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Abstract

Background—Obesity and its associated diseases are major health problems characterized by 

extensive metabolic disturbances. Understanding the causal connections between these phenotypes 

and variation in metabolite levels can uncover relevant biology and inform novel intervention 

strategies. Recent studies have combined metabolite profiling with genetic instrumental variable 

(IV) analysis (Mendelian randomization) to infer the direction of causality between metabolites 

and obesity, but often omitted a large portion of untargeted profiling data consisting of unknown, 

unidentified metabolite signals.
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Methods—We expanded upon previous research by identifying body mass index (BMI)-

associated metabolites in multiple untargeted metabolomics datasets, and then performing 

bidirectional IV analysis to classify metabolites based on their inferred causal relationships with 

BMI. Meta-analysis and pathway analysis of both known and unknown metabolites across datasets 

were enabled by our recently developed bioinformatics suite, PAIRUP-MS.

Results—We identified 10 known metabolites that are more likely to be causes (e.g. alpha-

hydroxybutyrate) or effects (e.g. valine) of BMI, or may have more complex bidirectional cause-

effect relationships with BMI (e.g. glycine). Importantly, we also identified about 5 times more 

unknown than known metabolites in each of these three categories. Pathway analysis incorporating 

both known and unknown metabolites prioritized 40 enriched (p < 0.05) metabolite sets for the 

cause versus effect groups, providing further support that these two metabolite groups are linked to 

obesity via distinct biological mechanisms.

Conclusions—These findings demonstrate the potential utility of our approach to uncover 

causal connections with obesity from untargeted metabolomics datasets. Combining genetically 

informed causal inference with the ability to map unknown metabolites across datasets provides a 

path to jointly analyze many untargeted datasets with obesity or other phenotypes. This approach, 

applied to larger datasets with genotype and untargeted metabolite data, should generate sufficient 

power for robust discovery and replication of causal biological connections between metabolites 

and various human diseases.

INTRODUCTION

Abnormal blood metabolite levels are important, frequent, and quantifiable features of 

obesity and its associated phenotypes, which are major health problems globally1–5. 

Recently, systematic metabolite profiling (metabolomics) studies have described widespread 

alterations in the obesity metabolome and identified metabolite markers associated with risk 

of obesity-related diseases6–10. However, these studies broadly have two key analytic 

challenges limiting the biological interpretation and scope of their findings: these correlative 

studies have not generally been able to distinguish the cause and effect relationships between 

metabolites and phenotypes, and only a portion of the thousands of metabolite signals 

measured by untargeted profiling technology could be chemically identified and thereby 

routinely investigated.

Genetic instrumental variable (IV) analysis (for causal inference) and novel bioinformatics 

tools (for analysis of untargeted metabolite data) now provide the means to overcome these 

limitations and enhance our understanding of the metabolome of any phenotype. The genetic 

IV framework, also known as Mendelian randomization, uses genetic variants as instruments 

to infer causality from observational data in the presence of unmeasured confounding, 

provided certain methodological assumptions are met11,12. Bidirectional genetic IV analysis, 

using in turn genetic variants affecting metabolite levels and variants affecting a phenotype 

such as body mass index (BMI), offers a way to ascribe directionality of causal relationships 

and to prioritize potentially causal metabolite-phenotype associations. Previous genetic IV 

studies have utilized variants identified in genome-wide association studies (GWAS) to infer 

causality between obesity-related phenotypes and curated sets of metabolites (e.g. branched-

chain amino acids [BCAAs] and aromatic amino acids)13–17. However, most studies did not 
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perform comprehensive bidirectional IV analysis to assess causality and only focused on the 

metabolites that could be identified and curated from profiling data, thus likely capturing 

only a limited slice of obesity biology.

Previously, metabolites of unknown chemical identities – a large portion of untargeted 

profiling data – were mostly excluded from analyses (including GWAS) because inter-study 

comparison and biological interpretation were technically onerous or intractable18,19. To 

address these issues, we recently developed a bioinformatics suite, PAIRUP-MS19, to match 

up unknown metabolites across mass spectrometry-based untargeted profiling datasets, 

thereby enabling meta-analysis of multiple datasets and increasing statistical power for 

detecting biologically interesting unknowns. In addition, PAIRUP-MS provides a framework 

for annotating unknown metabolites using preexisting metabolic pathways and performing 

pathway analysis incorporating both known and unknown metabolites.

In this study, we demonstrate how the combination of bidirectional genetic IV framework 

and PAIRUP-MS can be used to analyze multiple untargeted metabolomics datasets and 

characterize causal connections between a phenotype and the metabolome. We identified 

both known and unknown BMI-associated metabolites, and then performed GWAS for each 

metabolite and for BMI, followed by bidirectional genetic IV analysis to identify 

metabolites likely to be causes or effects of obesity. In addition, we highlighted distinct 

biological pathways enriched for the cause versus effect metabolites, confirming that the 

bidirectional IV approach prioritized two distinct sets of BMI-associated metabolites. This 

initial work illustrates an approach that can now be generalized and scaled up to much larger 

datasets, which will enable well-powered studies to uncover novel metabolic causes and 

effects of obesity or any other phenotype of interest.

MATERIALS AND METHODS

A schematic overview of our analysis plan is shown in Figure 1 and each step is described in 

more detail below. Supplementary Text 1 lists all supplementary materials referenced in this 

and all subsequent sections.

Metabolomics datasets and data processing

Study populations—The study populations have been described previously19–21: (1) 

Obesity Extremes (OE): N = 300 sampled equally from lean, obese, and the general 

Estonian Biobank (EB) population, (2) Mexico City Diabetes Study (MCDS): N = 865 in a 

prospective study, and (3) BioAge Labs Mortality Study (BioAge): N = 583 in a 

retrospective mortality study nested in EB. All participants provided informed consent. 

Individual studies were approved by their respective local ethics committees. Boston 

Children’s Hospital Institutional Review Board approved this research.

Metabolite data processing—Untargeted liquid chromatography-mass spectrometry 

(LC-MS) profiling of plasma samples and subsequent log-transformation, normalization, 

quality control, and missing value imputation of the data have been described previously19. 

The processed OE dataset contains 298 samples and 13,613 metabolite signals (322 known); 

MCDS contains 821 samples and 7,136 signals (242 known); BioAge contains 583 samples 
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and 14,617 signals (603 known). In order to derive easily interpretable metabolite abundance 

scores, within each dataset, we performed rank-based inverse normal transformation on each 

signal and used the resulting abundance z-scores in downstream analyses. For OE and 

MCDS data used in BMI and genetic association analyses, we performed covariate 

adjustment (age, sex, and fasting time for OE; age and sex for MCDS) before the 

transformation. In this paper, we refer to both known and unknown metabolite signals as 

“metabolites” for simplicity, recognizing that an unknown signal does not always represent 

an independent, functional circulating metabolite.

Mapping and identifying BMI-associated metabolites (Figure 1a)

Mapping metabolites across datasets—Using the imputation-based matching 

algorithm in PAIRUP-MS19, we identified 1,780 metabolite pairs (207 shared known 

metabolites measured in both datasets and 1,573 matched unknown or unshared known 

metabolites) that could be compared directly across OE and MCDS and restricted 

subsequent analyses to these metabolites. For pathway analyses requiring the BioAge-based 

metabolite set annotations (see below), we furthered mapped 1,743 (200 shared known and 

1,543 matched) of these metabolite pairs to metabolites measured in BioAge.

Identifying BMI-associated metabolites—Within each cohort, we adjusted raw BMI 

(available for 298 OE and 818 MCDS samples, calculated from weight and height measured 

at the same study visit as sample collection) for age and sex, performed rank-based inverse 

normal transformation on the residuals, and used the resulting BMI z-scores in all further 

analyses. (Since the OE lean and obese samples were drawn from the BMI extremes of EB, 

all EB samples were used to calculate population-based z-scores.) To identify BMI-

associated metabolites, we performed linear regression of BMI on each metabolite within 

each cohort, followed by inverse variance weighted meta-analysis across the two cohorts, 

and applied a Bonferroni significance threshold (p < 0.05/1,780) in meta-analysis.

Bidirectional IV analyses (Figure 1b)

Metabolite instrument (GM) selection—GWAS and meta-analysis of the BMI-

associated metabolites using 294 OE and 637 MCDS samples (with available genetic data) 

were performed as described previously19. Briefly, linear mixed model GWAS were 

performed using imputed genotype dosages and EPACTS22 (v3.2.6) within each cohort, 

followed by inverse variance weighted meta-analysis using METAL23 (2011–03-25 version). 

To select GM, we first identified the SNP (single nucleotide polymorphism) with the best 

meta-analyzed p-value for each metabolite. We restricted to a single SNP per metabolite 

given the modest sample size for discovery and limited number of loci near genome-wide (p 
< 5 × 10−8) or sub-genome-wide (p < 1 × 10−5) significance. Next, to avoid using redundant 

GM, we used PLINK24 (v1.9) and 1000 Genomes phase 3 reference panel25 to “clump” the 

best SNPs for all metabolites, selecting independent SNPs that have r2 < 0.5 or are > 250 kb 

apart, and only kept the independent SNPs as GM in further analyses (along with their best-

associated metabolites and respective effect estimates in meta-analysis). For known 

metabolites in our causality groups (see below), we performed an additional sensitivity 

analysis using (where available) genome-wide significant (p < 5 × 10−8) SNPs and their 

respective effect estimates from published metabolite GWAS26–31 as individual GM.
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BMI instrument (GB) selection—We used 97 BMI-associated SNPs (Gb) previously 

identified in GIANT32 and their effect estimates (βb) in our UK Biobank (UKB) GWAS to 

calculate a weighted genetic risk score for use as GB (i.e. GB = Σ βb × Gb). We performed 

BMI GWAS in UKB using 453,397 European-ancestry samples and sex-combined BMI z-

scores, using BOLT-LMM33 (v2.3.2) to account for relatedness and population structure 

(Supplementary Text 2). Analysis of UKB data was approved by its governing Research 

Ethics Committee and the Broad Institute Institutional Review Board. The GIANT, UKB, 

and metabolomics cohorts have no known sample overlap. In terms of unknown sample 

overlap, OE is contained within EB, a participating cohort in GIANT; OE therefore 

comprises, at maximum, less than 0.1% of GIANT. We confirmed that GB is associated with 

BMI in OE and MCDS and that none of the Gb are in linkage disequilibrium (r2 > 0.3) with 

the selected GM (using PLINK and 1000 Genomes reference panel described above).

Testing for metabolite-to-BMI causal effect using GM—The association between 

BMI and each GM was extracted from the UKB GWAS summary statistics and used to 

calculate the Wald ratio IV effect estimate of each metabolite on BMI. The p-value for the 

Wald estimate was calculated using an asymptotic standard error estimate described 

previously34. This p-value – a test of the null hypothesis of no causal effect of the metabolite 

– was used to rank metabolites as more or less likely to be causal for BMI.

Testing for BMI-to-metabolite causal effect using GB—We performed linear 

regression of each metabolite on GB in OE and MCDS separately, followed by inverse 

variance weighted meta-analysis. The Wald ratio IV effect estimate of BMI on each 

metabolite was calculated using the meta-analyzed statistics, and the corresponding p-value 

was used to rank metabolites as more or less likely to be effects of BMI. As a sensitivity 

analysis, we performed the MR-PRESSO global test35 (using 10,000 permutations for each 

metabolite) to assess overall horizontal pleiotropy among the individual SNPs (Gb) 

contained within GB, using metabolite-Gb association in the OE-MCDS meta-analysis and 

BMI-Gb association in UKB for 96 of 97 BMI SNPs (rs2033529 was excluded due to 

absence in our metabolite GWAS).

Defining cause, effect, and bidirectional metabolite groups (Figure 1c)

To rank BMI-associated metabolites as more or less likely to be the causes or effects of 

obesity, we used the -log10 p-value of the IV effect estimate for either the metabolite (GM) or 

BMI (GB) instrument, reasoning that the magnitude of these p-values informs the likelihood 

of the respective null hypotheses, provided the assumptions for IV analyses are met. The 

primary IV assumptions include the genetic variant is a valid instrument for the exposure, 

and the instrument is not associated with confounders or the outcome (except via the 

exposure-outcome effect)12. Metabolites in the top and bottom quartiles of these two p-

value-based rankings were assigned to three distinct groups corresponding to different types 

of causal connections with BMI: (1) “cause”: metabolites that were ranked in the top 

quartile using GM and the bottom using GB, and thus are likely to be upstream causes for 

BMI; (2) “effect”: metabolites that were ranked in the bottom quartile using GM and the top 

using GB, and thus are likely to be downstream effects of BMI; (3) “bidirectional”: 
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metabolites that were in the top quartiles of both rankings, suggesting complex bidirectional 

cause-effect relationships with BMI.

Pathway analyses of the defined metabolite groups (Figure 1d)

The PAIRUP-MS pathway annotation method and BioAge metabolite data were used to 

generate metabolite set annotations as described previously19 (Supplementary Figure 1a–b), 

resulting in 690 metabolite sets in which each metabolite was assigned a numeric 

membership score in each set. Next, we applied the PAIRUP-MS pathway analysis 

framework to identify enriched metabolite sets for the cause, effect, and bidirectional 

metabolite groups we defined. We compared each of the three groups individually versus all 

other BMI-associated metabolites and, in a fourth analysis, compared the cause versus effect 

groups. First, for each metabolite set in each comparison analysis, a two-tailed Wilcoxon 

rank-sum test was performed to compare the membership scores of the two groups of 

metabolites (Supplementary Figure 1c). Next, to account for correlation structure in our 

data, iterations of this procedure were performed using “null” metabolite groups to calculate 

a permutation-based enrichment p-value for each metabolite set (Supplementary Figures 1c 

and 2). All procedures described above can be performed using PAIRUP-MS source code, 

except for the generation of null metabolite groups, which is specific to the current study.

Performing m/z query for unknown metabolites

To assess if the unknown metabolites captured information redundant to the known 

metabolites in our dataset (and to look up potential identities of unknowns classified in the 

three causality groups), we performed m/z query as described previously19, using the “LC-

MS Search” tool in the Human Metabolome Database (HMDB)36. The unknowns were 

annotated as an m/z-matched adduct of a known metabolite in our data, an m/z-matched 

adduct of an HMDB metabolite not identified in our data, or a metabolite without a match in 

HMDB.

Additional information on analysis software and data availability are provided in 

Supplementary Text 4 and 5, respectively. The study protocol and details were not pre-

registered.

RESULTS

Identifying known and unknown metabolites associated with BMI

We used untargeted metabolomics data from OE and MCDS to identify metabolites 

associated with BMI. First, we identified 207 pairs of shared known metabolites measured in 

both cohorts, and used PAIRUP-MS to match 1,573 additional pairs of unknown or unshared 

known metabolites likely to represent identical or highly correlated metabolites. Then, by 

performing meta-analysis of both the shared known and matched pairs across the cohorts, 

we identified 577 BMI-associated metabolites at Bonferroni significance (p < 0.05/1,780), 

the majority of which are unknown metabolites: 418 (72.4%) consist of two paired unknown 

metabolites, 59 (10.2%) consist of a known metabolite matched to an unknown, and only 

100 (17.3%) consist of shared known metabolites. When we clustered these metabolites 

based on their pairwise correlations, we observed clusters comprising mostly or entirely of 
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matched metabolite pairs with unknown identities (Supplementary Figure 3). Therefore, 

including these unknowns in downstream analyses increased the number of candidate 

metabolites by nearly five-fold, and allowed us to investigate aspects of obesity biology not 

represented by the curated, known metabolites.

Identifying metabolites more likely to be causal for BMI

Before we could determine whether the BMI-associated metabolites are likely to be causal 

for BMI, we first needed to identify the SNP best-associated with each metabolite to use as 

genetic instrument (GM in Figure 1). We therefore performed GWAS of metabolite levels in 

both OE and MCDS, followed by meta-analysis. We identified genome-wide significant (p < 

5 × 10−8) SNPs for 204 (35 shared known and 169 matched) of the BMI-associated 

metabolites (Figure 2); 66 (14 shared known and 52 matched) of these are also significant 

after correction for multiple hypothesis testing (p < 5 × 10−8/577). Overall, the matched, 

unknown metabolites show comparable degree of genetic associations as the shared known 

metabolites, even in loci not associated with any of the knowns. Analyzing the unknowns 

thus greatly improved our ability to obtain genome-wide significant and novel genetic 

instruments for metabolite signals, despite a relatively small GWAS sample size.

We observed that all 577 BMI-associated metabolites have best-associated SNPs with at 

least suggestive sub-genome-wide significance (maximum p = 2.5 × 10−6) and thus 

considered the best-associated SNP for each metabolite as a potential instrument. To avoid 

analyzing metabolites sharing the same instruments, we included only genetically 

independent GM (r2 < 0.5 or > 250kb apart) and the 324 (40 shared known and 284 matched) 

metabolites best-associated with these instruments in subsequent IV analyses 

(Supplementary Table 1). Supplementary Figure 4 summarizes the overall level of 

association between the 324 GM and the 324 metabolites, with 38.6% of GM being 

associated with more than one metabolite. Next, for each metabolite, we estimated the 

association between GM and BMI using a large independent cohort, UKB, in a two-sample 

design to calculate the metabolite-to-BMI IV effect estimate. We identified 50 (11 shared 

known and 39 matched) metabolites with metabolite-to-BMI IV p-values < 0.05, which 

indicates that they are more likely to be upstream causes for BMI (Supplementary Table 1).

Identifying metabolites more likely to be effects of BMI

To determine if the 324 BMI-associated metabolites are likely to be effects of BMI, we 

combined 97 BMI SNPs previously identified in GIANT into a weighted genetic risk score 

using UKB effect estimates as weights (Supplementary Table 2). As expected, the score is a 

valid genetic instrument for BMI (GB in Figure 1) in OE and MCDS (meta-analyzed BMI-

GB association p = 5.9 × 10−7, Supplementary Table 3). For each metabolite, we estimated 

the association between GB and the metabolite using OE and MCDS data (Supplementary 

Table 3) to calculate the BMI-to-metabolite IV effect estimate. A total of 56 (8 shared 

known and 48 matched) metabolites have BMI-to-metabolite IV p-values < 0.05 and thus are 

more likely to be downstream effects of BMI (Supplementary Table 1).
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Defining cause, effect, and bidirectional metabolite groups

In order to further characterize the causal relationships between BMI and its associated 

metabolites, we ranked the metabolites based on the magnitude of the evidence according to 

their metabolite-to-BMI (GM) and BMI-to-metabolite (GB) IV p-values, and classified a 

subset of them into “cause”, “effect”, or “bidirectional” group using quartile cutoffs of the 

rankings (Figure 3). We defined 25 metabolites as more likely to be cause (5 shared known 

and 20 matched), 26 as more likely to be effect (3 shared known and 23 matched), and 19 as 

more likely to be bidirectional (2 shared known and 17 matched) with respect to BMI. The 

shared known metabolites in each group are listed in Table 1; the top cause, effect, and 

bidirectional known metabolites are alpha-hydroxybutyrate, valine, and glycine, 

respectively. Details for all metabolites in each group are in Supplementary Table 1. We also 

performed m/z query in HMDB to obtain potential identities for the unknowns in the 

matched metabolite pairs (Supplementary Table 4) and found only 6 out of the 60 matched 

pairs to be potentially redundant with the known metabolites curated in our data. Hence, we 

identified about 5 times more matched, unknown metabolites in the three causality 

categories compared to the known metabolites. In addition, we performed sensitivity 

analyses to assess how our genetic IV and classification scheme would be influenced by 

weak instrument or pleiotropy bias (Supplementary Text 3, Supplementary Tables 5 and 6); 

we obtained results that generally support the robustness of our approach.

Prioritizing enriched pathways for cause, effect, and bidirectional metabolites

We identified many more matched, unknown metabolite pairs in the cause, effect, and 

bidirectional groups compared to the shared known metabolites, but it is difficult to 

hypothesize on their roles in obesity biology without knowing their chemical identities. 

Therefore, to extract useful information from the unknowns and to gain clues about the 

biology broadly captured by the three causality groups, we performed PAIRUP-MS pathway 

analyses encompassing both known and unknown metabolites, using metabolite set 

annotations generated from a separate cohort, BioAge. First, we carried out three separate 

analyses to identify pathways with enrichment p < 0.05 for metabolites in the cause, effect, 

or bidirectional group, respectively, when compared against all other BMI-associated 

metabolites (Supplementary Table 7). While the most enriched metabolite sets in each 

analysis are associated with different pathways, several metabolite sets are enriched in 

multiple analyses (e.g. “NAD de novo biosynthesis” is enriched for both cause and effect 

metabolites).

Hence, in order to identify pathways that are the most distinct between the defined 

metabolite groups, we next performed a pathway analysis directly comparing the cause 

versus effect metabolites, prioritizing 40 metabolite sets with enrichment p < 0.05 

(Supplementary Table 7). The 13 cause metabolite sets (in which cause metabolites have 

higher membership scores than effect metabolites) are associated with various pathways, 

such as those connected to inflammation (e.g. nitric oxide signaling), redox metabolism (e.g. 

cysteine/methionine metabolism), and appetite regulation (e.g. endocannabinoid signaling). 

The 27 effect metabolite sets also contain varied pathways including those related to lysine 

catabolism, neurobiology (e.g. addiction and catecholamine biosynthesis), and stress 

response (e.g. FoxO signaling). While the known metabolites in our analysis have been 
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linked to some of the enriched metabolite sets in literature, the unknowns contributed most 

of the data used to prioritize these sets.

Finally, to better visualize the distinguishing features between the cause versus effect 

metabolites in terms of their roles in biological pathways, we constructed a clustered heat 

map of their membership scores in the enriched metabolite sets (Figure 4). The metabolites 

form two major clusters consisting of mostly cause or mostly effect metabolites, with a 

handful of metabolites clustering with the contrasting group (i.e. cause metabolite 

“misclassified” in the effect cluster or vice versa). In the other dimension, the cause and 

effect metabolite sets form two pure clusters consisting of all cause or all effect sets, 

agreeing with their pathway enrichment statistics. Overall, the pathway results suggest that 

the cause and effect metabolites we defined are involved in distinct biological processes and 

thus may be associated with BMI through different mechanisms.

DISCUSSION

The study of comprehensive metabolite profiles defines an exciting frontier in human 

pathophysiology. However, metabolite-phenotype associations discovered in metabolomics 

studies are often correlative in nature and additional causal inference approaches, such as 

genetic IV analysis, are required to help assess causality between metabolites and 

phenotypes. Furthermore, unknown metabolite signals are often filtered out prior to analysis 

of untargeted metabolomics data, greatly limiting investigation to a priori candidate 

metabolites, reducing the search space, and hindering downstream analyses such as pathway 

enrichment. Here we present a paradigm for combining untargeted metabolomics, genomics, 

and our recently described bioinformatics suite, PAIRUP-MS, to overcome these challenges. 

Using obesity as an exemplar state of metabolic dysregulation, we illustrate the potential 

utility of this approach to advance our understanding of causal connections in metabolic 

diseases.

In this study, we meta-analyzed hundreds of unknown metabolites from two cohorts using 

PAIRUP-MS, identifying novel associations between the unknowns, BMI, genetic variants, 

and biological pathways. Indeed, using bidirectional genetic IV analysis, we discovered 

about 5 times as many unknown than known metabolites with potential causal connections 

to BMI. While these unknowns are likely not all fully independent and functional circulating 

molecules, their associations with genetic variants and BMI, distinct from those with known 

metabolites, suggest that a sizable number of them reflects aspects of BMI biology not 

captured by known metabolites. Furthermore, the much larger number of candidate 

metabolites allowed us to perform PAIRUP-MS pathway analyses that account for potential 

redundancy, prioritizing biological pathways specific to the metabolites with cause or effect 

relationships to BMI. Despite the modest power of our metabolite GWAS, our study 

demonstrates a useful and generalizable analytic framework to probe the metabolome of 

obesity and other diseases.

We identified novel metabolites that may be causes of obesity, as well as replicating two 

known metabolites, valine and tyrosine, that may be effects of BMI15. The associations 

between BMI and known metabolites were broadly consistent with those observed in a 
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recent comprehensive metabolomics study of BMI10, which used longitudinal data to 

suggest that BMI-associated metabolites were predictive of future cardiometabolic 

outcomes, but did not use the same bidirectional IV approach that we employed for causal 

inference between metabolites and obesity itself (see Supplementary Text 6 for additional 

discussion). The top cause metabolite we defined among the known metabolites is alpha-

hydroxybutyrate, which has been linked to insulin resistance, oxidative stress, glutathione 

biosynthesis, and mitochondrial dysfunction6,37,38. The oxidative stress and glutathione 

links are especially intriguing since “glutathione-mediated detoxification” emerged as an 

enriched causal pathway when we compared the cause and effect metabolite groups in 

pathway analysis. It is also notable that the IV effect estimate of alpha-hydroxybutyrate on 

BMI is protective while the observational association suggests this metabolite is obesogenic. 

We postulate that a mitochondrial dysfunction/altered redox state linked to high alpha-

hydroxybutyrate level could lead to decreased weight gain, while shared common causes, 

such as an obesogenic diet, may lead to increases in both alpha-hydroxybutyrate level and 

BMI. This example highlights the advantage of genetic IV analyses over observational 

studies alone to explore the potential impact of a theoretical intervention targeted to obesity-

associated metabolites39,40.

When using genetic IV to classify metabolites into our three causality groups, weak 

instrument bias towards the null (for two-sample IV) and pleiotropy bias away from the null 

may lead to misclassification. To address weak instrument bias for classification of our 

known metabolites, we performed sensitivity analysis using stronger instruments from 

published metabolite GWAS, showing that our results are generally robust against weak 

instrument bias, although some misclassification is possible due to limited power of our 

internal instruments. Different instruments for the same metabolite sometimes show 

discordant results, indicating that there is heterogeneity in the underlying biology. This 

discordance is illustrated by the “effect” metabolite valine, whose top published GWAS 

instrument (rs9637599 on chr4 near PPM1K) yielded strong “cause” evidence (metabolite-

to-BMI IV p = 2.8 × 10−7) and would reclassify valine into the “bidirectional” group. This 

locus has been linked with all three BCAAs, including valine, in previous studies31,41. In our 

GWAS, this SNP is only nominally associated with the three BCAAs (p = 0.011 to 0.038). 

On the other hand, our valine instrument (rs79674166 on chr14) is on a different 

chromosome, has no genes within 5 kb, and yet is also suggestively associated with all three 

BCAAs (p = 7.0 × 10−8 to 9.7 × 10−7). Thus, while the associations between this locus and 

BCAAs need to be replicated and validated in the future, it may underpin BCAA-related 

biology that is distinct from that captured by the published PPM1K locus. We could not 

conduct similar analyses for misclassification of the unknown metabolite instruments since 

there is not yet a straightforward way to obtain external instruments for comparison.

To address pleiotropy bias for our BMI instrument, we used a recently developed method, 

MR-PRESSO, to show that our BMI IV estimates are likely robust against extreme cases of 

pleiotropy bias. We could not examine pleiotropy in the metabolite instruments due to lack 

of multiple instruments for each metabolite (especially for the unknowns where additional 

instruments could not be obtained from published GWAS). More discussion on IV analysis 

limitations with respect to our study are provided in Supplementary Text 7.
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Larger GWAS of both known and unknown metabolites, conducted across multiple datasets 

and populations with different ancestral backgrounds, will make it possible to generalize and 

extend our paradigm to understand causal biological mechanisms for various metabolic 

diseases and alleviate the limitations described above. With more candidate metabolites and 

genetic instruments emerging from better-powered studies, our approach can be expanded to 

leverage multiple IV per metabolite, mediation analyses42, pathway Mendelian 

randomization43, or metabolite IV subsetting according to predicted biological pathway 

memberships44. In conclusion, this study showcases the benefit of combining untargeted 

metabolomics with a bidirectional genetic IV approach to define the metabolome of a major 

human disease state, obesity. We therefore advocate for broader sharing of untargeted 

metabolomics and genetic datasets, similar to the approach taken by international efforts to 

optimize GWAS of many other phenotypes. Broader sharing would improve power and 

reliability of methodological frameworks such as the one presented here and would enable a 

fuller realization of the potential of metabolomics to generate important insights into human 

diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview for identifying and characterizing causal connections in the obesity 
metabolome.
(a) OE and MCDS metabolomics datasets, matched using PAIRUP-MS, were used to 

identify known and unknown metabolites associated with BMI. (b) Independent genetic 

instruments (GM) for the BMI-associated metabolites were selected using OE and MCDS 

data, and then used to test for a metabolite-to-BMI (M → B) causal effect in UKB; in 

parallel, BMI genetic instrument (GB), a polygenic risk score built using GIANT BMI-

associated SNPs (Gb) and UKB effect estimate weights (βb), was used to test for a BMI-to-
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metabolite (B → M) causal effect in OE and MCDS. (c) A subset of metabolites was 

categorized into “cause”, “effect”, and “bidirectional” groups based on the magnitude of the 

evidence according to the GM and GB IV effect estimate p-values, reflecting different types 

of causal connections between the metabolites and BMI. (d) Pathway analyses of the three 

metabolite groups were performed using metabolite set annotations generated using 

PAIRUP-MS and an independent dataset (BioAge). Y ~ X, regression of Y on X; U, 

unmeasured confounder; n, number of samples; m, number of metabolites; k, number of 

known (or shared known) metabolites; s, number of metabolite sets.
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Figure 2. Joint Manhattan plots summarizing GWAS of BMI-associated metabolites in OE and 
MCDS.
Genetic associations for 100 shared known (top) or 477 matched (bottom) BMI-associated 

metabolites were consolidated to plot the best p-value for each SNP (i.e. only the p-value for 

the best associated metabolite was plotted for each SNP). Genome-wide significance 

threshold (p < 5 × 10−8) is marked by the orange lines. Genome-wide significant SNPs are 

plotted in red or blue, for shared known or matched metabolites, respectively. Lead SNPs of 

the most significant loci (p < 1 × 10−15) are annotated with nearest genes (within 5kb), along 

with the best associated known metabolites if applicable.
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Figure 3. Classifying BMI-associated metabolites using IV effect estimate p-values for GM 
(metabolite-to-BMI direction, x-axis) and GB (BMI-to-metabolite direction, y-axis).
Top and bottom quartile cutoffs along each axis are shown as dashed lines. Shared known 

metabolites in “cause” (orange), “effect” (blue), and “bidirectional” (pink) regions are 

labeled with their names.
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Figure 4. Clustered heat map of cause and effect metabolites’ memberships in metabolite sets 
prioritized by pathway analysis.
Euclidean distance-based hierarchical clustering was performed using metabolite 

membership ranks in the BioAge-based metabolite set annotations. Each column is a shared 

known (red label) or matched (black label) metabolite from the cause (yellow bar) or effect 

(blue bar) metabolite group. Each row is an enriched (p < 0.05) metabolite set in pathway 

analysis in either the cause (yellow bar) or effect (blue bar) direction (with representative 

pathway name shown in label; see Supplementary Table 7 for full pathway list). Larger 

number in membership rank (darker red) indicates higher membership score. Dashed light 

blue boxes highlight the two major cause and effect clusters according to the clustering 

dendrograms.
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Table 1.
BMI-associated known metabolites classified into cause, effect, or bidirectional group 
based on their IV effect estimate p-values.

Y ~ X, regression of Y on X; B, BMI; M, metabolite; covariate adjustment for B and M described in Methods; 

β, effect size estimate; SNP, hg19 chromosome:position is shown; EA, effect allele (i.e. metabolite level-

increasing allele). IV effect estimate p-values < 0.05 are in bold italic.

Group Metabolite Observational 
Association

Metabolite Instrument GM IV Estimate 
(M → B)

GB IV Estimate (B 
→ M)

β B ~ 
M

P B ~ M SNP EA P M ~ 
GM

β P β P

Cause alpha-
hydroxybutyrate

0.235 7.09E-13 11:119745598 T 4.82E-07 −0.040 1.24E-03 −0.036 8.36E-01

C34:4 PC 0.153 3.45E-06 3:182171263 A 1.42E-07 −0.027 9.90E-03 0.019 9.15E-01

C6 carnitine 0.207 2.66E-10 1:76224010 C 2.88E-24 −0.010 3.09E-02 −0.076 6.69E-01

C18:1 CE −0.215 5.54E-11 20:38984849 T 3.44E-07 −0.016 4.23E-02 −0.018 9.17E-01

cotinine −0.169 3.10E-07 10:123918365 C 1.07E-06 0.012 8.03E-02 −0.022 9.02E-01

Effect valine 0.445 1.20E-47 14:32724292 A 7.01E-08 −0.003 6.94E-01 0.708 1.46E-03

C22:6 LPC −0.180 4.38E-08 18:71068347 A 3.26E-07 −0.001 9.52E-01 −0.450 2.25E-02

C18 carnitine −0.193 4.65E-09 6:110760008 A 1.27E-07 0.001 9.41E-01 −0.351 6.53E-02

Bidirectional glycine −0.308 7.55E-22 2:211540507 A 2.35E-30 0.030 6.03E-10 −0.712 1.59E-03

tyrosine 0.376 6.22E-33 6:111477887 C 1.12E-07 −0.022 8.77E-03 0.334 7.46E-02
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