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Abstract. Cholangiocarcinoma (CCA) is characterized by 
delayed diagnosis and poor survival rate. Research efforts 
have focused on novel diagnostic technologies for this type 
of cancer. Transcriptomic microarray technology is a useful 
research strategy for investigating the molecular properties of 
CCA. The objective of the present study was to identify candi-
date biomarkers with high potential for clinical application in 
CCA using a meta-analysis-based approach. Gene expression 
profiles of CCA were downloaded from the Gene Expression 
Omnibus database for integrated analysis. All differentially 
expressed genes (DEGs) were analyzed by Gene Ontology 
(GO) enrichment analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment. Protein-protein 
interaction (PPI) networks were further constructed, hub 
proteins were identified and functional modules were 
extracted. Following integrated analysis of the seven eligible 
datasets (428 cases and 46 controls), a set of 1,080 DEGs was 
identified, including 710 upregulated and 370 downregulated 
genes. Functional enrichment analysis demonstrated that 
‘chromosome organization’ was a significantly enriched GO 
term in the biological process category. ‘DNA replication’, 
‘influenza A’, and ‘lysosome’ were the top three significantly 
enriched KEGG pathways. Furthermore, PPI network analysis 
indicated that the significant hub proteins were histone 
deacetylase 1, cullin-associated NEDD8-dissociated protein 1, 
ubiquitin D, early growth response protein 1 and glycogen 
synthase kinase 3β. The majority of these proteins are involved 
in CCA. These results provided a set of targets that may help 
researchers to clarify further the underlying mechanisms of 
CCA tumorigenesis.

Introduction

Cholangiocarcinoma (CCA) is the most common biliary 
malignancy and the second most common hepatic malignancy, 
following hepatocellular carcinoma (1). CCA accounts for 
10-25% of primary liver carcinomas (2). CCA may be classi-
fied as intrahepatic (ICC), perihilar or distal CCA depending 
on the anatomical location (3). CCA is more prevalent in Asia 
compared with western countries. This is primarily attributed 
to the increased prevalence of established risk factors, including 
parasitic infections, bile duct cysts and hepatolithiasis (2). 
However, the incidence of ICC in the USA has increased from 
0.44 to 1.18 cases/100,000 over the past three decades (4). The 
majority of CCA cases have the characteristics of insidious 
early and atypical clinical symptoms, rapid progression and 
poor prognosis. Surgery is the only curative treatment for 
patients with CCA; however, 50-95% of cases are not surgical 
candidates (5). The current 5-year survival rate for CCA 
following surgery and chemotherapy is <20% (6). In addition, 
CCA is difficult to diagnose, and existing CCA classification 
systems do not provide insights into the mechanisms of CCA 
tumorigenesis or potential targets for therapy (7). Therefore, a 
better understanding of the biology and molecular pathogen-
esis of CCA may provide the basis to target these markers for 
tumor prevention or therapy.

Genomic profiling studies have highlighted differing 
patterns of CCA, helping to stratify patients for targeted 
therapies (8). Previous studies have investigated the roles of 
genetic, epigenetic and transcriptomic alterations, in tumor 
suppressor genes and oncogenes, in the pathogenesis of CCA. 
Using integrative molecular analysis, Sia et al (9) described 
two distinct gene signature classes: A proliferation and an 
inflammatory class. The proliferation class has specific copy 
number alterations, activation of oncogenic pathways, and is 
associated with worse outcome. Based on microarray analysis, 
Jusakul et al (7) additionally revealed four distinct clusters 
characterized by different clinical features and genomic 
alterations. These previous results exemplify how genetics, 
epigenetics and environmental carcinogens may interplay 
across different geographies to generate distinct molecular 
subtypes of cancer. In addition, there are studies comparing 
gene expression profiles between ICC and hepatocellular 
carcinoma (HCC), in order to identify differences in their 
carcinogenic mechanisms (10,11). These studies identified 
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genetic alterations in CCA that potentially render early diag-
nosis and precision treatment a possibility.

However, relatively small sample sizes, and differences 
in control design and platforms, has led to inconsistencies 
in terms of the identified genes. Additionally, certain studies 
have used HCC tissue as a control to identify differentially 
expressed genes (DEGs) in ICC (10,11). All these aspects 
increase the heterogeneity of the results. Therefore, an inte-
grated analysis of multiple microarray studies may be helpful 
to define common DEGs and provide additional evidence for 
understanding the regulatory mechanism of CCA.

In the present study, an integrated analysis to identify DEGs 
between CCA and non-tumor tissues was performed by inte-
grating gene expression files in the Gene Expression Omnibus 
(GEO) database using the web-based tool, NetworkAnalyst. 
The protein-protein interaction (PPI) network of these genes 
was subsequently constructed and visualized. In addition, 
significantly enriched functions of these DEGs were screened 
and analyzed to identify CCA-associated biological processes 
and pathways.

Materials and methods

Dataset collection and data processing. Gene expression 
profiles of CCAs were obtained from the GEO database 
(www.ncbi.nlm.nih.gov/geo). The following key words were 
used: ‘Homo sapiens’ and ‘cholangiocarcinoma’. Datasets 
containing gene expression profiles of CCA and non‑tumor 
tissues or cultured cells were included in the present study. 
Studies with a sample number <10 were excluded. A total of 
seven datasets were included in this systematic review. The 
GEO IDs of these seven datasets were GSE26566, GSE32225, 
GSE32879, GSE89749, GSE22633, GSE45001 and GSE57555 
(Table I) (7,9,11-15).

Processed data in matrix form were collected from each qual-
ifying microarray study. A global meta-analysis for identifying 
DEGs in CCA was conducted using the rank product algorithm 
(RankProd package in R statistical software; www.r-project.
org) implemented in the web-based tool NetworkAnalyst 
(integrative meta-analysis of expression data; www.network-
analyst.ca) (16,17). Normalized gene expression datasets were 
uploaded into NetworkAnalyst. The datasets were subsequently 
processed and annotated to adjust the data format and class 
labels to a consistent style. Following an integrity check, the 
random effects model was used to calculate the pooled effect 
size according to the result of Cochran's Q tests (16).

Functional enrichment analysis of DEGs. The Database for 
Annotation, Visualization and Integrated Discovery (DAVID; 
david.abcc.ncifcrf.gov/knowledgebase) (18,19) is a compre-
hensive set of functional annotation tools. In the present study, 
gene ontology (GO) enrichment analysis (including biological 
process, cellular component and molecular function catego-
ries) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis for DEGs was performed using 
the DAVID tool. A P-value of 0.05 was selected as the cutoff 
criterion.

Construction of PPI network. Network analyst uses a 
comprehensive, high-quality PPI database downloaded from 

InnateDB (20), which is part of the International Molecular 
Exchange (IMEx) consortium (21). It additionally contains 
manually curated protein interaction data from published liter-
ature and experimental data from a number of PPI databases, 
including IntAct (22), MINT (23), DIP (24), BIND (25) and 
BioGRID (26). To construct the gene coexpression network 
of the DEGs, the DEGs were mapped on the protein interac-
tion network tool in NetworkAnalyst. As the total nodes were 
>2,000, the network was switched to zero-order interactions, 
which composed only of the seed nodes and the edges that 
interconnect them (16). Visualization and functional analyses 
were performed. Furthermore, functional modules from the 
PPI network in NetworkAnalyst were identified and extracted, 
using enrichment analysis.

Results

Data processing and DEG identification. From the GEO data-
base of the National Center for Biotechnology Information, 
seven GEO datasets associated with CCA that met our criteria 
for meta-analysis were extracted (Table I). Among these data-
sets, a total of 428 CCA cases and 46 controls were included in 
the integrated analysis.

An overview of the meta-analysis approach is outlined in 
Fig. 1. The meta-analysis page of the NetworkAnalyst website 
presents five common approaches for meta-analysis. The 
present study was performed based on combining effect sizes. 
According to the result of Cochran's Q test (data not shown), 
the random effects model was chosen for statistical meta-anal-
ysis. DEGs with P<0.05 were selected. A total of 12,081 genes 
were identified by integrated analysis, and 1,080 DEGs were 
identified from this meta‑analysis, including 710 upregulated 
and 370 downregulated genes. The 10 most significantly 
upregulated genes (P<0.05) are secreted phosphoprotein 1 
(SPP1), matrix metallopeptidase 11 (MMP11), collagen type I 
α1 chain (COL1A1), thymosin β10 (TMSB10), agrin (AGRN), 
collagen type IV α1 chain (COL4A1), Collagen type X α1 
chain (COL10A1), minichromosome maintenance complex 
component 3 (MCM3), collagen type IV α2 chain (COL4A2) 
and solute carrier family 39 member 1 (SLC39A1; Table IIA). 
The 10 most significantly downregulated genes (P<0.05) are 
FXYD domain containing ion transport regulator 1 (FXYD1), 
cytochrome P450 family 2 subfamily A member 13 (CYP2A13), 
cystathionine gamma-lyase (CTH), apolipoprotein F (APOF), 
ornithine carbamoyltransferase (OTC), hydroxyacid oxidase 2 
(HAO2), glycine-N-acyltransferase (GLYAT), phosphoenol-
pyruvate carboxykinase 2 (PCK2), microsomal triglyceride 
transfer protein (MTTP) and cytochrome P450 family 4 
subfamily A member 22 (CYP4A22; Table IIB). The heat 
map of the top 100 upregulated and downregulated DEGs is 
presented in Fig. 2.

Functional enrichment analysis. Functional enrichment anal-
ysis was performed to further study these DEGs. Following 
GO enrichment analysis, three categories (biological process, 
cellular component and molecular function) were detected 
using the DAVID database. The 10 most significantly enriched 
terms (P<0.05) in each category are presented in Fig. 3. KEGG 
pathway analysis revealed 23 significantly enriched pathways, 
with ‘DNA replication’ being the most significantly enriched 
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pathway. In addition, ‘influenza A’ and ‘lysosome’ were also 
significantly enriched pathways (Fig. 4).

PPI network construction. Based on the IMEx database, 
the PPI network of the DEGs was constructed using 
NetworkAnalyst. The interaction network included 471 nodes 
and 896 edges (Fig. 5). In the PPI network, degrees were 
defined to determine the number of neighbors a node is directly 
connected to, and nodes with higher degrees were considered 

to be hub proteins. The five most significant hub proteins were 
histone deacetylase 1 (HDAC1; degree=50), cullin-associated 
NEDD8-dissociated protein 1 (CAND1; degree=47), ubiq-
uitin D (UBD; degree=44), early growth response protein 1 
(EGR1; degree=33) and glycogen synthase kinase 3β (GSK3B; 
degree=23). KEGG pathways were subsequently extracted 
from the PPI network. The five most significantly enriched 
KEGG pathways in the PPI network were ‘influenza A’, ‘cell 
cycle’, ‘pathways in cancer’, ‘colorectal cancer’ and ‘T cell 

Figure 1. An overview of the meta-analysis approach. A total of seven published transcriptomic microarray datasets were obtained and uploaded to 
NetworkAnalyst. Following annotation and normalization, the summary‑level data (effect size) were extracted and integrated to identify significant differen-
tially expressed genes. Finally, the selected genes were presented within functional enrichment analysis and PPI network analysis. PPI network visualization, 
hub and module analysis were further performed using NetworkAnalyst. PPI, protein-protein interaction.

Table I. Characteristics of the individual studies for integrated analysis.

 Sample type
 -----------------------------------------------------
Author, year Datasets Platforms CCA, no. Control, no. (Refs.)

Jusakul et al, 2017 GSE89749 Illumina HumanHT-12 V4.0 118 2 (7)
  expression beadchip
Sia et al, 2013 GSE32225 Illumina HumanRef-8 149 6 (9)
  WG-DASL v3.0
Murakami et al, 2015 GSE57555 Agilent-039494 SurePrint G3 11 11 (11)
  Human GE v2 8x60K Microarray
Andersen et al, 2012 GSE26566 Illumina humanRef-8 v2.0 104 6 (12)
  expression beadchip
Oishi et al, 2012 GSE32879 Affymetrix Human Gene 1.0 16 7 (13)
  ST Array
Seol et al, 2011 GSE22633 Illumina human-6 v2.0 20 4 (14)
  expression beadchip
Sulpice et al, 2016 GSE45001 Agilent-028004 SurePrint G3 10 10 (15)
  Human GE 8x60K Microarray

CCA, cholangiocarcinoma.



ZHONG et al:  INTEGRATIVE ANALYSIS OF CHOLANGIOCARCINOMA-ASSOCIATED GENES 5747

receptor signaling pathway’ (Fig. 6). Numerous hub genes 
were associated with these pathways.

Discussion

CCA is the most common primary malignancy of the biliary 
tract. The prognosis of this malignancy is dismal owing to 
its silent clinical character, difficulties in early diagnosis 
and limited therapeutic approaches; median survival is less 
than 24 months (27). There are a number of established risk 
factors for the development of CCA, although the majority 
of patients have no identifiable risks (2). Therefore, the 
identification of novel tumor biomarkers for the early diag-
nosis and effective treatment of patients with CCA is an 
important future direction. The transcriptional regulatory 
network, screened and analyzed with advanced technolo-
gies including transcriptomic and proteomic analysis, may 
be informative to understand the underlying regulatory 
mechanisms and provide additional evidence for therapeutic 
applications.

In the present study, a total of 1,080 DEGs were identified 
based on an integrated analysis. Through a PubMed literature 

search, it was identified that six out of the 10 most upregulated 
genes have been associated with CCA in biological or clinical 
experiments: SPP1 (28,29), MMP11 (30), COL1A1 (31), 
TMSB10 (32), AGRN (33), and COL4A1 (29). By microarray 
analysis and reverse transcription-quantitative polymerase 
chain reaction, Hass et al (28) determined that SPP1 is the 
most overexpressed gene in ICC. Another study demonstrated 
that SPP1 expression in the stroma of ICC is significantly 
associated with the overall patient survival (29). A previous 
study illustrated the role of MMP11 in cancer progression, 
with positive MMP11 expression in CCA indicating poor 
prognosis (30). COL1A1 is a component of type I collagen, 
which has been reported to be involved in tumor invasion and 
progression. COL1A1 is significantly upregulated in CCA 
compared with non-tumor tissues (31). Tissue microarray 
analysis by Sulpice et al (29) demonstrated increased expres-
sion of COL4A1 in the stroma of ICC. Abnormal expression of 
TMSB10 may contribute to the malignant progression of HCC, 
and high expression of TMSB10 predicts poor prognosis in 
patients with HCC following hepatectomy (34). High TMSB10 
expression is significantly associated with clinicopathological 
features, poor prognosis, and distant metastases in patients 
with breast cancer (35). AGRN is a multidomain heparan 
sulfate proteoglycan, with different modules homologous to 
domains present in basement membrane proteins. AGRN 
expression and deposits are increased in CCA compared with 
HCC and nontumorous livers, which implies multiple roles in 
the pathogenesis and progression of CCA (33). However, few 
downregulated DEGs have been reported to be associated with 
CCA. Certain genes may be associated with CCA indirectly. 
For example, the metabolic gene HAO2 is downregulated in 
HCC, and HAO2 expression levels are inversely correlated 
with grading, overall survival and metastatic ability (36). 
Cystathionine-γ-lyase expression is regulated by the Wnt 
pathway at the transcriptional level and is involved in colon 
cancer (37); it additionally leads to the development of breast 
cancer in association with the STAT3 signaling pathway (38). 
The low expression level of these genes may be associated 
with the development of CCA, although there are no specific 
experiments investigating these genes in CCA.

The functional mechanisms of these DEGs using GO and 
KEGG pathway analyses were further investigated. A total 
of 482 significantly enriched terms in the biological process, 
42 in the cellular component and 73 in the molecular func-
tion category were identified. All of the 10 most significantly 
enriched terms in the biological process category are asso-
ciated with DNA and chromosomes. Active DNA synthesis 
means proliferation signaling pathways may be activated in 
CCA, and an activated cell cycle process may be a sign of 
proliferation or cancer progression. There were 141 DEGs 
enriched in the cell cycle process, including enhancer of 
zeste 2 polycomb repressive complex 2 subunit (EZH2), 
cyclin C and cyclin E1. EZH2 expression promotes the 
progression of CCA cells by regulating the cell cycle and is 
associated with poor CCA prognosis (39). In the top 10 cell 
cycle process terms, apart from terms associated with DNA 
and chromosomes, there were three GO terms associated 
with extracellular components: ‘Extracellular exosome’, 
‘extracellular vesicle’ and ‘extracellular organelle’. Among 
the 10 most significantly upregulated DEGs, SPP1, MMP11, 

Table II. Top 10 most significantly up‑ or downregulated 
differentially expressed genes.

A, Upregulated genes

Entrez ID Name Combined ES P-value

6696 SPP1 -2.2097 0.014356
4320 MMP11 -2.0235 0.000592
1277 COL1A1 -1.9385 0.040954
9168 TMSB10 -1.8021 0.014024
375790 AGRN -1.7029 0.008481
1282 COL4A1 -1.5809 0.004244
1300 COL10A1 -1.5545 0.000309
4172 MCM3 -1.5505 0.001245
1284 COL4A2 -1.5413 0.010102
27173 SLC39A1 -1.5064 0.015808

B, Downregulated genes

Entrez ID Name Combined ES P-value

5348 FXYD1 2.508 0.009848
1553 CYP2A13 2.5026 0.029454
1491 CTH 2.4578 0.000691
319 APOF 2.4369 0.048764
5009 OTC 2.4193 0.039134
51179 HAO2 2.4088 0.040748
10249 GLYAT 2.3862 0.037987
5106 PCK2 2.3849 0.002871
4547 MTTP 2.3174 0.038962
284541 CYP4A22 2.2502 0.013350

DEG, differentially expressed gene; ES, effect size.
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Figure 2. Heat map of differentially expressed genes. Heat maps representing expression patterns for the 100 most upregulated and downregulated genes across 
different datasets by row‑wise comparison. Sample type (the first row): Red indicates the primary tumors of CCA (n=428); grey indicates non‑tumor tissue 
(n=46). For each gene, red is upregulated and blue is downregulated in the corresponding sample. CCA, cholangiocarcinoma.

Figure 3. GO functional analysis of DEGs. GO enrichment analysis of DEGs was retrieved using DAVID. The 10 most significantly (P<0.05) enriched GO 
terms in biological process, molecular function and cellular component branches are presented. All the adjusted statistically significant values of the terms 
were negative 10-base log transformed. DEGs, differentially expressed genes; GO, gene ontology.
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COL1A1, COL4A1, COL4A2 and COL10A1 are able to be 
secreted to the extracellular space (40,41). These results indi-
cated enhanced communication between CCA and the tumor 
microenvironment. Thus, the tumor microenvironment may 
be a crucial component governing tumor development and 
progression and, by targeting it, may be a new direction for 
CCA treatment (42).

Following KEGG pathway analysis, 22 pathways were iden-
tified according to the P‑value cut‑off. There were five terms, 
in accordance with the results published by Huang et al (31). 
Certain pathways, including ‘alcoholism’ (hsa05034), ‘viral 
carcinogenesis’ (hsa05203) and ‘colorectal cancer’ (hsa05210) 
have a close association with CCA. Additionally, heavy alcohol 
use, hepatitis B virus infection, hepatitis C virus infection 
and inflammatory bowel disease are possible risk factors for 
CCA (2). Furthermore, a PPI network was established using 
the NetworkAnalyst visualization tool. PPI network analysis 
revealed the significant hub proteins, HDAC1, CAND1, UBD, 
EGR1 and GSK3B. HDACs serve an oncogenic role in the 
occurrence and development of ICC. Abnormal expression of 
HDAC1 is significantly associated with lymph node metastasis, 
high stage carcinoma, vascular invasion and poor prognosis of 
ICC (43).

It was hypothesized that analyzing multiple datasets 
may increase the accuracy of the findings, compared with 
conclusions raised from analyzing a single datasets. In addi-
tion, identifying cell markers that are overexpressed in the 
majority of CCAs may lead to novel drug targets with high 
specificity. The present results may help to identify combina-
tions of treatments to target various signaling pathways that 

are altered in CCA. However, certain limitations remain with 
the present study. Firstly, DEGs were identified via integrated 
analysis of microarray data. Although differential expression 
of several of these genes was confirmed by previous biological 
or clinical research, further in vitro and in vivo validation of 
these results is required. Secondly, the DEGs identified only 
represent relative expression levels compared with CCA and 
non-tumor tissues. Gene mutation and methylation, which 
are also important for CCA tumorigenesis and progression, 
were not included in the present analysis. Thirdly, the inte-
grative analysis method used in the present study is based on 
combining the effect sizes, although there are a number of other 
algorithms used to identify DEGs, including P-values and gene 
ranks (15). Different methods may increase the heterogeneity 
between different published analyses of DEGs. Additionally, 
the sample cases are much more than the controls (428 vs. 46), 
and this case-control ratio may be another limitation of the 
present study.

In summary, the present study identified potential novel 
markers in the pathogenesis of CCA. In addition, genes 
consistently differing in expression in CCA were identified 
through NetworkAnalyst tools. The 10 most significantly 
upregulated and downregulated genes may serve as potential 
diagnostic biomarkers. GO annotation and KEGG pathway 
analysis demonstrated that the identified candidates have a 
strong association with CCA. Furthermore, a number of novel 
CCA‑associated genes were identified. Further experimental 
validation is required to fully understand the mechanism of 
these novel genes in CCA, and to investigate any therapeutic 
and diagnostic potential these genes may hold.

Figure 4. Significantly enriched pathways in KEGG pathway analysis of differentially expressed genes in cholangiocarcinoma. Enriched biological pathways 
were identified using the Database for Annotation, Visualization and Integrated Discovery. Statistically significant (P<0.05) categories among the pathways 
identified in KEGG. The adjusted statistically significant values were negative 10‑base log transformed. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 5. An overview of the PPI network. The PPI network was generated using NetworkAnalyst. Red and green color nodes represent upregulated and 
downregulated differentially expressed genes, respectively. PPI, protein-protein interaction.
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Figure 6. The five most significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways extracted from the protein‑protein interaction network. 
(A) Influenza A; (B) cell cycle; (C) pathways in cancer; (D) colorectal cancer; (E) TCR signaling pathway. Red and green colored nodes represent upregulated 
and downregulated genes, respectively. TCR, T cell receptor.
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