models. The present work 
introduces a novel approach that refines diagnostic ACC and 
efficiency, providing valuable methods to assist researchers and 
practitioners in effectively translating complex ML algorithms 
into practical clinical solutions.

Materials and Methods

Theory
Supervised learning
Supervised learning involves constructing an inference 
function that can predict the output for new input vectors.

The selection and application of a supervised learning 
algorithm is a complex task that requires careful consideration 
of several factors. One of the main factors to consider is the 
heterogeneity of the data.[34] In the case of dMRI, predicting 
parameters such as diffusion requires the input features to be 
numerical. Therefore, algorithms such as linear regression, 
logistic regression, support vector machines (SVMs), ANNs, 

and k‑nearest neighbors  (KNN) are commonly used in this 
context.

In addition, it is important to consider the presence of 
interactions and nonlinearities in the data. If the features 
contribute independently to the output, algorithms based 
on linear functions may be suitable. However, if complex 
interactions between features exist, algorithms like ANN 
are more effective because they are specifically designed to 
discover these interactions. The parameter estimation in ADC 
and IVIM models involves a mixture of both types of functions; 
ADC in semi‑log space is generally linear, while IVIM may 
or may not be linear depending on the b‑values being studied.

Handling missing data
Addressing missing data are a critical step in analyzing 
dMRI. There are two primary ways to handle missing data: 
eliminating the specific row or completing the information 
through imputation.[35] A common imputation method uses the 
average of the known data, also known as mean imputation, 
and is mainly used in this study. This method efficiently assigns 
diffusion, pseudo‑diffusion, perfusion fraction, or kurtosis to 
the parameters since it can be estimated by taking other known 
data as a reference. In addition, it allows for evaluating this 
mean’s dispersion to assess the assignment’s ACC.

Confusion matrix
The confusion matrix enables the calculation of other 
performance metrics such as true positive rate  (sensitivity 
or TPR), false‑positive rate  (FPR), ACC, and true‑negative 
rate  (specificity or TNR). These metrics provide additional 
insights into the model’s performance and can help identify 
areas for improvement.[36,37]

Receiver operating characteristic curve
The receiver operating characteristic (ROC) curve is typically 
represented by a graph with the TPR on the Y‑axis and 
the FPR on the X‑axis and is contained within the square 
[0, 1] × [0, 1]. The ideal classifier would have a point at the 
upper left corner of the graph, representing a sensitivity of 
100% (no false negatives) and a specificity of 100% (no false 
positives). A random classifier, on the other hand, would tend 
toward a diagonal line on the graph.[36,38‑40]

Algorithms
Various algorithms were employed and quantitatively 
compared to derive the most accurate estimations of the 
characterization parameters. Classification algorithms were 
implemented to determine the presence or absence of diffusion 
in each voxel. Regression algorithms were utilized to ascertain 
the value of the diffusion parameters that characterize a voxel.

Logistic regression (LR)
This is a statistical method for binary and multiclass 
classification problems, also known as logit regression. It 
models the probabilities describing the possible outcomes of 
a single trial using a logistic function.[41] This model can be 
used as a probabilistic classifier for dMRI models.
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Random forest
This is an ensemble method that combines multiple decision 
trees to make predictions. Each tree in the ensemble is built 
from a sample drawn with replacement from the training set. 
Random forests (RFs) achieve reduced variance by combining 
diverse trees, sometimes at the cost of a slight increase in 
bias.[42] This model can help classify the dMRI models per 
pixel.

Extratrees classifier
This is an ML technique that improves the predictive ACC of 
decision trees. It involves creating an ensemble of trees, where 
each tree is constructed from a random sample of the training 
dataset. The ETC is beneficial when overfitting is a concern 
and is known to provide good results in high‑dimensional 
datasets.[42]

Extragradient boost
This is a ML algorithm used for classification and regression 
tasks. It combines weak predictive models, such as decision 
trees, to create a robust predictive model. Extragradient 
boost (XGB) is particularly useful when the goal is to improve 
the ACC of the predictions, and it is well‑known for its high 
performance and speed.[43]

Multilayer perceptron
This is a type of neural network composed of multiple layers 
of interconnected “neurons.” The input layer comprises a set of 
neurons representing the input features of the data. Each neuron 
in the hidden layers transforms the values from the previous 
layer using a weighted linear sum followed by a nonlinear 
activation function, such as the hyperbolic tangent function. 
The output layer receives the values from the last hidden 
layer and transforms them into output values. The model 
is trained using backpropagation, a method for efficiently 
calculating the gradients of the loss function with respect to 
the model’s parameters. This is used to update the network 
weights to minimize the loss function. For classification, the 
cross‑entropy loss function is commonly used, which gives a 
vector of probability estimates per sample.[44] This model is 
attractive since it can consider other features not considered 
in the standard fitting.

Support vector machines
This is a linear regression model that uses a margin of tolerance 
to identify the best decision boundary between data points. This 
margin, known as the epsilon‑tube, allows for some variability 
in the predicted values, making it more robust to outliers and 
noise in the data.[45]

C‑Support Vector Classification
This is a type of SVM algorithm commonly used for 
classification tasks. The algorithm finds the best hyperplane, 
a decision boundary that separates the different classes in the 
data. The best hyperplane is chosen by maximizing the margin, 
which is the distance between the hyperplane and the closest 
data points of each class.[46]

Kernel ridge regression (Ridge)
This is a method for solving regression problems. It is similar 
to Support Vector Regression (SVR) in that it uses a kernel 
trick to transform the data into a higher dimensional space, 
where a linear model is applied. However, instead of using 
the E‑insensitive loss function used in SVR, ridge uses the 
squared error loss function combined with L2 regularization. 
This results in a model that is not sparse but can be fitted in a 
closed fashion and is generally faster for medium‑sized datasets 
compared to SVR.[47]

Least absolute shrinkage and selection operator (Lasso)
The Lasso algorithm is a linear regression model that uses a 
regularization term, known as L1 regularization, to shrink the 
coefficients of less important features to zero. This results in 
a sparse solution, where only a subset of the input features are 
selected for the final model. However, Lasso can be sensitive 
to the scaling of the input features and can sometimes produce 
biased estimates.[48]

ElasticNet
This is a linear regression model that combines the L1 and 
L2 regularization techniques to balance the trade‑off between 
the model’s simplicity and the fitting of the training data.[41,44]

Polynomial regression (degree d) (Poly)
Poly is a type of linear regression used to model nonlinear 
relationships between the input features and the output 
variable. It is achieved by introducing polynomial terms of 
the input features, with the degree of the polynomial specified 
by the user.[49]

Dataset deployment and machine learning implementation
The experiments were conducted on a machine equipped with 
an AMD Ryzen 7 4700U CPU, 2.00 GHz, 16 GB of RAM, 
Radeon Graphics and no GPU used. The operating system was 
Ubuntu 20.04.6 LTS.

The implementation was done in Python 3.9,[50] using 
TensorFlow 2.5[51] for the ML models and Scikit‑learn 0.24.2[52] 
for the data preprocessing and evaluation metrics.

Additional software dependencies for Python: PyDicom 
2.1.2[53]  (for parsing DICOM files), Nibabel 5.1.0[54]  (for 
accessing the NIFTI format), Numpy 1.21.0,[55] Scipy 1.6.3,[56] 
and Matplotlib 3.4.0.[57]

The datasets used for training and testing the models consisted 
of four distinct sets of 3D dMRI images, each with unique 
characteristics [Table  1].[58‑62] The first set, referred to as 
“MR701” (confidential), comprises self‑generated images of 
an adult’s prostate. The “IVIM” set[58,61] includes images of 
the human head and neck, while the “CFIN” set[58‑60] features 
images of the human skull. The “PigBrain” set[62] contains ex 
vivo images of a benign neoplasm in a Göttingen minipig’s 
brain. All image sets were initially presented in axial sections. 
Table 1 provides a summary of each image set’s most pertinent 
characteristics. The IVIM, CFIN, and PigBrain sets can be 
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freely downloaded from DYPI and Hvidovre Hospital in 
NIFTI (.nii) and DICOM (.dcm) formats. These formats are 
easily manageable in Python version 3.x using the NiBabel and 
PyDICOM packages. Approximately 1 million data points are 
available in these sets for statistical analysis and subsequent 
algorithm training/testing processes.

Voxel parameter estimation
The initial phase of the study involves analytically calculating 
the parameters by fitting, which characterize the maps of 
diffusion  (D), pseudo‑diffusion  (D*), perfusion fraction  (f), 
and kurtosis (K). These calculations serve as a conventional 
benchmark for comparison, enabling the evaluation of 
precision and computational speed against non‑ML methods 
and providing a reference framework for the training and 
testing of ML models. Not all of these parameters are available 
in all sets of images. A  simple diagram of this process is 
shown in Figure 1. First, a set of images corresponding to a 
diffusion‑weighted magnetic resonance  (dMRI) study with 
all its b‑values is imported. Then, for each voxel of interest, 
a graph of the normalized signal as a function of the b‑value 
is generated. Fitting these points using monoexponential and 
biexponential models, with or without kurtosis, allows for 
estimating the values of D, D*, f, and/or K. The analytical 
computation of these parameters provides a baseline for 
subsequent comparisons. The resulting voxel parametrization 
is archived and subsequently utilized as input for the training 
and testing phases of the ML models, depending on the 
goodness of fit. The same process is repeated for all voxels of 
interest in each slice and through all slices in the entire study.

Voxel and dataset selection
As established in the theoretical framework, datasets with an 
adequate range of b‑values are candidates for calculating the 
diffusion coefficient (D). Datasets with a sufficient number of 
b‑values between 0 mm2/s and 200 mm2/s are used to determine 
the pseudo‑diffusion coefficient (D*) and perfusion fraction (f), 
while kurtosis  (K) calculations require b‑values exceeding 
1000–1500 mm2/s. This ensures each parameter is calculated 
from the optimal data subset described in Table 1.

Figure 2 illustrates the process of characterizing each voxel 
following the selection criteria similar to the one developed 
by Agulles-Pedros L, et al.[8] Initially, the normalized signal 
values S/S0 of the voxel at position i, j are plotted against 
the b‑values  (in a semi‑logarithmic space). For the MR701 

and IVIM datasets, sufficient self‑diffusion data enable 
D* and f calculation. In the analysis of all image sets, D 
values are calculable for all b‑values. The mono‑exponential 
model (Equation 1) and the bi‑exponential model (Equation 
2) fit D, D*, and f, with a coefficient of determination  (r2) 
minimum of 0.95 required for a valid fit. High b‑value 
datasets (CFIN and PigBrain) are fitted with a bi‑exponential 
kurtosis model (Equation 3), also demanding an r2 above 0.95. 
Voxel data not meeting these thresholds are omitted from the 
predictive model training set.

In this study, the 0.95 threshold was established for the 
regression analysis. This threshold corresponds to a correlation 
coefficient of approximately 0.975, indicating a correlation 
stronger than the commonly accepted threshold of 0.9 for a 
strong correlation.[63,64] This is not an absolute threshold, its 
choice may affect the results and also can vary depending on 
the context and nature of the data.

The r2 values of the analyzed voxels are recorded in matrices 
corresponding to the dimensions of each dataset. These 
matrices also include the associated D, D*, f, and K values, 
when applicable. Upon compiling these data for an entire 
slice, characteristic maps for each parameter can be generated. 
However, not all voxels have a sufficiently good coefficient 
of determination r2 due to various factors. These can include 
unintended alterations in image acquisition, reconstruction, 
artifacts, and even the high threshold set for r2. Nevertheless, 
parameters such as D, D*, f, and K in a voxel should not be 
dismissed based solely on a poor fit. This is because the tissue 
within a voxel is expected to share a similar internal structure 
with its closest neighboring voxels, suggesting that these 
parameters could still contain relevant information about the 
tissue.

Figure  1: Flowchar t for determining each voxel’s characteristic 
parameters (diffusion, pseudo‑diffusion, perfusion fraction, and kurtosis)

Table 1: Relevant characteristics of each set of images: MR701, intravoxel incoherent motion, CFIN, and PigBrain

Images set MR701 IVIM CFIN PigBrain
Number of slices 10 54 19 4
Image pixel size (x, y) 160,160 156,156 96,96 64,128
b-values/(s/mm2) 0, 20, 40, 60, 80, 100, 120, 

140, 180, 200, 300, 400, 500
0, 10, 20, 30, 40, 60, 80, 100, 
120, 140, 180, 200, 300, 400, 
500, 600, 700, 800, 900, 1000

200, 400, 600, 800, 1000, 1200, 1400, 
1600, 1800, 2000, 2200, 2400, 2600, 

2800, 3000

1075, 2475, 3069, 4000, 
5911, 8181, 11,295

Parameters to determine D, D*, f D, D*, f D, K D, K
Dataset source Confidential Reference [61] Reference [62] Reference [60]
IVIM: Intravoxel incoherent motion, CFIN: Center of functionally integrative neuroscience 
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To address this issue, a process referred to as a “smoothing 
filter” is applied. This stage assumes that a voxel should share 
the characteristics of its nearest neighbors. For instance, 
when the value of D cannot be determined in voxel i, j, the D 
value of its neighbors is evaluated. If D has been successfully 
calculated for all the neighbors, it is assumed that D also 
exists in voxel i, j. Similarly, the same assumption is made 
if a voxel has a good r2 fit but is surrounded by voxels where 
D cannot be determined with a sufficiently high goodness of 
fit. This process is repeated until there are no isolated voxels 
with states that conflict with those of their neighbors, or the 
total size of the structure under study is not modified beyond 
a conservative criterion of 5%. The term “smoothing filter” 
is used here to describe the process of iteratively refining 
the voxel states to ensure consistency with their neighbors.

The resulting maps are modified‑r2‑maps that consider the 
states of regions or sets of several voxels within the same slice 
and the individual voxel characteristics, as shown in Figure 3. 
These modified maps provide a more accurate representation 
of the diffusion properties of the studied tissue.

Once the modified‑r2‑maps are obtained, the S/S0 values of a 
single voxel and its nearest neighbors are stored in an input 
vector for training and testing, and the values of D, D*, f, and K 
of the voxels of interest are stored in an expected output vector.

One input vector and one output vector are obtained for 
each voxel characterized, and they are used to train/test the 
ML regression models, as shown in Figure 4. Following the 
validation method (cross‑validation), 80% of the randomly 
selected data are used for training the models, and the 
remaining 20% are used as test data[30,31] in different random 
packages or blocks to obtain a cross-validated root mean 
square error  (RMSECV). Upon completion of the training 
process, each algorithm generates a prediction. These 
predicted outcomes are then compared with the expected 
output vector, which has been derived through analytical 
calculations. Finally, the difference between the predicted 

and expected results is statistically evaluated using several 
metrics. These include mean absolute error  (MAE), mean 
squared error (MSE), root mean squared error (RMSE), and 
the coefficient of determination (R2) for prediction. In addition, 
the cross‑validated root mean squared error (RMSECV) is used, 
which is a measure of the prediction error that incorporates 
cross‑validation to provide a more robust estimate of 
model performance. For classification algorithms, ACC 
measurements from confusion matrices and the area under 
the ROC curves area under the curve (AUC) are used. The 
ROC curve is a graphical representation of the performance 
of a binary classifier, and AUC is a single scalar value that 
represents the expected performance of the classifier. A higher 
AUC indicates better classifier performance.

Algorithms setup and parameters
All the models mentioned in this work were implemented 
using the Scikit‑learn library, a powerful and flexible Python 
library for ML. Scikit‑learn provides a range of supervised and 
unsupervised learning algorithms via a consistent interface. 
It includes the implementation of all these models: Logistic 

Figure 3: Illustration of the process for deriving input and output vectors 
from the r2 and modified‑r2 maps. The modification is implemented through 
a proposed “smoothing filter,” which enhances the diversity of the data 
quality. The figure visually depicts the derivation of these vectors, which 
are subsequently used for training and testing the machine learning models

Figure 2: A flowchart that outlines the process for determining the fitting for any specific voxel. It provides a step‑by‑step visual guide, simplifying the 
understanding of the fitting determination procedure
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Regression (LG), RF, ETC, XGB, Multilayer Perceptron 
(MLP), SVMs, C‑Support Vector Classification (SVC), ridge 
regression, lasso regression, ElasticNet  (EN), and d‑degree 
polynomial regression (Poly).

One of the key features of Scikit‑learn is that it allows for easy 
hyperparameter tuning and model optimization. All parameters 
in scikit‑learn’s implementations can be directly modified when 
the model is instantiated or using the set_params method. 
This makes it straightforward to conduct hyperparameter 
optimization using techniques such as grid search, detailed 
further in this work.

The LR model was implemented with a cross‑entropy loss 
function and an Adam optimizer. Regularization techniques 
such as L1 and L2 were applied to prevent overfitting 
obtaining better RMSECV with L2. A  Grid Search was 
conducted for hyperparameters optimization with a range 
of values between 0 and 10, finding an optimal “c‑value” 
which is the inverse of the regularization strength of 3.4 for 
“L2” penalty.

The RF model was implemented using entropy as the criterion 
for the quality of a split. A  grid search was conducted for 
hyperparameters optimization with a range of values between 
100 and 1000 for “n_estimators,” between 0 and 1 for “min_
samples_split” and “min_samples_leaf,” and between 1 and 
100 for “max_depth.” The optimal values found were 549 
for “n_estimators,” 0.021 for “min_samples_split,” 0.029 for 
“min_samples_leaf,” and 38 for “max_depth.” “max_features” 
was set to “auto.”

The ETC model was implemented using the default criterion 
for the quality of a split. A  grid search was conducted for 
hyperparameters optimization with a range of values between 
100 and 1000 for “n_estimators” and between 1 and 100 for 
“max_depth,” finding optimal values of 284 for “n_estimators” 
and 83 for “max_depth” “max_features” set in “auto.”

The XGB model was implemented using cross‑entropy as the 
objective function. A grid search was conducted to optimize 
the hyperparameters “n_estimators,” “learning_rate,” and 
“max_depth,” with a range of values between 100 and 1000 

for “n_estimators,” between 0.01 and 0.30 for “learning_rate,” 
and between 1 and 10 for “max_depth.” The optimal values 
found were 354 for “n_estimators,” 0.09 for “learning_rate,” 
and 7 for “max_depth.”

The MLP model was implemented using a neural network 
architecture, with a cross‑entropy loss function and an Adam 
optimizer. The dropout regularization technique was applied to 
prevent overfitting. The model was trained for 300 epochs with 
a batch size of 128. A grid search was conducted to optimize 
the hyperparameters “hidden_layer_sizes,” “activation, and 
“solver,” with the following ranges: (50), (100), and (50, 50) 
for “hidden_layer_sizes;” “relu” and “tanh” for “activation;” 
and “adam” and “sgd” for “solver.” The optimal values 
found were (50, 50) for “hidden_layer_sizes,” “relu” for the 
activation function, and “adam” for the solver.

The SVR model was implemented using an ε‑insensitive loss 
function and a ‘sigmoid’ kernel function. The “C” parameter 
was used for regularization L2, with a range of values between 
0.1 and 10 considered during a grid search. The optimal 
“C‑value” found was 5.1 for a “sigmoid” kernel.

The SVC model was implemented for the classification 
problem using a Hinge loss function and a stochastic gradient 
descent optimizer. L2 regularization was applied to prevent 
overfitting, controlled by the “C” parameter. A  grid search 
was conducted to optimize the “C” parameter, with a range 
of values between 0.1 and 10. The optimal “C‑value” found 
was 3.9, using a “sigmoid” kernel.

The ridge regression model was trained using the Adam 
optimization algorithm with a MSE as the loss function. 
To mitigate overfitting, L2 regularization, an implicit 
regularization technique, was employed. Hyperparameter 
tuning was performed using a one‑dimensional grid search 
method over a range of “alpha” values from 0 to 1. The optimal 
“alpha” value was found to be 0.79.

The Lasso regression model was trained using the Adam 
optimization algorithm with a MSE as the loss function. 
To mitigate overfitting, L1 regularization, an implicit 
regularization technique, was employed. Hyperparameter 
tuning was performed using a one‑dimensional grid search 
method over a range of “alpha” values from 0 to 1. The optimal 
“alpha” value was found to be 0.71.

The EN model was trained using the Adam optimization 
algorithm with a MSE as the loss function. To mitigate 
overfitting, L1 regularization was employed. Hyperparameter 
tuning was performed using a grid search method over a range 
of “alpha” and “L1_ratio” values from 0 to 1. The optimal 
“alpha” value was found to be 0.75 and the optimal “L1_ratio” 
was 0.96.

The Poly model was trained using the Adam optimization 
algorithm with a MSE as the loss function. To mitigate 
overfitting, L2 regularization was employed. The “degree” 
hyperparameter was varied from 2 to 6 during the model 

Figure 4: Comprehensive evaluation of machine learning (ML) models 
used in this study. The training and testing of the models are conducted 
using input–output vectors, which are analytically derived beforehand. The 
effectiveness of the models is demonstrated by comparing the predicted 
results with the respective ML outcomes
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training process. The optimal degree, which resulted in the 
lowest (RMSECV), was found to be 4.

Results

Results for r2 classification and parameters forecasting are 
obtained separately. Initially, binary classification algorithms 
are implemented to determine which voxels in each set of 
images might contain information on diffusion. Then, for voxels 
previously characterized as suitable for diffusion parameters 
forecasting, regression algorithms are used to determine 
D, D*, f, and K. Finally, a comparison of execution time is 
conducted. This involves comparing the computation times to 
find the characterization parameters for the same amount of 
voxels. On one side, there are the classical analytical (fitting) 
algorithms used for finding parameters D, D*, f, and K. On the 
other side, there are the best‑trained ML forecasting methods. 
This approach provides a thorough evaluation of the efficiency 
and effectiveness of the various methods.

r2 classification
The results of the modified r2 classification algorithms 
are presented as normalized confusion matrices, as they 
provide a clear visual representation of the performance of 
each algorithm. This allows for a quick comparison of their 
effectiveness [Figure 5]. The main diagonal of these matrices 
corresponds to the correct predictions made by each algorithm. 
As these values are close to 1, the algorithm performs better 
in ACC.

In the case of binary classification, such as modified‑r2, 
the AUC of the ROC curves  [Figure 6] is considered. This 
approach helps to account for any biased data. It also aids 
in avoiding overfitting to a single class. This is particularly 
useful when the goal is to optimize the relationship between 
false positives and true positives in a model.

Figure 6 shows the comparative ROC graph of the different 
models implemented. For the set of algorithms shown, ACC 

and AUC are summarized in Table 2. This shows the algorithms 
in order according to their AUC value. All models have AUC 
values of at least 90%; however, the best results are obtained 
from the ETC with 98.4% and the MLP with 96.3%.

The performance of each algorithm is indicated in Table 2, 
where the highest precision, reflecting the algorithms’ ability 
to correctly classify positive cases while minimizing false 
positives, is observed with the multi‑layer perceptron and 
ETC algorithm.

Forecast of D, D*, f, and K
To evaluate the performance of the prediction algorithms, 
a variety of metrics to assess the errors in the predictions 
was employed, including the MAE, the mean square error 
(MSE), its root mean square error (RMSE), the coefficient 
of determination  (R2), and the cross‑validated RMSE 
(RMSECV).[65‑67] Here, R2, is used to assess ML models and 
should not be confused with r2, which measures the fit of 
monoexponential or biexponential regressions to the diffusion 
models discussed in the theory section.

Figure  7 and Table  3 present the RMSECV values for the 
implemented algorithms. A  lighter color indicates a lower 
RMSECV, signifying better algorithm performance; a 
darker color represents a higher RMSECV and less efficient 
performance. It is worth noting that the color scale applies only 
within the same group and does not indicate any relationship 
between different figures.

Table  3 shows the numerical results of the calculated 
errors, ordered according to the RMSECV. All values were 
normalized to unity, and the regression metrics were 
calculated with respect to the expected error when predicting 
the values of diffusion, pseudo‑diffusion, perfusion fraction, 
and kurtosis. It is important to note that the values of MAE, 
MSE, RMSE, and RMSECV were normalized to the maximum 
values: D  (4.88  ×  10−3 mm2/s), D*  (9.89  ×  10−2 mm2/s), 
K  (1.95), and the perfusion fraction f  (0.91), respectively. 
Although the free water auto‑diffusion coefficient at body 

Figure 5: Normalized confusion matrices of the algorithms implemented for classification based on the r2 value. Color code is used for faster visual 
analysis. ETC: Extra‑tree classifier, LR: Logistic regression, SVC: C‑Support Vector Classification, XGB: Extragradient boost, MLP: Multilayer perceptron, 
TN: True negative, TP: True positive, FP: False positive, FN: False negative
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Figure 6: Receiver operating characteristic curves of the implemented 
classification algorithms for the classification of r2, compared with a 
random classifier. ETC: Extra‑tree classifier, ROC: Receiver operating 
characteristic, AUC: Area under the curve, LR: Logistic regression, 
SVC: C‑Support Vector Classification, MLP: Multilayer perceptron, XGBL: 
ExtraGradient Boost

Table 2: Accuracy and area under the curve values 
obtained for the implemented algorithms, sorted 
according to the area under the curve value

Algorithm ACC AUC
ETC 0.941 0.984
MLP 0.917 0.963
XGB 0.838 0.939
LR 0.877 0.921
SVC 0.761 0.900
The table uses color coding as a visual guide to algorithm performance: 
blue font indicates superior performance, while red numbers indicate less 
optimal outcomes

Table 3: Mean absolute error, mean square error, root mean square error, regression coefficient of determination, and 
root mean square error cross‑validated of each of the algorithms implemented for the  (top left) diffusion,  (top right) 
pseudo‑diffusion,  (bottom left) perfusion fraction and  (bottom right) kurtosis data

Model MAE MSE RMSE R² RMSECV

RF 0.0462 0.0071 0.0845 0.292 0.0843
XGB 0.0465 0.0073 0.0856 0.274 0.0858
Ridge 0.0542 0.0084 0.0917 0.166 0.0942
LinR 0.0543 0.0084 0.0918 0.166 0.0942
Poly. (d=2) 0.0577 0.0160 0.1266 0.587 0.0942
Lasso 0.0512 0.0101 0.1004 0.00003 0.1032
ElasticNet 0.0512 0.0100 0.1005 0.00003 0.1032
SVR 0.7430 0.0125 0.1118 0.239 0.1148

Model MAE MSE RMSE R² RMSECV

RF 0.0159 0.00117 0.0342 0.973 0.0357
XGB 0.0213 0.00149 0.0385 0.965 0.0402
LinR 0.0382 0.00314 0.0560 0.926 0.0571
Poly. (d=2) 0.0166 0.00112 0.0335 0.974 0.0571
Ridge 0.0385 0.00313 0.0560 0.926 0.0572
SVR 0.0458 0.00580 0.0761 0.864 0.0727
Lasso 0.118 0.0426 0.2064 0.000006 0.2165
ElasticNet 0.117 0.0426 0.2064 0.000005 0.2165

Model MAE MSE RMSE R² RMSECV

RF 0.0182 0.0023 0.0477 0.766 0.0454
XGB 0.0024 0.0024 0.049 0.753 0.0465
Ridge 0.0337 0.0034 0.0585 0.648 0.0555
LinR 0.0337 0.0034 0.0585 0.647 0.0555
Poly. (d=2) 0.0242 0.0024 0.0491 0.751 0.0555
SVR 0.0477 0.0042 0.0645 0.571 0.0651
Lasso 0.0542 0.0097 0.0986 0.0004 0.0991
ElasticNet 0.0542 0.0097 0.0987 0.0003 0.0992

Model MAE MSE RMSE R² RMSECV

RF 0.0186 0.0013 0.0355 0.980 0.0352
XGB 0.0197 0.0012 0.0351 0.980 0.0353
SVR 0.0364 0.0031 0.0555 0.951 0.0577
Ridge 0.0368 0.0034 0.0581 0.946 0.0595
LinR 0.0368 0.0034 0.0581 0.946 0.0595
Poly. (d=2) 0.0174 0.0013 0.0366 0.979 0.0595
Lasso 0.161 0.063 0.0251 0.0001 0.2522
ElasticNet 0.161 0.062 0.0251 0.0001 0.2522

temperature is approximately 3 × 10−3 mm2/s, some D values 
may be larger due to fitting and algorithm characteristics. 
However, it was decided not to set a strong restriction below 
the auto‑diffusion coefficient, as this may have artificially 
shifted the results.

Processing time
The time required to determine the parameters D, D*, f, and K 
for 100,000 voxels using conventional fitting algorithms was 
calculated and is presented in Table 4. In contrast, Table 4 shows 
the computation time of the ML methods presented in this study 
after they have been trained to individually find each of these 
parameters in the same number of voxels. This is because ML 
methods are designed to efficiently locate one parameter at a 
time from a voxel of any slice or image set. The results were 
obtained from the average processing time of 100,000 random 
voxels analysis, and the process was repeated 10  times; the 
standard deviation was calculated from this average.

When considering all image sets, the average calculation time 
for the four main parameters using conventional methods is 
4408 ± 351 s. However, once trained, the computation time 
for 100,000 voxels using the proposed ML algorithms to 
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determine the four parameters was significantly reduced to 
18.998 ± 0.135 s, making the faster ML algorithms

Analysis
While all models have AUC values of at least 90%, the ACC 
of the algorithms varies, mainly for the SVC model, being 
below 80%  [Table  2]. Notably, although the XGB model 
has an AUC value of 93.9%, its precision is lower than that 
of the LR model, with 83.8% and 87.7%, respectively. This 
discrepancy could be attributed to the inherent differences in 
the algorithms. For instance, XGB, a gradient‑boosting model, 
is designed to sequentially correct the mistakes of the weak 

learners in the ensemble, thereby optimizing the overall model 
performance. This optimization process, which focuses on 
reducing both bias and variance, might lead to a higher AUC. 
However, this could come at the cost of ACC, especially in 
cases where the data distribution is imbalanced. The model 
might become too complex, fitting not only the signal but also 
the noise in the data, which could lead to a higher number of 
false positives and false negatives, thereby reducing the ACC. 
On the other hand, LR, being a simpler model, might be less 
prone to overfitting, leading to better ACC. LR makes fewer 
assumptions about the data and is less likely to model the noise, 
especially when the problem is linearly separable or nearly 
linearly separable. Therefore, even though its AUC might be 
lower than that of XGB, its ACC could be higher as it might 
make fewer prediction errors. Given the thorough analysis 
of the data, the observed performance differences among the 
models can be attributed to the inherent characteristics and 
assumptions of each model.

Even though the absolute values of D, D*, f, and K are the 
ultimate goal of dMRI, their estimation lies beyond the scope 
of this work, as it aims to test and compare the use of ML 
algorithms against conventional fitting. Note that the dataset 
used in this work covers different anatomical regions and 
even distinct species, which makes the absolute values less 
valuable. The importance of the dataset lies in the wide range 
of b‑values and the differences in anatomical regions and 
species, i.e., different microstructures. However, it is important 
to mention that realistic results have been obtained, as this 
represents the initial step in validating the results.

Figure  7: Root mean square error cross‑validated scores for every algorithm implemented for the prediction of  (a) diffusion coefficient,  (b) 
pseudo‑diffusion coefficient, (c) perfusion fraction, and (d) kurtosis. LR: Logistic regression, SVR: Support vector regression, RF: Random forest, 
XGB: Extragradient boost, EN: ElasticNet, RMSE: Root mean square error

dc

ba

Table 4: Average computation times for characterization 
parameters of 100,000 voxels in each image set using 
conventional fitting methods, and average processing 
times for diffusion, pseudo‑diffusion, perfusion fraction, 
and kurtosis computation for 100,000 voxels using 
machine learning methods

Set of images Average processing time of 100.000 voxels
MR701 5984 (394) s≈99 (6) min
IVIM 4512 (428) s≈75 (7) min
CFIN 3416 (301) s≈57 (5) min
PigBrain 3723 (279) s≈62 (5) min

Parameter Average processing time of 100.000 voxels
Diffusion (D) 4.835 (28) s
Pseudo‑diffusion (D*) 5.632 (53) s
Perfusion fraction (f) 4.545 (42) s
Kurtosis (K) 3.986 (12) s
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Among the models implemented in this work, ADC maps 
present more consistent diffusion values in terms of the small 
dispersion of the data for magnitude D  [Figure 7a]. On the 
other hand, according to the theory and literature,[2‑4] it is 
verified that the pseudo‑diffusion D* presents values of an 
order of magnitude larger than D. However, it is a parameter 
with a large range of values since some voxels were estimated 
significantly outside this bounds due to practical acquisition 
methods of the images. The perfusion fraction f, as expected 
and according to its definition, yields values in the interval 
between 0 and 1, although with a skewed distribution to the left 
and a mode around 0.22. Finally, kurtosis K has been estimated 
only for image sets with b‑values large enough to detect the 
effect (b ≥3000 s/mm2). The distribution of these values varies 
between images, being close to a Gaussian behavior with a 
mean value of around 1 for the PigBrain set. While the CFIN 
set’s mean is also around 1, the data are slightly biased to 
larger values (up to 1.5).

The predicted diffusion coefficients, D, are relatively consistent 
among the various algorithms tested since fewer missing values 
exist in the image sets used for this parameter [Figure 7a]. 
However, the other predicted parameters, such as perfusion 
fraction, f, pseudo‑diffusion, D*, and kurtosis, K, show a large 
variability [Figure 7b-d] since these parameters have more 
missing values across the image sets. Some algorithms may 
perform better when less data are available, while others may 
require more data to achieve accurate results.

The RF and XGB algorithms exhibit lower RMSECV values 
than the others, indicating that they are the most effective 
for predicting D, D*, f, and K  [Table 3 and Figure 7]. The 
effectiveness of both these algorithms in predicting diffusion 
parameters as demonstrated in this study is in line with the 
findings of other studies.[68,69] While these referenced studies 
validate the utility of RF and XGB in MRI image classification 
tasks, they do not focus on the prediction of the specific 
diffusion parameters. Therefore, the results of this study not 
only corroborate the effectiveness of these algorithms but 
also extend their applicability in diffusion MRI analysis, 
particularly in predicting specific diffusion parameters.

Conversely, the EN and Lasso algorithms exhibit the 
highest errors, making them less suitable for predicting 
pseudo‑diffusion, perfusion, and kurtosis values [Figure 7b-d].

Regarding [Table 3], the results of the MAE regression metric 
indicate the error or difference that would be obtained after 
predicting a value between 0 and 1, while the MSE measures 
the deviation from said prediction. The RMSE represents the 
estimation residuals and is typically slightly higher than the 
MAE, as it is more sensitive to outliers and considers potential 
biases. In addition, the RMSECV is expected to be similar to 
the RMSE, as it averages these errors over multiple iterations 
of the same training set with different samples. Lastly, the 
coefficient of determination (R2) demonstrates the goodness 
of fit of the tested methods. However, it should be noted that 
even if the other errors are minor, this value may not be an 

accurate indicator if the training data are dispersed in relation 
to the prediction function.

Discussion

The experimental characterization of the signal decay in 
individual voxels is the first step in determining the parameters 
that physically describe a dMRI, as it allows for the verification 
and quantification of the physical phenomenon. The 
following models were considered to characterize these decay 
curves: the ADC model  (mono‑exponential) and the IVIM 
model (bi‑exponential); the latter as a simple model and with 
kurtosis. Each model allows for determining the parameters of 
interest (D, D*, f, and K) using linear or polynomial regressions 
voxel by voxel for four distinct image sets. It is important to 
note that while a correlation coefficient of 0.9 is generally 
accepted in the literature as indicative of a strong correlation, 
the square of this value (0.81) would be considered a strong 
fit in terms of the r2. However, given the quality of the data 
in this study and the need for a robust fit for the predictions, a 
more stringent threshold of 0.95 for r2 was deemed appropriate. 
This choice can influence results and is context‑dependent.

Various factors, including image acquisition alterations, 
reconstruction, artifacts, and a high r2 threshold, can result in 
insufficient r2 coefficients for some voxels. Parameters such 
as D, D*, f, and K in a voxel should not be disregarded due 
to poor fit, as they may still hold relevant tissue information 
due to expected structural similarity with neighboring voxels. 
This is the reason why the implementation of smoothing 
filters on modified‑r2 images is also an important step in the 
preprocessing of the images since inhomogeneities may be 
introduced in the information and the training data. This can 
happen when considering data that would have been discarded 
initially due to a lack of precision in the regression. On the 
other hand, the smoothing filters corrected possible errors that 
occurred during the characterization of the attenuation curves 
of the voxels.[70]

Classification algorithms have been implemented to determine 
where the diffusion can be found based on modified r2 maps 
and where D, D*, f, or K can be found with a confidence level 
equal to or >90% [Figures 5 and 6]. Among the classification 
algorithms tested, the ETC methods and MLP reported 
the best precision results  (94.1% and 91.7%, respectively) 
and area under the ROC curve test  (98.4% and 96.3%, 
respectively), [Table 2]. This work’s results demonstrate the 
effectiveness of both the ETC and MLP algorithms in MRI 
classification tasks, aligning with findings from Soltaninejad 
et al.[71] and Yun et al.,[72] respectively. However, it is important 
to note that these studies focused on different tasks within the 
realm of MRI classification, and did not specifically address 
the identification of diffusion parameters D, D*, f, and K. 
Despite these differences, the robust performance of ETC 
and MLP in predicting these specific parameters in this study 
underscores their potential applicability in advancing diffusion 
MRI analysis.
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Regarding the regression algorithms for D, D*, f, and K, RF, 
and XGB have been, in all cases, the methods with the lowest 
errors with respect to the RMSECV for a k‑fold division of 
5 samples [Figure 7].

Finally, the computing time of ML algorithms is estimated to 
find the values of the parameters D, D*, f, and K versus the time 
it takes to find these parameters using conventional methods, 
over 100,000 voxels. Using conventional methods, this time is 
4408 ± 351 s while ML is 18.998 ± 0.135 s [Table 4]. It should 
be noted that the ML computation time has been calculated 
after training. The training time has not been computed since 
it strongly varies among methods and depends on the training 
data set and computer capabilities.

Conclusions

This work tested some of the most commonly used models for 
characterizing diffusion.[19] However, other models allow for 
the detection and differentiation of various effects. For instance, 
the characterization of attenuation through the triexponential 
model[73] or through “signal spoiling”[74] could be considered. 
In addition, to improve the precision of the parameters by 
conventional methods, the effect of noise on the images should 
be taken into account.[75]

Several ML algorithms can be used for model fitting and 
classification in MRI, including LR,[76] RF,[77] SVR,[77] MLP,[78] 
and ETC.[79] The choice of algorithm will depend on the nature 
of the data, the complexity of the model, and the desired ACC 
of the results.

While the Akaike Information Criterion (AIC) was initially 
considered for comparing the implemented algorithms,[80‑82] 
it was ultimately not used due to its limitations.[83] These 
include its assumptions of normally distributed model errors 
and linearity in parameters, which may not always hold true 
for all the models. In addition, AIC does not account for 
the computational complexity of models, interpretability 
of models, or provide a measure of uncertainty in model 
estimation.[84,85] There is also a risk of overfitting as AIC can 
favor more complex models, and it may not be suitable for 
large datasets as it tends to select more complex models as 
dataset size increases.[86] Therefore, these limitations led to 
the decision not to estimate AIC in this study.

It is important to note that model fitting and classification in 
dMRI can be challenging due to the complex relationships 
between the MRI signal and the underlying biological 
structure. As a result, careful preprocessing of the data and 
thorough evaluation of the results is crucial to ensure that the 
ML algorithms provide accurate and reliable results.
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